

Process Hazard Analysis of Process Industries

Rutik Hemanbhai Majethiya¹, Dr. Ashish Unnarkat², Mr. Yogendra Dave³

¹Dept. of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India ²Assistant Professor, Dept. of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India

³HOD - Industrial Safety Services Division, Zeppelin Systems India Pvt. Ltd., Vadodara, Gujarat, India

ABSTRACT

Article Info Volume 9, Issue 5 Page Number : 676-691

Publication Issue September-October-2022

Article History Accepted : 01 Sep 2022 Published : 12 Sep 2022 Process Hazard Analysis (PHA) and Risk Assessment Techniques are the key factors in industrial safety. The Process safety management permits the utilization of various analysis techniques and elimination or mitigation of the various hazards in process industries. Hazard Identification (HAZID) helps in defining all possible hazardous events, through which one can be prepared for probable solutions beforehand. Hazard and Operability (HAZOP) study is the main technique for analyzing various hazards that can occur in industry. Of various types of HAZOP methodology, deviation by deviation methodology will be adopted for this particular thesis. The following research article is intended to conduct the HAZOP study of the chemical plants and present the outcomes. QRA is a quantitative risk assessment model widely used worldwide for risk assessment methods to estimate and then score numerical estimates of the level of risk associated with a specific activity or set of activities. **Keywords :** PHA,HAZID ,HAZOP, QRA, Risk Management, Process Safety

Management.

I. INTRODUCTION

HAZARDIDENTIFICATION (HAZID)

Hazard identification (HAZID) is the system of figuring out risks, which is the vital first step of a chance evaluation. HAZID facilitates to gain a listing of risks for next assessment the use of different chance evaluation techniques. This is on occasion called failure case selection. It additionally facilitates to carry out a qualitative assessment of the importance of the risks and the measures for lowering the dangers from them. This is on occasion called risk evaluation [1, 6].

Copyright: [©] the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

PURPOSE

The objectives of the HAZID technique are to discover the main risks, to verify the effectiveness of the protective measures adopted and, if necessary, to extend the protective measures in order to achieve a tolerable residual probability. In accordance with aim to prevent major accidents involving dangerous substances and limiting their consequences for people and the environment, with a view to ensuring a high level of protection throughout the community in a coherent and effective manner, apart from system protection concepts for completely new systems, additional protection concepts for existing operating sites must be checked [2]. The operating control receives an up-to-date picture of the existing risks and their possible effects.

With the HAZID assessment approach, due to the technology-based form, the number one system risks, but also non-systemic risks and their possible escalations can be identified. Employees can be made aware of the applicable risks with regard to their work area. At the same time, the results can be used as a tool to collect the desired community information. The system planner takes into account the effects of the evaluation to improve the protection concepts for newly constructed systems.

The perks of HAZID are:

1. Review the process at an early stage with a view to ensuring that the process design accounts for credible hazardous scenarios

2. Review safeguards included in the design of the process designed to mitigate the relevant risk for the identified hazardous scenarios.

In order to conduct a successful HAZID workshop, it is important to involve a multi-disciplinary team familiar with the process and its operation. The study should be led by an experienced chairman; with a scribe to record all identified hazardous scenarios, likely consequences, safeguards and actions [5, 7]. The effectiveness of the HAZID relies heavily on the experience of the workshop team to ensure that relevant foreseeable scenarios are captured. The high-level nature of a HAZID is suitable to review the design at an early stage without requiring in-depth knowledge of the operation.

II. METHODOLOGY

HAZID is likely to be one of the first formal HSE-related studies for any new project and is normally performed at the early design stage of a project. The major benefit of conducting a HAZID at this time is the early identification of high consequence hazards providing essential input to project development decisions before the design reaches its final stages. This will lead to safer and more cost- effective design options being adopted with a minimum cost of change penalty [7].

It is a flexible risk analysis technique that can be used at any time in the lifecycle of a plant, from early project life to decommissioning. For example, HAZID analyses are often used for Management of Change where modifications, upgrades, or re-design of existing facilities are carried out. During the random identification phase,

standards for hazard identification could be established and feasible risks and injuries could be reviewed. For this purpose, the plant could be divided into numerous sections. In addition, the diagnosed risks could be divided into significant and non- significant risks (See Figure 1.1).

