General Theory of The Matrix Differential Operator and Spectral Theorem Rajeev Ranjan

University Department of Mathematics, J. P. University, Chapra, Bihar, India.

ARTICLEINFO

Article History:

Accepted: 10 Nov 2023
Published: 24 Nov 2023
Publication Issue
Volume 10, Issue 6
November-December-2023
Page Number
517-520

ABSTRACT

In this present paper, the general theory of the matrix differential operator and spectral theorem has been explained. The theory of eigenfunction expansions associated with the second-order differential equations and their spectral behavior has been also presented in this paper.

Keywords : Matrix differential operator, Spectral theorem, Convergence theorem.

I. INTRODUCTION

Titchmarsh [1] in 1944 discussed the finite case of the simultaneous system of two first-order linear differential equations and he considered the extension to the infinite case in 1941.

Conte \& Sangren [2] discussed two first-order equations in 1953 and 1954. Since then, Roes and Sangren have worked as the same problem in a series of papers. Their methods are those of Titchmarsh's complex variable methods.

DIFFERENTIAL EQUATIONS OF SECOND ORDER

Hilbert [3] initiated the discussion of a pair of simultaneous differential equations of second order. He considered the systems

$$
L_{1}\left(u_{1} u_{2}\right)=-\lambda\left\{k_{i 1}(x) u_{1}+k_{i 2} u_{2}\right\}, \quad i=1,2 \ldots \ldots \ldots \text { (1 }
$$

where

$$
L_{1}\left(u_{1} u_{2}\right)=\frac{1}{2}\left\{\frac{d}{d x} \frac{\partial Q}{\partial u_{i}}-\frac{\partial Q}{\partial u_{i}}\right\}, i=1,2 \ldots \ldots \ldots
$$

Q being the homogenous quadratic expression

$$
Q\left(u_{1}^{\prime} u_{2}^{\prime} u_{1} u_{2}\right)=\sum p_{i j}(x) u_{i}^{\prime} u_{j}^{\prime}+2 \sum q_{i j} u_{i}^{\prime} u_{j}+\sum r_{i j} u_{i} u_{j}
$$

where

$$
p_{i j}=p_{j i} \text { and } r_{i j}=r_{j i}, i, j=1,2
$$

with the boundary

$$
u_{1}(a)=u_{2}(a)=0 ; u_{1}(b)=u_{2}(b)
$$

Eastham [4] obtained separation and oscillation theorems for the system.
$\left.\begin{array}{l}y^{\prime \prime}+p(x) y=q(x) z, \\ z "+p(x) z=r(x) y\end{array}\right\}$
and gave the interesting dynamical interpretation of the problem.
Kamke [38] has mentioned the self-adjoint system.
$y^{\prime \prime}+\lambda\left(\lambda_{11} y+\lambda_{12} z\right)=0$
$z^{\prime \prime}+\lambda\left(\lambda_{21} \mathrm{z}+\lambda_{22} \mathrm{y}\right)=0$
with suitable boundary conditions and stated formulae giving the eigenvalue $A_{p}: p=1,2,3 \ldots \ldots \ldots$
Lidskil [5] considered the system
$-y^{\prime \prime}+[(x) y=\lambda y$,
$y=\left\{y_{1}, y_{2}, \ldots \ldots, y_{n}\right\}$ is a vector and p is a symmetric matrix of real functions. He obtained sets of general conditions under which, for complex values of λ, (i) the given system has usually a linearly independent L^{2} solutions and (ii) the system has the solutions belonging to $\mathrm{L}^{2}[0, \infty)$.

