
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi : https://doi.org/10.32628/IJSRST

660

Performance Analysis of Column Oriented Database for Data
Warehouse System

Dr. Kamod Kumar, Dr. Amit Kumar

Assistant Professor, Vaishali Institute of Business & Rural Management, Muzaffarpur, India

Article Info

Volume 9, Issue 5

Publication Issue

September-October-2022

Pages : 660-666

Article History

Accepted : 10 Oct 2022

Published : 30 Oct 2022

ABSTRACT

Column-oriented database systems, also known as column-stores, have an

important demand in the past few years. Basically, it is about storing each

database column separately so that the attributes belonging to the same column

would be stored contiguously, compressed and densely-packed in the disk. This

method has advantages in reading the records faster as compared to traditional

row stores in which every row are stored one after another in the disk. These

databases are more suitable for data warehousing system to get analysis done faster

as data is stored in columnar form. Indexes are much faster in column oriented

databases which results in faster data retrieval and hence data analysis. This is an

alternate database technology over row oriented database systems.

Keywords : Column, Database, Performance, Data warehouse, Properties,

Attribute, Database management, implementation.

I. INTRODUCTION

There are two approaches to map database tables onto

a one-dimensional interface store the table Row by

row or store the table column by column. The row-

by-row approach keeps all information about an

entity together. In the customer example above, it

will store all information about the first customer, and

then all information about the second customer, etc.

The column-by-column approach keeps all attribute

information together the entire customer names will

be stored consecutively, then all of the customer

addresses, etc. Both approaches are reasonable designs

and typically a choice is made based on performance

expectations. If the expected workload tends to access

data on the granularity of an entity (e.g., find a

customer, add a customer, delete a customer), then

the row-by-row storage is preferable since all of the

needed information will be stored together. On the

other hand, if the expected workload tends to read per

query only a few attributes from many records (e.g., a

query that finds the most common e-mail address

domain), then column-by-column storage is

preferable since irrelevant attributes for a particular

query do not have to be accessed (current storage

devices) cannot be read with fine enough granularity

to read only one attribute from a row. The vast

majority of commercial database systems, including

the three most popular database software systems

(Oracle, IBM DB2, and Microsoft SQL Server) choose

the row-by-row storage layout. The design

implemented by these products descended from

research developed in the 1970s. The design was

optimized for the most common database application

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Dr. Kamod Kumar et al Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 660-666

 661

at the time business transactional data processing. The

goal of these applications was to automate mission

critical business tasks. For example, a bank might

want to use a database to store information about its

branches and its customers and its accounts. Typical

uses of this database might be to find the balance of a

particular customer’s account or to transfer Rs. 100

from customer A to customer B in one single atomic

transaction. These queries commonly access data on

the consisting of an entity (find a customer, or an

account, or branch information, add a new customer,

account, or branch). Given this workload, the row-

by-row storage layout was chosen for these systems.

Starting in around the 1990s, however, businesses

started to use their databases to ask more detailed

analytical queries. For example, the bank might want

to analyze all of the data to find associations between

customer attributes and heightened loan risks. Or

they might want to search through the data to find

customers who should receive VIP treatment. Thus,

on top of using databases to automate their business

processes, businesses started to want to use databases

to help with some of the decision making and

planning. However, these new uses for databases

posed two problems.

First

These analytical queries tended to be longer running

queries, and the shorter transactional write queries

would have to block until the analytical queries

finished (to avoid different queries reading an

inconsistent database state).

Second

These analytical queries did not generally process the

same data as the transactional queries, since both

operational and historical data (from perhaps multiple

applications within the enterprise) are relevant for

decision making. Thus, businesses tended to create

two databases (rather than a single one), the

transactional queries would go to the transactional

database and the analytical queries would go to what

are now called data warehouses. This business

practice of creating a separate data warehouse for

analytical queries is becoming increasingly common.

In fact, today data warehouses comprise Rs.3.98

billion of the Rs.14.6 billion database market 27% and

are growing at a rate of 10.3% annually.

II. COLUMN-ORIENTED DBMS

A column-oriented DBMS is a database management

system (DBMS) that stores data tables as sections of

columns of data rather than as rows of data, like most

relational DBMSs. This has advantages for data

warehouses, customer relationship management

(CRM) systems and library card catalogs and other ad-

hoc inquiry systems where aggregates are computed

over large numbers of similar data items.

It is possible to achieve some of the benefits of

column oriented and row-oriented organization with

any DBMSs. By denoting one as column oriented, we

are referring to both the ease of expression of a

column-oriented structure and the focus on

optimizations for column-oriented workloads. This

approach is in contrast to row oriented or row store

databases and with correlation databases, which use a

value-based storage structure. A relational database

management system must show its data as two-

dimensional tables of columns and rows but store it as

one-dimensional string. A row-oriented database

serializes all of the values in a row together, then the

values in the next row and so on. A column-oriented

database serializes all of the values of a column

together, then the values of the next column, and so

on.