Hierarchy of Risk

It is of the utmost importance that risks that are not considered material are actually documented to demonstrate that the activities concerned can be properly disregarded [10]. This failure case choice could be achieved via way of means of producing test lists, twist of fate and failure statistics, chance and operability studies (HAZOPs) or via way of means of assessment with targeted research and revel infrom preceding projects [8]. For every of the regions which comprise poisonous or flammable inventories, the info are compiled, additionally inclusive of probable sources of ignition. Before HAZID, the plant is split into severaloperable sections

The purpose of the chance state of affairs identity is the grouping of comparable results of various risks. Based at the information compiled in the HAZID stage, the primary chance situations may be diagnosed [9]. Typically, occasional situations consist of launch, fire, explosion, and propagation situations. Example: For the Small Launch Opportunity (or Initial Event), the appropriate opportunity situations are: BLEVE (Boiling Liquid Expanding Vapour Explosion), fireball escalation to huge launch fire, jet fire- no escalation and unignited launch [3].

The HAZID study team should be neither too big nor too small. Ideally, the test is carried out by a team of three to five people plus a moderator and a secretary. Ideally the analysis is completed by a team of three to five people, a facilitator and a secretary. The team constitutes of a layout engineer for the respective facility, a plant engineer, a process engineer and a scribe [2, 4]. Then, guidewords must be applied to the processes and check for their applicability in that area.

Guideword			Consideration	IS	
Hazardous Substances	Flammability	Toxicity	Reactivity	Corrosivity	Contamination
Process Upsets	Flow	Temperature	Pressure	Chemistry	Composition
Environment	ironment Air Water		Spillage	Waste	
Equipment Malfunction	Vessels	Ancillary Equipment	Valves	Control Instrumentation	Safety Devices
Integrity Failures	Process Caused	Material Caused	Structural		
Utility Failures	Air	Steam	Nitrogen	Vacuum	Ventilation
Human Factors	Task Error	Information Issues	Timing Issues	Wrong Action	Poor HMI
Sampling / Analysis	Missed Sample	No / Incorrect Test Result	Sampling Hazard	Inaccurate Test	
External Effects	Crane ops	Vehicles	Offsite Accidents	Sabotage	Fire
Natural Hazards	Wind	Flood	Heat	Cold	Earthquake
Emergency Ops	Fire	Explosion	Toxic Release	Environmental Release	Offsite

List of Guide words for HAZID:

For the HAZID workshop, the operation is divided into manageable, logical sections (systems, units or nodes). Section limits are often identified by a significant change in the process conditions, a change in location or in material phase and composition [9]. Divisions of a complex facility, for example, can be processing units, but less comprehensive facilities could also be sub-divided into functional groups. Section limits may be diagnosed

as an instance wherein there may be a huge change inside the system specifications or a change in segment and composition. Sections can also be diagnosed in a manner that one phase carries gas and the other carries liquid.

HAZID Report Format:

Sr.	Plant	Cause	Туре	Threat	Conseq-	Current	Mitig-	Risk	No.	Recommen-
	Area				uences	Risk	ation	Ranking		dations
No.	/Activity					Ranking		after		
								Safeguards		

A HAZID study typically follows the sequence illustrated below:

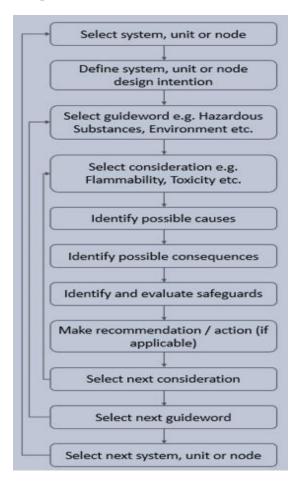


Figure 1.2 : Flow of HAZID Process

The sections are written inside the phase department report shown in table below. This preparatory details inclusive of the compilation of the P&ID sheets for every described unit in addition to the HAZID phase department report is commonly completed via way of means of the facilitator. Subsequent to the comments received, the organized files are open to all for constructive criticism and further feedback [5].