GENERAL THEORY OF THE MATRIX DIFFERENTIAL OPERATOR

Kamke [6] has developed a general theory of the matrix differential operator
$L=p_{0}(x)\left(\frac{d}{d x}\right)^{n}+p_{1}(x)\left(\frac{d}{d x}\right)^{n-1}+\cdots+p_{n}(x) \ldots \ldots$
in a finite interval (a, b) with matrix coefficients

$$
p_{k}(x)=\left(p_{i j}(x)\right), i, j=1,2,3 \ldots \ldots, n
$$

on vector functions

$$
U(x)=\left[U_{1}(x), U_{2}(x), \ldots \ldots, U_{n}(x)\right]
$$

Coddington and Levinson [101] have considered the differential system.
$p_{k}(x)=p_{0} x^{n}+p_{1} x^{n-1}+\cdots+p_{n}(x)=1 x, \ldots \ldots \ldots \ldots \ldots$
with boundary conditions

$$
M_{1} x^{n-1}(a)+\ldots+M_{n} x(a)+N_{1} x^{n-1}(b)+\ldots+N_{n} x(a)=0,
$$

where x is a vector with r components, $\mathrm{p}_{\mathrm{k}} ; \mathrm{k}=1,2, \ldots \ldots, \mathrm{n}$, by -r matrices of class $\mathrm{c}^{\mathrm{n}-\mathrm{k}}[\mathrm{a}, \mathrm{b}]$, and det. $\mathrm{p}_{0}(\mathrm{t}), 0, \mathrm{M}_{\mathrm{k}}$, N_{k} are matrices of n rows and r columns.

Pandey [7] has devoted a whole chapter on the discussion of the system of equations of Kodaira type, confining the discussion wholly to the finite case.

Chakravarty [8-11] has discussed the system
($L-\lambda$) $y=0, \ldots$
Where L stands for the matrix operator

$$
L=\left(\begin{array}{cc}
p(x) & \frac{d^{2}}{d x^{2}}+q(x) \\
\frac{d^{2}}{d x^{2}}+q(x) & x(x)
\end{array}\right)
$$

and $y=\{u, v\}$ is a vector having the components u and v.
Roos [12] has considered the nth order linear vector differential equation.
$\mathrm{L}[\mathrm{u}]=\lambda \mathrm{M}[\mathrm{x}]$,
together with the boundary conditions

$$
\begin{array}{r}
M_{\alpha}(x)=\sum_{\beta=1}^{n}\left\{M_{\alpha \beta} u^{\beta-1}(a)+M_{\alpha n^{+}{ }_{\beta}} u^{\beta-1}(b)\right\}=0 \\
(\alpha=1,2, \ldots, \mathrm{n})
\end{array}
$$

Where,
$\mathrm{U}(\mathrm{t})=\left[\mathrm{u}_{\sigma}(\mathrm{t}),=1,2, \ldots ., \mathrm{h}\right]$
is a n-dimensional vector function and L and M are defined as

$$
\begin{aligned}
L[u] & =p_{n}(t) u^{(n)}+p_{n-1}(t) u^{(n-1)}+\cdots p_{o}(t) u \\
M[x] & =Q_{n}(t) u^{(n)}+Q_{r-1}(t) u^{(r-1)}+\cdots Q_{o}(t) u
\end{aligned}
$$

Where $0 \leq \mathrm{r}<\mathrm{n}$ and n xn matrix functions
$\mathrm{p}_{0}(\mathrm{t})$, \qquad $\mathrm{p}_{\mathrm{n}}(\mathrm{t}), \mathrm{Q}_{0}(\mathrm{t})$, \qquad . $\mathrm{Q}_{\mathrm{r}}(\mathrm{t})$ are continuous on $[\mathrm{a}, \mathrm{b}]$ such that $\mathrm{Q}_{\mathrm{r}}(\mathrm{t}) \neq 0$ and $\mathrm{p}_{\mathrm{n}}(\mathrm{t})$ is non-singular in this interval.

Bhagat [13] has considered the differential system.
$(\mathrm{L}-\lambda \mathrm{F}) \phi=0$
over a finite interval $[\mathrm{a}, \mathrm{b}]$, where L stands for the matrix operator given by

$$
L \equiv\left(\begin{array}{cc}
\frac{d}{d x}\left(p_{0} \frac{d}{d x}\right)+p_{1}(x) & r(x) \\
r(x) & \frac{d}{d x}\left(q_{0} \frac{d}{d x}\right)+q_{1}(x)
\end{array}\right)
$$

