

International Journal of Scientific Research in Science and Technology

Available online at : www.ijsrst.com

doi : https://doi.org/10.32628/IJSRST

Study of Fuzzy Topological Modelling of Fuzzy Games

Prof. Mushtaque Khan¹, Dr. K. B. Singh², Ajai Kumar³

¹Professor of Mathematics, K. R. College, Gopalganj, J. P. University, Chapra, India ²Assistant Professor, P. G. Department of Physics, L. S. College, Muzaffarpur, B. R. A. Bihar University, Muzaffarpur, Bihar, India ³Research Scholar, University Department of Mathematics, J. P. University, Chapra, India

ARTICLEINFO	ABSTRACT
Article History: Accepted: 01 Jan 2024 Published: 12 Jan 2024	In this paper, we present about the study of fuzzy topological modelling of stochastic games. By introducing the concept of topological game over an idea of Hausdorff space, a game over some special product space is played. Fuzzy set theory has been applied to fuzzify some of the results obtained. Keywords: Fuzzy Logic, Game Theory, Topological Game.
Publication Issue :	
January-February-2024	
Page Number :	

I. INTRODUCTION

Print ISSN: 2395-6011 | Online ISSN: 2395-602X

By introducing the concept of topological game over an idea of Hausdorff space, a game over some special product space is played. Fuzzy set theory has been applied to fuzzify some of the results obtained. Over an idea of a topological space, Kumar B.P[2] has played a topological game which is explained here in brief. Also, by introducing the concept of rectangle in a topological product space, some special types of products called D-Product and C-Product are studied and a game is played over such products. Lastly, it is explained how fuzzy set theory can be applied to obtained better results.

II. TOPOLOGICAL MODELLING

Let G (I, X) be an infinite positional game of pursuit and evason over I where X is a topological space and I \subset P (X) s.t. (i) I is closed with respect to union (ii) I possesses hereditary property. Such collection I is called an ideal over X. This game is played as follows: There are two players-P (Pursuer) and E (Evader). They choose alternately consecutive terms of a sequence < En/n \in N, Where N = {0,1,2,...n,...)}> of subsets of X s.t. each player knows I, E₀, E₁,,E_n when he is choosing E_{n+1}.

A sequence < En > of subset of X is said to be a play of the game if for all n N the following holds:

- (i) $E_0 = X$ (ii) E_1 , E_3 , E_5 ,, E_{2n+1} are the choice of P.
- (iii) E1, E3, E5,, $E_{2n+1} \in I$.
- (iv) E₂, E₄, E₆,,E_{2n+2} are the choice of E.
- (v) E₁, E₂, \subset E₀, E₃, E₄ \subset E₂;,E_{2n+1}, E_{2n+2} \subset E₂n
- (vi) $E_1 \cap E_2 = \phi$, $E_3 \cap E_4 =$, $\dots E_{2n+1} \cap E_{2n+2} = \phi$.

If $\cap \langle E_{2n} \rangle =$ then player P wins the play, otherwise Evader wins the play.

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution **4.0 International License (CC BY-NC 4.0)** which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

A finite sequence $\langle E_m / m \leq n \rangle$ is admissible for the game if the sequence $\langle E_0, E_1, \ldots, E_n, \phi, \phi, \phi, \ldots, \phi \rangle$ is a play of the game. For admissible sequence $\langle E_0, \ldots, E_n \rangle$ and even n if s: $\langle E_0, \ldots, E_n \rangle P(X)$ and s $(\langle E_0, \ldots, E_n \rangle) = E_{n+1}$ then s is a strategy for player P. In case of odd n, s is said to be strategy for evader E.

A strategy s is said to be wining for player P in the game G (I, X) if P wins each play of the game with the help of this s. Similarly, s is said to be winning for E if E wins each play of the game with the help of s.

We denote by P (I, X) the set of all winning strategies of P in the game G(I,X) and by E(I,X), the set of all winning strategies of E in the game G (I,X).

A topological space X is aid to be I-like if the set of all winning strategies of player is not empty i.e. if P (I,X) $\neq \phi$.

Similarly, a space X is said to be determined, if P (I,X) $\neq \phi$ or E (I,X) $\neq \phi$ i.e. if X is I-like or X is anti I-like.