679

Risk Matrix

		C				In	creasing Likeli	hood	
		Conse	quences		Α	В	С	D	E
Severity	People	Assets	Environment	Reputation	Never heard of in the industry	Heard of in the industry	Has happened in the organization or more than once per year in the industry	Has happened at the location or more than once per year in the organization	Has happened more than once per year at the location
0	No injury or health effect	No damage	No effect (no or temporary impact - days)	No impact (local media, no significant concern)	L	L	L	L	L
1	Slight injury or health effect (first aid or medical treatment)	Slight damage	Slight effect (local scale, short term damage – weeks)	Slight impact (short term local concern)	L	L	L	L	L
2	Minor injury or health effect (restricted work case or LTI)		Minor effect (local scale, short term damage – months)	Minor impact (short term national mention)	L	L	L	М	М
3	leffect (nartial	Moderate damage	Moderate effect (local scale, medium terms damage – years)	Moderate impact (medium term national concern)	L	L	М	М	н
4	< 3 fatalities, or permanent total disabilities	Major damage	Major effect (local scale, long term damage – decades)	Major impact (regional or persistent national concern)	L	М	М	Demonstrati	k (Formal on of ALARP lired)
5	> 3 fatalities	Massive damage / total loss	Massive effect (regional scale, permanent damage)	Massive impact (global concern and media coverage)	М	М	н	н	н

Low risk Medium risk

High risk

Further analysis is required for both yellow and red area as those areas indicate significant hazards and ensure that the risk is ALARP.

DEMONSTRATION OF HAZID

PROBLEM STATEMENT

A refinery is planning for installation of Purified Terephthalic Acid (PTA) as an integrated PX-PT unit. The unit comprises of Paraxylene (PX)generation unit of 0.8 MMTPA and 1.2 MMTPA generation facility of PTA. Effluent Treatment Plant (ETP) including Wastewater treatment (WWT) plant, Effluent Treatment Plant (ETP) & disposal facilities are required for the proposed PX-PTA integrated complex at the refinery to treat wastewater effluents and other effluents from PX -PTA complex. The water management plan at PTA is being implemented which includes water conservation measures such as to reduce the net raw water requirement by way of

recycle/reuse of treated waste water to the maximum possible extent wherever it is feasible. One new ETP including WWT plant and ETP & disposal facilities are being considered for PX-PTA complex as the existing ETP at the refinery cannot be utilized for the same. Gaseous effluents were discharged to atmosphere after treatment. Hence those components are not covered in this specification [11].

Effluent generated from Purified Terephthalic Acid (PTA), Paraxylene (PX) and & offsite and utilities plant are to be collected, segregated and treated in ETP to meet applicable regulatory requirements before final disposal. RO based treatment is envisaged for final disposal. Rejects from RO plant to be transfer in sea.

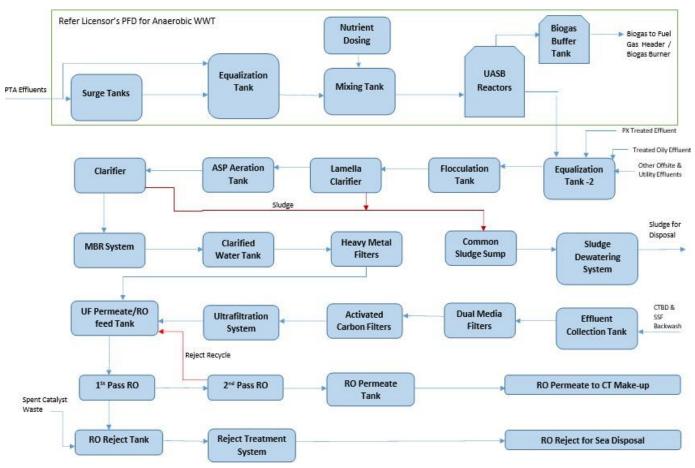


Figure 2.1 Treatment flow diagram for ETP

ABBREVIATIONS USED IN HAZID REPORT

AIC: ASHRAE India Chapter DG: Diesel Generator DMP: Disaster Management Plan ECSB: External Circulation Sludge Bed EVP: Emergency Evacuation Plan HC: Hydrocarbon HIRA: Hazard Identification and Risk Assessment KOD: Knock Out Drums LFL: Lower Flammability Limit MIQA: Mechanical Integrity and Quality Assurance