F the symmetric matrix
$\mathrm{F} \equiv\left(\mathrm{F}_{\mathrm{ij}}(\mathrm{x})\right)$,
and ϕ a vector represented by a column matrix

$$
\phi=\left(\frac{U}{V}\right)
$$

He has taken the boundary conditions at $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ respectively as

$$
\begin{gather*}
M(a, \phi)=p_{0}(a)\left[a_{j 1} u(a)+a_{j 2} u^{\prime}(a)\right]+q_{0}(a)\left[a_{j 3} v(a)+a_{j 4} v^{\prime}(a)\right]=0 \\
N(b, \phi)=p_{0}(b)\left[b_{j 1} u(b)+a_{j 2} u^{\prime}(b)\right]+q_{0}(a)\left[b_{j 3} v(b)+b_{j 4} v^{\prime}(b)\right]=0 \\
(\mathrm{j}=1,2) \ldots \ldots \tag{10}
\end{gather*}
$$

II. CONCLUSION

The value of λ for which the system (Equation 9) has a non-trivial solution satisfying the boundary conditions (Equation 10) is an eigenvalue and the corresponding vector solution is an eigenvector.

In [Equation 4], then extended some of the results is the interval $[0, \infty]$. The nature of singular surface has been discussed and proved that there exist at least two solutions ψ_{1} and ψ_{2} of the system (Equation 9) such $\psi_{\mathrm{r}}^{\mathrm{T}} \mathrm{F} \psi_{\mathrm{r}}$ that belongs to $\mathrm{L}[0, \infty]$. The existence of Green's matrix in $[0, \infty]$ and its uniqueness under certain conditions have been proved (see [Equation 4]). For a special case of the problem (Equation 9) where $\mathrm{p}_{0}(\mathrm{x})=\mathrm{q}_{0}(\mathrm{x})=1, \mathrm{~F}$ is a unit matrix and λ replaced by $-\lambda$, proved a spectral theorem in [Equation 5].

III. REFERENCES

[1]. Titchmarsh, E.C.'Eigenfunction expansions associated with second order differential equation' Part I, Oxford 1962
[2]. Conte, S. D.andSangren, W.C.'On asymptotic solution for a pair of singular first order equations' Proc. Amer. Math. Soc. 4, (1953) 696-702
[3]. Hilbert, D., Grundzuge einer allgemeinen theories der linearen Integral-gliechungen, B.G. Teubner, Leipzig and Barlin, (1912), cited as 'Integral Gleichungen'.
[4]. Eastham, M.S.P., Theory of ordinary differential equations, von Nostrand Reinhold, London (1970).
[5]. Lidskii, V. B., On the number of solutions with integrable square of the system of differential equations $-y^{\prime \prime}+p(t) y=A y$; Doklady Akad. Nauk SSSR. N.S. 95 (1954), 217-20.
[6]. Kamke, E., Differential gleichungen, Auflage Akademiache Verlag sgesllschaft Becker and Frler kem. Cas. Leipzig (1943).
[7]. Y.P.Pandey, A.Kumar, A spectral theorem for a pair of singular matrix differential equations, In; Proc. math. Sci. BHU, India 3 (1987), 201-212.
[8]. Chakravarty, N.K., Some problems in Eigenfunction expansions (1), Quart. J.Math., (16) 62 (1965), 135-50.
[9]. Chakravarty, N.K., Ibid (II) 19 (1968), 213-24.
[10]. Chakravarty, N.K., Ibid (III), Ibid 397-415.
[11]. Chakravarty, N.K., Ibid (IV) Indian J.Pure and Appl. Math(1) 3 (1970), 347-53.
[12]. Roos, B.W. and Sangren, W.C., Asymptatic solutions and an equi-convergence theorem for a pair of first order differential equations, J.Soc. Indust. Appl. Math. (2), 11 (1963), 421-30.
[13]. Bhagat, B.'A spectral theorem for a pair of second order singular differential equations' Quart. J. Math. Oxford 21, (1970), 487-495.

Cite this article as :

Rajeev Ranjan, "General Theory of The Matrix Differential Operator and Spectral Theorem", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 10 Issue 6, pp. 517-520, November-December 2023.
Journal URL : https://ijsrst.com/IJSRST52310676