III. BASIC PROPERTIES OF A COLUMN

ORIENTED DATABASE

In highly replicated distributed systems, there is often

a great emphasis on the durability of data and not just

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Dr. Kamod Kumar et al Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 660-666

 662

persistence. Durability requires that writes from a

particular operation are stored in such a way that if an

exception were to occur, that data can be recovered.

The copies might be stored in memory or on disk, but

they are typically written to a commit log. Durability

can be achieved through replication as well, while

persistence is focused on storing the data on disk for

long term storage. Some column-oriented data stores,

such as Dynamo, support pluggable storage engine

architecture for persistence. Other data stores like Big

Table and Cassandra utilize their own storage engine

both use SSTables (Sorted Strings Table). Querying

within a column oriented data store is often limited to

key only lookups, which are provided by each data

store’s own API. There is no query language, so data

access is totally programmatic. Dynamo provides

primary key only access, where every key in the

Dynamo instance is unique since Dynamo does not

provide. Other data stores provide namespaces, such

as column families and key spaces. These must be

specified when querying data. To filter the data, some

data stores such as Big Table allow for regular

expressions to be passed via the query API call to

reduce the number of rows that will be returned.

Versioning techniques are critical to the concurrency

model of column oriented data stores. Updates within

a row are commonly implemented as atomic

operations with a timestamp used to denote the

version. In some cases, the latest times tamp is the

true version. Since there is no notion of isolation

within column oriented data stores, it is entirely

possible that the latest timestamp is not the true

version. In these situations, it is up to the client to

resolve 13 version conflicts. In Dynamo terminology,

this problem is referred to as semantic reconciliation.

These reconciliation techniques are needed because

there is generally no notion of a transaction in

column oriented data stores. Security and access

control is not a strong focus with column-oriented

databases. This is an area where relational databases

are much more robust. Dynamo, for example, expects

to operate in at rusted and provides no security. Big

Table, on the other hand, does support access control

lists for column families, which can be used to limit

user capabilities. These access controls pale in

comparison to row level security, label based access

control and role based access control mechanisms

supported by many main stream relational databases.

In general, most popular column oriented data stores

place a lesser value on consistency and integrity

compared to fault tolerance and low latency response.

The alternative consistency model that these data

stores focus on is called eventual consistency. To

achieve high availability, replication amongst nodes is

utilized extensively. Another wrinkle with respect to

the integrity of column oriented data stores is the fact

that there is little or no support for types. Values are

stored as uninterrupted byte strings, so it is up client

applications in order to maintain consistent typing of

values. Support for recovery is effectively handled by

using a commit log. Write operations are written to

the commit log after finishing successfully. Without

transactions there is little support for rolling back

operations and it is possible that a failure can occur

during units of work. The primary goal of the commit

log is to aid in providing durable storage for

operations.

Cassandra and Big Table log all writes to the commit

log prior to updating their in memory data structures

or physical files.

IV. COLUMN ORIENTED DATA MODEL

IMPLEMENTATION

The column oriented data model lends itself quite

well to handling this sort of semi structured data.

Utilizing Cassandra's data model will provide a nested

column family structure for us to store our data. One

choice for the logical data model would be to create a

column family for each host, keyed

by the host's IP address for their primary network

interface. Each host would need a column key for

hostname, a description of that host, and the MAC

address for the primary physical network interface.

This column family yield a list of the distinct hosts for

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Dr. Kamod Kumar et al Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 660-666

 663

which log messages will be stored. Another column

family could be used to store each log message for

each host. Our key for this column family will be the

concatenation of host IP address and the timestamp

on the log 30 message. In this case, there is really no

use for versioning each of the log messages, so a new

instance of this column family will be created for each

log message. For each message, we'll have column

keys for every part that that will be parsed out of the

original rsyslog formatted message. One key for each

rsyslog property will be used along with a key for

each part of the IP tables message. Each protocol will

have a slightly different list of keys. Cassandra

supports this problem nicely by allowing us to add

any number of column keys to a column family. This

is in contrast with a relational data model where we

would have to declare all possible message fields

before hand, but only a subset of fields would be

needed for each

message.

V. WHY COLUMN ORIENTED DATABASES

The volume of data in an organization is growing

rapidly. So does the number of users who need to

access and analyze this data. IT systems are used more

and more intensive, in order to answer more

numerous and complex demands needed to make

critical business decisions. Data analysis and business

reporting need more and more resources. Therefore,

better, faster and more effective alternatives have to

be found. Business Intelligence (BI) systems are

proper solutions for solving the problems above.

