
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution,

and reproduction in any medium for non-commercial use provided the original author and source are credited.

 International Journal of Scientific Research in Science and Technology

Available online at : www.ijsrst.com

Print ISSN: 2395-6011 | Online ISSN: 2395-602X doi : https://doi.org/10.32628/IJSRST

526

Study of Cubic Spline Approximation in Solving Dynamic Economic Models
Irshad Ali1, Dr. P. K. Chakraborty2 , Dr. K. B. Singh4

1Research Scholar, University Department of Mathematics, B. R. A. Bihar University, Muzaffarpur, Bihar, India
2Department of Mathematics, M. J. K. College, Bettiah, B. R. A. Bihar University, Muzaffarpur, Bihar, India

3Department of Physics, L. S. College, Muzaffarpur, B. R. A. Bihar University, Muzaffarpur, Bihar, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 10 Nov 2023

Published: 24 Nov 2023

In this paper, we present about to sketch a quick background of the

subject, we start with a simple model. And we present about the study of

cubic spline approximation in solving Dynamic economic models.

Keywords: MATLAB, Cubic Spline, Economic Models.

Publication Issue

Volume 10, Issue 6

November-December-2023

Page Number

526-534

1. INTRODUCTION

Given initial values of capital k0 and technology z0, the social planner needs to make optimal decision on the

sequences of consumptions {ct}∞t=0 and capital accumulations {kt+1}∞t=0 throughout the time so as to [1].

 (1)

In the constraints, f (kt, zt) denotes the total production of the economy at the time period t and is determined

by the current capital kt and technology level zt. The essence of uncertainty in this setting is caused by the

evolution of the technology zt which is assumed to follow a first order autoregressive process with normal

innovation ǫt ∼ N (0, σ2). In the objective function, the utility function u(ct) simulates in a broad sense the

“level of satisfaction” that can be brought forth by the consumption ct while the discount rate β characterizes

the inclination of preferring consumption today than tomorrow. Both functions u and f are predetermined and

their desirable properties will be described in the subsequent discussion. The operator E0, with a noticeable

subscript 0, emphasizes that the expected value is taken over technologies {zt}∞t=1 conditioned upon the initial

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 6

Irshad Ali at al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 526-534

527

technology z0. The optimization problem (1) usually is referred to as the social planner’s problem. The resulting

optimal value of (1.1), as a function of the initial state of capital k0 and technology z0, is referred to as the value

function and is denoted by v(k0, z0).

Before continuing, we caution readers of the indicative but somewhat inadvertent misnomer that the

subscript t, commonly adopted in the economics literature, refers exclusively to the time period t of the

economy evolution and should not be confused with the subscript i customarily used in the mathematics

literature as a pointer or entry index of an array.

2. BELLMAN’S PRINCIPLE OF OPTIMALITY

Problem (1) involves infinitely many decisions simultaneously, which makes the solution extremely difficult to

find. What is even more challenging is that solving (1) necessarily means to find the solution sequences {ct}∞t=0

and {kt+1}∞t=0 for every given initial state (k0, z0) because, whenever the initial state is changed, so are the

subsequent decisions. One ingenious insight of great importance by Bellman reformulates the problem in a

recursive form which significantly reduces the computation complexity [6]. The idea, known as Bellman’s

principle of optimality, asserts that an optimal policy, if exists, should have the property that the subsequent

decisions from any given initial state and decision remain optimal regarding the state resulting from the first

decision [3]. In other words, the value function v(kt, zt) should satisfy the Bellman equation,

v(kt, zt) = max {u(ct) + βEt [v(kt+1, zt+1)]} , (2)

 ct,kt+1

subject to the same constraints as in (1). Note that only two variables, linearly dependent due to the resource

constraint, are involved in the maximization of (2).

The Bellman equation (2) typifies a general dynamic programming problem which arises in many areas

other than economics [4, 6]. Quite a few numerical methods have already been proposed in the literature for

solving (1,2). See, for example, a careful comparison of eight different algorithms developed from notions of

either perturbation or projection in [2] and general discussions in [9, 11]. The emphasis of this paper is to

propose a method that juxtapose the freedom of node collocation and the simplicity of projection without using

basis. Euler equation. Though it appears often that the value function v(kt, zt) is the underlying unknown in (2),

for the purpose of decision-making it is sometimes more desirable to obtain the policy function

kt+1 = p(kt, zt) (3)

which describes the economy agent’s optimal behavior with respect to state variables kt and zt. Repeated

applications of the policy function induce the dynamics in the sequential decisions. Toward this end, we

formulate the Lagrange function

L(ct, kt+1, zt; λt) := u(ct) + βEt [v(kt+1, zt+1)] − λt(ct + kt+1 − f (kt, zt)) (4)

with λt as the multiplier. The first order optimality condition requires that

 (5)