681

MOC: Material of Construction NA: Not Available / Not Applicable NFPA: National Fire Protection Association NFZ: No-Fly Zone PA: Public Announcement PPE: Personal Protective Equipment PMC: Project Management Consultant SMP: Safety Management Plan SOP: Standard Operating Procedure UFL: Upper Flammability Limit

III. HAZIDREPORT

HAZID Report

S.No		Type of Hazard	to what failure &under what	(Immediate	Cu Ris	rrent k hkin		Existing Safe Guards/ Mitigation		eguai	rd nking	No.	Recommenda tions/ Actions
External Hazards	Eartnq	0	SeismicZone in between3an d4 withzonefact or of 0.22 for refinery area	ry/ fatality Fireand	5	В	Н	Adequate safetymargi ns are kept by designers		В	М	R-1	Ensureon- siteand off- site EEP and DMP
	Thund erand Lightni ng	Fire and	evists	damagetopl	4	С	Η	Lightning arrestorsare provided	2	С	М	R-2	Recommende d to conduct lightning arrestorsurve yasper IS/IEC62305
												R-3	Necessarydes ign provision and operating procedure to be ensured and specifiedbyP MCas protection from

												lightning
	Noforese en											
de	en hazard											
Heavy Rainfal l	Flooding of water in plant area leading	Improper hydraulics design	Unit will submerge damaging electrical equipment and untreatedw ater Discharge	4	С	Н	Plant is designed considering maximumra in load		С	М	R-4	Ensure that no reverseflowta kes place from sea to plant
	Refinery						Emergency\ shutdown procedures for safeguardin g the plant from naturaldisas ter like cyclone, floodsarein place					
t	declared as NFZand hence norisk											
ncomo	Commu nication problem	Notprovided and/ or not working	Communica tion gap during emergency can lead to disoperatio nand Chaos		A	М	NA	4	A	М	R-5	Recommende d to providePAsys tem with two way communicati on

n	ncy		and/ or not	Communica tion gap during emergency can lead to disoperatio nand Chaos		A	м	NA	4	A	М	R-6	Considerprov iding emergency siren systemfordiff erent situations with predefined type as wellasclearpit ch.
Ν	MOC	Highcorr osion & erosion	wrong ratio	Damageto equipment leading to disastrous situation	4	A	М	RightMOCi s selected by designers taking into considerati on suitable allowancesa s per standard codes	1	A	L	R-7	Ensureregula r inspection and monitoringof allthe equipment
u se p o p a	ower	andnovis	Failure of powersource	Operationu pset and movement restriction. safe escape will not bepossiblei n emergency	3	С	М	Rechargeab le torches are provided	2	С	М	R-6	Considerprov iding emergency siren systemfordiff erent situations with predefinedty peas wellasclearpit ch.
													Develop anSOPfor

S.No	Plant	Hazarddu	Typeof	Cause /	Consequ	Current	Existi	After	No.	Recommendations/
	Area/	eto	Hazard	Threat due	ences	Risk	ngSaf	Safeguard		Actions
	Activit			to what	(Immedi	Ranking	e	Risk Ranking		
	у			failure	ate		Guar	_		
	-			&underwha	andescal		ds/			
				t	ating)		Mitig			
				circumstanc			ation			
				es						

											testingDGatregular intervals and ensure auto-starttakesplace in specified time. Also provide restart proceduresforheavy equipments.
•	zard	working		3	C	Safet y show er arepr ovide dat specif ic locati ons		С	L	R-9	Ensure24×7potable water supply from overhead tank
	wrong maintenan	SOP not properlyma de and or not followed	Equipme	3	C	SOP will be prepa red, traini ngwil lbe provi dedbe fore com missi oning ofthe plant	1	С	L	R- 10	Provide proper SOP/SMP after identifying active hazards through structuralHIRAwith adequatefacilityand PPE'stobeused
n system	toxic, flammable gases accumulat	either notprovided or not working in close building	less	3	С	Exha ust fans arepr ovide din each buildi ngs		C	L	R- 11	Conduct ventilation survey as per AIC andprovideadequate exhaust system