A subset A x B of a topological product space X x Y is called a rectangle. A rectangle E is said to be:

- (i) Cozero if E' & E" are cozero in X x Y;
- (ii) Zero if E' & E'' are zero in X x Y;
- (iii) Open if E' & E" are open in X x Y;
- (iv) Closed if E' & E" are closed in X x Y;

where E' & E" are the projections of E into X and Y respectively so that $E = E' \times E''$.

A topological product $X \times Y$ is said to be strong rectangular if each locally finite open cover of $X \times Y$ has a locally finite refinement by cozero rectangles.

From above definitions the following conditions are seen to be equivalent:

- (i) The product X x Y is strongly rectangular.
- (ii) Each finite open cover of X x Y has a locally finite refinement by by cozero rectangles.
- (iii) For each closed subset F and each open set U of X
 x Y with F U, there is
 a locally finite collection w by cozero rectangles
 s.t. F ⊂ ∪ W U.

- (iv) X x Y is normal and for each zero-set F and each cozero-set U of X x Y with FU, there is a locally finite collection W by cozero rectangles such that F ⊂ ∪ W U.
- (v) There exists a continuous map

f: X x Y [0,1] such that f (x,y) = $\sum_{t \in T} g_t(x)h_1(y)$

where $g_t : X \rightarrow [0,1]$ and $h_t : Y \rightarrow [0,1]$ are continuous.

III. MODIFIED FUZZY GAMES

We define the topological games G (I,X) with a slight change as follows:

Each topological space considered in this paper is assumed to be a Hausdorff space. N denotes the set of all natural numbers and m denotes an infinite cardinal number. Also let $L = \{E_i \mid E_i \text{ are closed subsets of } X\}$.

There are two players P and E. Player P chooses a closed set Et of X with E1 L and player E chooses an open set U₁ of X with $E_1 \subset U_1$.

Again, player P chooses a closed set E_2 of X with E_2 L and player E chooses an open set U_2 of X with $E_2 \subset U_2$ and so on.

The infinite sequence $\langle E_1, U_1, E_2, U_2, \ldots \rangle$ is play of G (L,X). Player P wins the play $\langle E_1, U_2, E_2, U_2, \ldots \rangle$ if {Un : n N} covers X, otherwise player E wins.

A finite sequence $\langle E_1, U_1, \ldots, E_n, U_n \rangle$ of subsets in X is said to be admissible for G(L,X) if the infinite sequence $\langle E_1, U_1, \ldots, E_n, U_n, \phi, \phi, \ldots \rangle$ is a play of G (L,X).

A function s is said to be a strategy for player P in G (L,X) if the domain of S consists of the void sequence ϕ and the finite sequence $< U1, \ldots, Un >$ of open sets in X and if s (ϕ) ad s (U_1, \ldots, U_n) are closed in X an belong to L.

A strategy s for player P in the game G (L,X) is said to be winning if he wins each play < E_1 , U_1 , E_2 , U_2 ,.... in (L,X) such that $E_1 = S$ (ϕ) and $E_{n+1} = S$ (U_1 ,, U_n), for all $n \in N$.

We denote the following:

DL - The class of all spaces which have a discrete closed cover consisting of members of L.

FL - The class of all spaces which have a finite closed cover consisting opf members of L.

C - The class of all compact spaces.

 C_m - The class of m-compact space.

I1, I2 - Arbitrary classes of spaces possessing hereditary property s.t.

 $I_1 \mathrel{x} I_2 = \{X \mathrel{x} Y : X \in I_1 \text{ and } Y \mathrel{I_2}\}$

Firstly, we define the following two product spaces:

D- Product: A product space X x Y is said to be a Dproduct if for each closed set M of X x Y and each open set O of X x Y with $M \subset O$, there is a discrete collection J by closed rectangles in X x Y such that M $\subset \cup J \subset O$.

For a closed rectangle R in X x Y, R' and R" denote the projection of R into X and Y respectively. Thus, R is a closed rectangle in X x Y iff R' and R" are closed in X & Y and R is an open rectangle in X x Y iff R'R" are open in X and Y such that R = R' and R".

C-Product: A product space X x Y is said to be a C-product if for each closed set M of X x Y and each open set O of X x Y with $M \subset O$ there is a countable collection J by closed rectangles in X x Y such that M $\subset \cup J \subset O$.