Applying the envelope theorem to the Bellman equation, we see that

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 6

Irshad Ali at al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 526-534

528

 (6)

By eliminating the multiplier λt in the first two equations of (1,5), it follows that a necessary condition for

optimality is

, (7)

which is known as the Euler equation for the system (2). We can replace ct and ct+1 in (7) by the relationship

ct = f (kt, zt) − kt+1

which, after writing

leads to a 3-term finite difference equation

(kt, kt+1, zt) = βEt [(kt+1, kt+2; zt+1)Ξ(kt+1, zt+1)] (8)

for the unknowns {kt, kt+1, kt+2}.

One point should be made clear. Starting with a given initial k0 and an arbitrary k1, it seems natural that

the sequence {kt} generated by solving (8) would automatically satisfy the correspond-ing Euler equation. This

is a misconception, however. Merely having a sequence of iterates satisfying (8) is not enough. The trouble is

that the curve or, more precisely, the surface that interpolates these iterates may not satisfy the Euler equation

in its entirety due to an incorrect value of k1 which is supposedly equal to the evaluation of the unknown policy

function p(k0, z0), as is illustrated in Figure 1 for a fixed z0.

FIG. 1. Interpolating curve at discrete points obtained from (4.8) versus true policy function p (k, z0).

What we are interested in is to find the policy function (3), which is a 2-term relationship, so as to satisfy

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 6

Irshad Ali at al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 526-534

529

(9)

for any given (kt, zt). Since both u and f are specified a priori, we see upon integrating the right side of (7) over

zt+1 for the expected value that the Euler equation in general is a deterministic functional equation

F (kt, zt, p(kt, zt)) = 0

(10)

for the unknown function p(kt, zt), where F : R3 → R is some known nonlinear function. We shall be more

specific about the constituents of the function F in the subsequent discussion, but included in the functional

equation (10) for the problem (1) is the interesting but challenging task of reducing the three-term recurrence

relation (4.8) to a two-term relation (3).

3. CONDITIONS FOR TERM REDUCTION

Obviously, conventional wisdom infers that the notion of reducing a three-term relationship to a two-term is

impossible in general. Existence can be assumed only under some special circumstances. The following

“standard” assumptions,

• 0<β<1;

• The utility function u is continuously differentiable, strictly concave, and strictly increasing;

• The production function f (·, zt) is continuous differentiable, concave, strictly increasing, (0 ·) ≡ 0,

and there is k > 0 such that

acquired after extensive observations and explorations by economists, seem adequate to characterize general

economic dynamics well. Most importantly, it is now a classical result that under these assumptions the value

function and the corresponding policy function for the model problem (1) exist and are unique [6].

Of course, there are many other more complicated models taking into account other factors for economic

dynamics, but the central theme is about we have just described — finding either the value function or the

policy function. In this paper, our goal is to outline how the notion of 1-dimensional spline approximation can

readily be applied to economic dynamics. Note that we accentuate the usage of 1-dimensional spline only of

which we gain many advantages. For demonstration purposes, we shall limit our attention to the neoclassical

growth model with leisure choice,

 (11)

where 0 ≤ ℓt ≤ 1 stands for the labour supply at time t and, hence, 1 − ℓt denotes the leisure. This additional

variable makes (11) more complicated than (1), yet our idea remains generalizable. Our emphasis is on the

simplicity and sufficiency of only a few break points needed in the spline application for high dimensional and

high-resolution approximation. Additionally, we exploit the succinct programming style using tensor

operations.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 6

Irshad Ali at al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 526-534

530

4. SPLINE APPROXIMATION

Many options are available for approximating the policy function p(k, z). See, for example, the discussion in [2,

11, 6]. We propose to approximate the policy function for the model (11) by a 2-dimensional cubic spline and

solve the resulting system of discrete Euler equation by the Newton method. Using spline approximation and

recursive methods certainly is not a new idea. A comprehensive discussion on this subject can be found in the

seminal book [16]. See also [7, 12, 14, 15] for applications of shape-preserving splines to dynamical

programming. Our approach stands out, however, as a special 2-dimensional spline which really can be thought

of as one 1-dimensional spline “weighted” by another 1-dimensional spline. Since our formulation is essentially

a 1-dimensional spline, it allows us to take advantage of the easy calculation of its derivatives analytically as we

shall see in the subsequent discussion.