Specifi	Raw effluen t (up to ECSB Reacto r)		Environm ental andequip ment hazard	or Mechanical failure and leakages, Overflow or manualerro rof draining	odour of H2S,CH 4, NH3 and other	3	С	М	H2S and CH4 detec tors are provi dedw ith alarm swith in vulne rable vicini ty	2	С	М	R- 12	Allworkersshould be trained for precaution to be takentoavoidsuch scenarios
	burner	Fuel gas to burnerfro mgas pipeline		gasketfailur e	explosio n leadingt	4	С	H	Suita ble firefi ghtin g facilit ies are provi dedas per NFP A guide lines	2	С	М		Periodichealthcheck of workers prone to such hazards should bedone
		n RO		Inefficient operationof RO		2	С	М	Onlin eanal yser is provi ded at perm eate line with interl ock	1	С	L		

								to shut down mem brane					
cal o dosing (area v	olyte infinepo	health hazard	handling of polyelectrol yte and worker comes in contact		2	С	Μ		2	С	М	R- 13	Recommended to ensure all safety precaution as per the guidelinesmentioned instandardMSDSof selected polyelectrolyte
FeCl3/ H H3PO4a / NaOCl/ HCl/ H2O2/ Ammo nia Solutio n/ Caustic Lye	Healthhaz urd		Mechanical failure/Hu man error	Spillage of chemical around tank leading to health hazard	2	С	M		2	С	М	R- 14	Recommended to ensure Dyke is providedwithAcid& Alkali proof lining of 110% capacity with proper slope of dyke leading to dyke pit
													Recommended to provide flange guard oneachflangesofthe pipeline passing throughworkingarea
SlopOilS handli ng	-			Fallhazar dsand injury to	2	С	Μ		2	С	Μ	R- 16	Recommendedto haveproperMIQA

S.No	Plant	Hazardd	Typeof	Cause /	Consequence	Current	Existing	After	No.	Recommendatio
	Area/	ueto	Hazard	Threat	s (Immediate	Risk	Safe	Safeguard		ns/ Actions
	Activity			due to	andescalating	Ranking	Guards/	Risk Ranking		
				what)		Mitigati			
				failure			on			
				&under						
				what						
				circumst						
				ances						

		SafetySh	HealthHa	Facility	Notreatmenti	3	C	M	Safety 1	C	L		testingDGatregu lar intervals and ensure auto- starttakesplace in specified time. Also provide restart proceduresforhe avy equipments. Ensure24×7pota
		•	zard	not provided andor not working	n case worker needs safety shower or eye washincase of anyunforesee n Incident			111	shower areprovi dedat specific locations	J	L	R-7	ble water supply from overhead tank
		SOP/SM P	Disoperati on and wrong maintenan ce	properly made	damageandor injury to the worker	3	С	M	SOP will 1 be prepared , training willbe provided before commiss ioning ofthepla nt				Provide proper SOP/SMP after identifying active hazards through structuralHIRA with adequatefacility and PPE'stobeused
		on	Suffocatio nand toxic, flammable gases accumulat ion	either notprovi dedor not	Healthhazard due to less oxygenandor more carbon Dioxide		С	Μ	Exhaust 1 fans areprovi dedin each building s	С	L		Conduct ventilation survey as per AIC andprovideadeq uate exhaust system
Materi al Specifi c	effluent		Environm ental	al or Mechani cal failure and	of H2S,CH4, NH3 and other gases leadingtoheal th hazard to	3	С	Μ	H2S and 2 CH4 detectors are provided with alarmswi thin vulnerab	С	М	R- 12	Allworkersshou ld be trained for precaution to be takentoavoidsuc h scenarios

			manuale rrorof draining					le vicinity				
burner	Fuel gas to burnerfr omgas		failuredu eto	explosion leadingtoinju ry to the	4	С	Н	Suitable firefighti ng facilities		С	M	Periodichealthc heck of workers prone to such hazards should bedone
	pipeline		gasketfai lure	damage to propertyand environment				are provided asper NFPA guidelin es	1		T	
	Sin RO reject	fect onaquaticl ife	nt operatio nofRO	will increase	2			Onlinea nalyser is provided at permeat e line with interlock to shut down membra ne		С	L	
l dosing area	trolyte (infinepo	ent and health hazard	handling of polyelect	Adverseeffect on the worker on respiratory system	2	С	М		2	С	M	Recommended to ensure all safety precaution as per the guidelinesmenti oned instandardMSD Sof selected polyelectrolyte