Decision-makers need a better access to information,

in order to make accurate and fast decisions in a

permanent changing environment. As part of a BI

system, reporting has become critical for a company’s

business. Years ago, reports prepared by analysts were

addressed only to the company’s executive

management. Nowadays, reporting has become an

instrument addressed to decision-makers on all

organizational levels, aiming to improve the

company’s activity, to ensure decision quality, control

costs and prevent losses. As already mentioned, the

volume of data acquired into a company is growing

permanently, because business operations expand and,

on the other hand, the company has to interact with

more sources of data and keep more data online. More

than ever before, users need a faster and more

convenient access to historical data for analyzing

purposes. Enterprise data warehouses are a necessity

for the companies that want to stay competitive and

successful. More and more reports and adhoc queries

are requested to support the decision making process.

At the same time, Companies have to run audit

reports on their operational and historical data in

order to ensure compliance. These new demands add

more pressures upon IT departments. More and more

hardware resources are needed in order to store and

manage an increasing volume of data. The increasing

number of queries needs larger amounts of CPU

cycles, so more processors, having a higher

performance, must be added to the system. The size of

the data warehouses storing this data is increasing

permanently, becoming larger and larger. While five

years ago the largest data warehouses were around

100 terabytes in size, now a data warehouse size at the

per byte level is no longer unusual. The challenge is to

maintain the performance of these repositories, which

are built, mostly, as relational structures, storing data

in arrow oriented manner. The relational model is a

flexible one and it has proven its capacity to support

both transactional and analytical processing. But, as

the size and complexity of data warehouses have

increased, a new approach was proposed as an

alternative on the row oriented approach, namely

storing data in a column oriented manner. Unlike the

row oriented approach, where the data storage layer

contains records (rows), in a column oriented system

it contains columns. This is a simple model, more

adequate for data repositories used by analytical

applications, with a wide range of users and query

types. Researches indicate that the size of the largest

data warehouse doubles every three years. Growth

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Dr. Kamod Kumar et al Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 660-666

 664

rates of system hardware performance are being

overrun by the need for analytical performance. The

volume of data needed to be stored is growing due to

more and various requirements for reporting and

analytics, from more and more business areas,

increased time periods for data retention, a greater

number of observations loaded in data warehouses

and a greater number of attributes for each

observation. This is true if taking into consideration

only structured data. But nowadays, organizations

collect a larger and larger volume of unstructured data,

as images, audio and video files, which need a much

greater storing space than structured data. Row-

oriented databases have been designed for

transactional processing. For example, in the account

management system of a bank, all attributes of an

account are stored in a single row.

Such an approach is not optimal in an analytical

system, where a lot of read operations are executed in

order to access a small number of attributes from a

vast volume of data. In a row oriented architecture,

system performance, users’ access and data storage

become major issues very quickly. As they are

designed to retrieve all elements from several rows,

row oriented databases are not well suited for large

scale processing, as needed in an analytical

environment. As opposed to transactional queries,

analytical queries typically scan all the database’s

records, but process only a few elements of them. In a

column oriented database all instances of a single data

element, such as account number, are stored together

so they can be accessed as a unit. Therefore, column

oriented databases are more efficient in an analytical

environment, where queries need to read all instances

of a small number of data elements. System

performance enhances spectacularly in a column

oriented solution, because queries search only few

attributes, and they will not scan the attributes that

are irrelevant for those queries. Requested data is

found faster, because less sort operations have to be

performed. A typical feature of evolved BI systems is

their capability to make strategic business analyses, to

process complex events and to drill deeply into data.

As the volume of data becomes impressive and

performance demands required by users are likely to

outpace, it is obviously that row oriented relational

database management systems stopped to be the

solution for implementing a BI system having

powerful analytical and predictive capabilities. A new

model tends to come into prominence as an

alternative on developing analytical databases, namely

one that manages data by columns. A column-

oriented DBMS stores data in a columnar manner and

not by rows, as classic DBMS do. In the columnar

approach, each attribute is stored in a separate table,

so successive values of that attribute are stored

consecutively. This is an important advantage for data

warehouses where, generally, information is obtained

by aggregating a vast volume of data.

Therefore, operations as MIN, MAX, SUM, COUNT,

AVG and so forth are performed very quickly. When

the tables of a database are designed, their columns

are established. The number of rows will be

determined when the tables will be populated with

data. In a row oriented database, data is stored in a

tabular manner. The data items of a row are stored

one after another; rows are also stored one after

another, so the last item of a row is followed by the

first item of the next row.

In a column oriented database, the data items of a

column are stored one after another, and also are the

columns; so the last item of a column is followed by

the first item of the next column.