Recall that splines are local interpolations with controlled behavior — slope, curvature, and other

degrees of differentiability — at places where two local interpolating pieces meet. We mention the cubic spline

as a possible interpolant only for its ease to use. The more general concept of B-spline [8] could also be used

which, in particular, offers more control over the differentiability of the spline at points where the policy

function displays “kinks”. Because of space limitation, we choose not to explore this generalization in this

presentation.

It might be instructive to first explain how the data are structured in the MATLAB environment. We

then show that, even though the analytic form of the spline might be hidden from sight, we can calculate its

derivatives, especially its sensitivity to interpolants, point by point up to the machine precision. Thus, we may

take the full advantage of quadratic convergence of the Newton method for computing the policy function.

Representing a cubic spline. Given {(xi, yi)}ni=1, the cubic spline q(k) that interpolates these points is a

piecewise function of the form that for i = 1,. . . ,n − 1,

q(k) = yi + bi(k − xi) + ci(k − xi)2 + di(k − xi)3, k ∈ [xi, xi+1].

(12)

Let x := [x1, . . . , xn] and y := [y1, . . . , yn]. With appropriate boundary constraints2, the MATLAB command

A = spline(x,y);

creates a structure field of the form

A =

form: ’pp’

breaks: [1xn double]

coefs: [(n-1)x4 double]

pieces: n-1

order: 4

dim: 1

where n is actually the numeric n of the length of the breaks x1, . . . , xn and coefs is an (n−1)×4 matrix,

retrievable from the command A.coefs, that stores the coefficients for the spline,

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 6

Irshad Ali at al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 526-534

531

As the structure field A contains the essential information of the spline, it can be passed into the Matlab

command such as

qk = ppval(A,k);

which returns the evaluation q(k) at any desirable point (or array of points) k.

Derivatives of a cubic spline. For our applications, we need to compute two kinds of derivatives of a

spline. First, we need the “ordinary” derivative of q(k) evaluated at yj . Because

over the interval [xi, xi+1], we may characterize the piecewise polynomial by the structure field dA which has

the same structure as A except that its dA.coefs is modified to

dA.coefs(:,1) = zeros(size(A.coefs,1),1);

dA.coefs(:,2) = 3*A.coefs(:,1);

dA.coefs(:,3) = 2*A.coefs(:,2);

dA.coefs(:,4) = A.coefs(:,3);

and ppval(dA,k) evaluates the derivative at any given k. Next we need the sensitivity matrix of the spline to its

parameters, i.e., the partial derivatives of the spline q(k; y1, . . . yn) with respect to each yj , j = 1, . . . , n. While it

is known that the function spline(x,y) responses nonlinearly to changes in x, we argue that its response to

changes in y is easy to compute. The fact comes from the realization that the coefficients (bi, ci, di) of the

various cubic polynomials in the interpolating spline are entries of the solution vector to a specific tridiagonal

linear system of which the square matrix on the left side of the equation is made of entries such as xi+1 − xi and

its powers whereas the vector on the right side is made of yi+1 − yi and its likes, but no powers. In other words,

with fixed break points {x1, . . . , xn}, the spline q(k; y1, . . . , yn) depends linearly on {y1, . . . , yn} [13]. It follows

that the partial derivatives are splines themselves. More specifically, for j = 1, . . . n, the partial derivative dq/dy1

is precisely the spline that interpolates the data {(x, ej)}, where ej is the jth standard unit vector. Taking

advantage of the vector operations in MATLAB, a simple one-line command

D = spline(x, eye(n));

where eye(n) refers to the identity matrix of size n × n, effectively generates the matrix D.coefs that has n − 1

blocks of size n × 4 where the jth row in the ith block stores the coefficients of the spline that interpolates ej

over the interval [xi, xi+1]. The evaluation

2-dimensional spline. The notion of splines can be generalized to higher dimensions. See, for example, [8, 15].

One such a generalization is the so called bicubic spline which has the advantage of being straightforward and

guarantees continuity of only gradient and cross-derivative. Its second derivatives however, could be

discontinuous. Instead, we propose a modified cubic spline approximation as follows.

Suppose the surface

z = h(x, y)

over the domain Ω ⊂ R2 is to be approximated. Let y = [y1, . . . , yn] be a preselected set of feasible z values and

define

W = spline (y, eye(n));

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 6

Irshad Ali at al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 526-534

532

or

W = spline (y, [zeros (n,1), eye(n), zeros (n,1)]);

with zero end slopes clamped splines. Contained in W are n splines Wj (y), j = 1, . . . , n, satisfying Wj (yi) = δij .

For each j, choose breakpoints xj = [xj1, . . . xjdj] so that (xjs, yj) ∈ Ω for all s and j and define hj := [h(xj1, yj), . . . ,

h(xjdj , yj)]. Note that xi need not be the same as xj , nor have the same dimensionality, for different i and j.