FeCl3/	Healthh		Mechani	Spillage of	2	С	Μ	2	С	М	R- 14	Recommended
H3PO4/	azard		cal	chemicalarou								to ensure Dyke
NaOCl/			failure/H	nd tank								is
HCl/			uman	leading to								providedwithAc
H2O2/			error	health hazard								id& Alkali proof
Ammoni												lining of 110%
а												capacity with
Solution	/											proper slope of
Caustic												dyke leading to
Lye												dyke pit
											R- 15	Recommended
												to provide
												flange guard
												oneachflangesof
												the pipeline
												passing
												throughworking
												area
-	-	Humaninj	Mechani	Fallhazardsan	2	С	Μ	2	С	Μ		Recommendedt
handling		ury	cal	d							16	о
			failure/	injury to								haveproperMIQ
												А

IV. REFERENCES

- Kim, K.; Kang, H.; Kim, Y. Risk Assessment for Natural Gas Hydrate Carriers: A Hazard Identification (HAZID)Study. Energies 2015, 8 (4),3142–3164. https://doi.org/10.3390/en8043142
- [2]. Hazard Identification and Analysis in Work Areas within the Manufacturing Sector through the HAZID Methodology. Process Safety and Environmental Protection 2021, 145,23–38. https://doi.org/10.1016/j.psep.2020.07.049.
- [3]. Cameron, I.; Mannan, S.; Németh, E.; Park, S.; Pasman, H.; Rogers, W.; Seligmann, B. Process Hazard Analysis, Hazard Identification and Scenario Protection 2017, 110, 53–70. https://doi.org/10.1016/j.psep.2017.01.025.
- [4]. Lucena, A. F. E.; Saffaro, F. A. Guidelines for Exploring Construction Sites in Virtual Reality Environments for Hazard Identification. International Journal of Occupational Safety and Ergonomics 2020, 1–10. https://doi.org/10.1080/10803548.2020.1728951.
- [5]. Reyes-Calderón, A.; Pérez-Uribe, S.; Ramos-Delgado, A. G.; Ramalingam, S.; Oza, G.; Parra- Saldívar, R.; Ramirez-Mendoza, R. A.; Iqbal, H. M. N.; Sharma, A. Analytical and Regulatory Considerations to Mitigate Highly Hazardous Toxins from Environmental Matrices. Journal of Hazardous Materials 2022, 423, 127031. https://doi.org/10.1016/j.jhazmat.2021.127031.
- [6]. Aven, T. Risk Assessment and Risk Management: Review of Recent Advances on Their Foundation. European Journal of Operational Research 2016, 253(1),1–13. https://doi.org/10.1016/j.ejor.2015.12.023.

690

Rutik Hemanbhai Majethiya et al Int J Sci Res Sci & Technol. September-October-2022, 9 (5): 676-691

- [7]. Nguyen, H.-T.; Safder, U.; Kim, J.; Heo, S.; Yoo, C. An Adaptive Safety-Risk Mitigation Plan at Process-Level for Sustainable Production in Chemical Industries: An Integrated Fuzzy-HAZOP- Best-Worst Approach .Journal of Cleaner Production 2022, 339,130780.
- [8]. https://doi.org/10.1016/j.jclepro.2022.130780.
- [9]. Aqlan, F.; Mustafa Ali, E. Integrating Lean Principles and Fuzzy Bow-Tie Analysis for Risk Assessment in Chemical Industry. Journal of Loss Prevention in the Process Industries 2014, 29, 39–48. https://doi.org/10.1016/j.jlp.2014.01.006.
- [10]. Khan, F. I.; Abbasi, S. A. Multivariate Hazard Identification and Ranking System. Process Safety Progress 1998, 17 (3), 157–170. https://doi.org/10.1002/prs.680170303.
- [11]. Catino, C. A.; Ungar, L. H. Model-Based Approach to Automated Hazard Identification of Chemical Plants. AIChE Journal 1995, 41 (1), 97–109. https://doi.org/10.1002/aic.690410110

Cite this article as :

Rutik Hemanbhai Majethiya, Dr. Ashish Unnarkat, Mr. Yogendra Dave, "Process Hazard Analysis of Process Industries", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 9 Issue 5, pp. 676-691, September-October 2022. Journal URL : https://ijsrst.com/IJSRST52411153