VI. BENEFITS

Comparisons between row oriented and column

oriented data layouts are typically concerned with the

efficiency of hard disk access for a given workload, as

seek time is incredibly long compared to the other

delays in computers. Sometimes, reading a megabyte

of sequentially stored data takes no more time than

one random access. Further, because seek time is

improving much more slowly than CPU power (see

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Dr. Kamod Kumar et al Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 660-666

 665

Moore's Law), this focus will likely continue on

systems that rely on hard disks for storage. Following

is a set of oversimplified observations which attempt

to paint a picture of the trade-offs between column

and row oriented organizations Unless, of course, the

application can be reasonably assured to fit most, all

data into memory, in which case huge optimizations

are available from in memory database systems.

1. Column oriented organizations are more efficient

when an aggregate needs to be computed over

many rows but only for a notably smaller subset of

all columns of data, because reading that smaller

subset of data can be faster than reading all data.

2. Column oriented organizations are more efficient

when new values of a column are supplied for all

rows at once, because that column data can be

written efficiently and replace old column data

without touching any other columns for the rows.

3. Row-oriented organizations are more efficient

when many columns of a single row are required

at the same time, and when row-size is relatively

small, as the entire row can be retrieved with a

single disk seek.

4. Row-oriented organizations are more efficient

when writing a new row if all of the column data

is supplied at the same time; as the entire row can

be written with a single disk seek.

5. Advantage of column oriented databases over row

oriented databases is in the efficiency of hard- disk

access

VII. EXAMPLES OF COLUMN ORIENTED

DATABASE SYSTEMS

SYBASE IQ: Sybase IQ is a high-performance decision

support server designed specifically for data

warehousing. It is a column oriented relational

database that was built, from the very beginning, for

analytics and BI applications, in order to assist

reporting and decision support systems. This fact

offers it several advantages within a data warehousing

environment, including performance, scalability and

cost of ownership benefits.

VERTICA: Vertica Analytic Database is a DBMS that

can help in meeting these needs. It is a column

oriented database that was built in order to combine

both column store and execution, as opposed to other

solutions that are column oriented only from storage

point of view. Designed by Michael Stone barker, it

incorporates a combination of architectural elements

many of them which have been used before in other

contexts to deliver a high performance and low cost

data warehouse solution that is more than the sum of

its elements.

VIII. CONCLUSIONS:

For applications that write and update many data

(OLTP systems), a row oriented approach is a proper

solution. In such architecture, all the attributes of a

record are placed contiguously in storage and are

pushed out to disk through a single write operation.

An OLTP system is a write optimized one, having a

high writing performance. In contrast, an OLAP

system, mainly based on adhoc queries performed

against large volumes of data, has to be read optimized.

The repository of such a system is a data warehouse.

Periodically (daily, weekly, or monthly, depending

upon how current data must be), the data warehouse

is load massively. Ad-hoc queries are then performed

in order to analyses data and discover the right

information for the decision making process. And for

analytical applications, that read much more than

they write a column oriented approach is a better

solution. Nowadays, data warehouses have to answer

more and more ad-hoc queries, from a greater number

of users which need to analyze quickly larger volumes

of data. Columnar database technology inverts the

database’s structure and stores each attribute

separately, fact that eliminates the wasteful retrieval

as queries are performed. On the other hand, much

more data can be loaded in memory, and processing

data into memory is much faster. Column oriented

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Dr. Kamod Kumar et al Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 660-666

 666

databases provide faster answers, because they read

only the columns requested by users’ queries, since

row-oriented databases must read all rows and

columns in a table. Data in a column oriented

database can be better compressed than those in a

row-oriented database, because values in a column are

much more homogenous than in a row. The

compression of a column-oriented database may

reduce its size up to 20 times, this thing providing a

higher performance and reduced storage costs.

Because of a greater compression rate, a column

oriented implementation stores more data into a block

and therefore more data into a read operation. Since

locating the right block to read and reading it are two

of the most expensive computer operations, it’s

obviously that a column-oriented approach is the best

solution for a data warehouse used by a Business

Intelligence system developed for analytical purposes.

IX. REFERENCES

[1]. David S.G.Yaman on Introduction to Column

Oriented Database Systems at cs.helsinki.fi

[2]. A Review of Column Oriented Data stores by

Zach Pratt at attackofzach.com

[3]. Column Oriented Databases, an Alternative for

Analytical Environment by Gheorghe MATEI

at dbjournal.ro

[4]. wikipedia.org and wikimedia.org

Cite this article as :

Dr. Kamod Kumar, Dr. Amit Kumar, "Performance

Analysis of Column Oriented Database for Data

Warehouse System ", International Journal of

Scientific Research in Science and Technology

(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-

6011, Volume 9 Issue 5, pp. 660-666, September-

October 2022.

Journal URL : https://ijsrst.com/IJSRST52411147