Compute the cubic spline

 (13)

FIG. 2. Breakpoints selection over the domain Ω

where [Lj, Uj] stands for the interval of cross section of the line y = yj and the domain Ω. We then define the

bivariate function

 (14)

It follows that for all j = 1, . . . , n and s = 1, . . . , dj we have

S(xjs, yj) = h(xjs, yj).

For points that are not on the preselected grid, the functions Wj (y), J = 1, . . . , n, collectively play the role of

“weighting” because for each y we have

though some of the weights might be negative. For our application, we are mainly interested in the case of

rectangular domain Ω with same xi for all i.

A MATLAB demonstration. Consider the peaks function

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 6

Irshad Ali at al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 526-534

533

The following few lines of coding quickly constructs our weighted 1-D spline approximation.

N=20;

[x,y,z] = peaks(N); % generate surface test data

[xi,yi] = meshgrid(-3:.1:3,-3:.1:3);

v = peaks(xi,yi); % exact surface

A = spline(x(1,:),z); % Generate 1D splines over x

B = spline(y(:,1),[eye(N)]); % Generate weights over y

w = ppval(B,yi(:,1))’*ppval(A,xi(1,:)); % Weighted 1D spline

FIG. 3. Comparison between approximate surface by (14) and the exact surface.

4. CONCLUSIONS

We compare the approximate surface with the exact surface in Figure 3. In the upper left drawing, we elevate

the spline surface by 20 units to show the respective terrains of the surfaces. The contour plots at the lower left

drawing suggest a fairly close match of the two surfaces. The actual difference with the maximal absolute error

of the order 10−2 is shown in the two drawings on the right column of Figure 3.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 6

Irshad Ali at al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 526-534

534

REFERENCE:

[1] H. AKIMA, A new method of interpolation and smooth curve fitting based on local procedures, J.

 Assoc. Comput. Mach., 17 (1970), pp. 589-602.

[2] C. DE BOOR, A Practical Guide to Splines, Springer-Verlag, New York, 1978.

[3] C. DE BOOR AND B. Swim-1-z, Piecewise monotone interpolation, J. Approximation Theory, 21

(1977), pp. 411-416.

[4] A. K. CLINE, Scalar- and planar-valued curve fitting using splines under tension, Comm. ACM, 17

(1974), pp. 218-223.

[5] It P. DUBE, Univariate blending functions and alternatives, Computer Graphics and Image Processing,

6 (1977), pp. 394-408.

[6] T. M. R. ELLIS AND D. H. McLAIN, Algorithm 514. A new method of cubic curve fitting using local

data, ACM Trans. Math. Software, 3 (1977), pp. 175-178.

[7] A. R. FORREST, Curves and surfaces for computer-aided design, Ph.D. Thesis, Univ. of Cambridge,

Cambridge, England, July 1968.

[8] D. F. MCALLISTER, E. PAssow AND J. A. ROULIER, Algorithms for computing shape preserving

spline interpolations to data, Math. Comp., 31 (1977), pp. 717-725.

[9] D. F. MCALLISTER AND J. A. ROULIER, An algorithm for computing a shape preserving osculatory

quadratic spline, ACM Trans. Math. Software, submitted.

[10] E. PASSOW, Piecewise monotone spline interpolation, J. Approximation Theory, 12 (1974), pp. 240-

241.

[11] S. PRUESS, Alternatives to the exponential spline in tension, Math. Comp., to appear. [12] H. SPATH,

Spline Algorithms for Curves and Surfaces, Utilitas Mathematica, Winnipeg, Canada, 1974.

[12] J. Adda and R. W. Cooper, Dynamic economics: quantitative methods and applications, The MIT

Press, Cambridge, MA, 2003.

[13] S. B. Aruoba, J. Fern´andez-Villaverde, and J. F. Rubio-Ram´ırez, Comparing solution methods for

dynamic equlibrium economies, J. Econom. Dynam. Control, 30 (2006), pp. 2477–2508.

[14] R. E. Bellman, Dynamic programming, Princeton Landmarks in Mathematics, Princeton University

Press, Princeton, NJ, 2010. Reprint of the 1957 edition, With a new introduction by Stuart Dreyfus.

[15] D. P. Bertsekas, Dynamic programming and stochastic control, Academic Press, New York, 1976.

[16] C.-S. Chow and J. N. Tsitsiklis, An optimal one-way multigrid algorithm for discrete-time stochastic

control, IEEE Trans. Automat. Control, 36 (1991), pp. 897–914.