With the help of definition of D-product, we have,

Theorem: (1) Let X and Y be spaces such that X x Y is a D-Product. If player P has winning strategies in G (l_1 , X) and (l_2 ,Y), then he has a winning strategy in G (D (l_1 x l_2), X x Y).

Now we prove the following

Theorem: (2) Let X be a collection wise normal space and Y a subpar compact space with χ (Y) \leq m. If player P has a winning strategy in G (DC_m, X), then every open cover of X x Y with power < m has a σ discrete refinement by closed rectangles in X x Y.

Proof: Let s be a winning strategy of player P in G (DC_m, X) . Let C be an arbitrary open cover of X x Y with $|C| \le m$.

We construct:

 $\begin{array}{ll} (i) & \mbox{a sequence } \{J_n : n > 0\} \mbox{ collections of closed rectangles in } X \mathrel{x} Y; \end{array}$

 $\begin{array}{lll} (ii) & \mbox{sequence} \{ < \ \Re_n, < \psi_n > : n \geq 0 \} \mbox{ of the pairs of } \\ \mbox{collections} & \ Rn & \mbox{by} & \mbox{closed} \\ & \ \mbox{rectangles in } X \ x \ Y; \end{array}$

(iii) the function $\psi_n : \mathfrak{R}_n \to \mathfrak{R}_{n-1}$; satisfying the following five conditions:

(a) J_n is σ -discrete in X x Y.

(b) Rn is σ -discrete in X x Y.

(c) Each $F \in J_n$ is contained in some $G \in C$.

(d) If $(x,y) \in R_{n-1} \in \mathfrak{R}_{n-1}$ and $(x,y) \in UJ_{h}$.

Then there is $R_n \in \mathfrak{R}_n$ such that $(x,y) \in R_n$ and $\psi_n (R_n) = R_{n-1}$.

 $\begin{array}{ll} (e) & \mbox{for an } R \in \mathfrak{R}_n, \mbox{ Let } U_n = X \mbox{ - } R \mbox{ and } U_k = X \mbox{ - } \\ (\psi_{k+1} \mbox{ 0}..... \mbox{ 0} \ \psi_n(R))', \mbox{ for } 1 \leq k \leq n\mbox{-} 1. \end{array}$

Then the finite sequence $\langle E_1, U_1, \ldots, E_n, U_n \rangle$ is admissible for G (DC_m, X).

Let $J_0 = \{\phi\}$ and $\Re_0 = \{X \times Y\}$.

We suppose that the above {J_i : i < n} and {< R_i, ψ_I > : I \leq n} are already constructed. We pick an R $\in \Re_n$.

Let $\langle E_1, U_1, \ldots, E_n, U_n \rangle$ be the admissible sequence in G (DC_m, X).

Hence there is a discrete collection {C $\alpha : \alpha \in \Omega$ (R)} by m-compact closed sets in R1 such that s(U₁,..., U_n) R' = \cup {C $\alpha : \alpha \in \Omega$ (R)}.

We can a choose discrete collection {W $\alpha : \alpha \in \Omega$ (R)} of open sets in R' s.t. $C\alpha \subset W\alpha$, for all $\alpha \in \Omega$ (R).

Since $C\alpha$ is m-compact, $\left|C\right| < m, \ \chi(Y) \leq m$ and $R^{"}$ is subparacompact.

There is a collection $J_{n+1}^{\alpha} = \{Cl U_{\lambda}^{\alpha,i} \times H_{\lambda}: i = l, ..., K_{\lambda} \text{ and } \lambda \in \Lambda(k)\}$ and by closed rectangle in R, which satisfying the following four conditions:

(i) Each $U_{\lambda}^{\alpha,i}$ is open in R'.

(2) $C_{\alpha} \subset \{U_{\lambda}^{\alpha,i}: i = 1, \dots, K_{\lambda}\} \subset W_{\alpha}.$

(3) Each CI $U_{\lambda}^{\alpha,i} \times H_{\lambda}$ is contained in some $G \in C$.

(4) {H :
$$\lambda \in \Lambda(\alpha)$$
} is a σ -discrete closed cover of R". Then

 $\begin{aligned} J_{n+1}^{\alpha}(R) &= \bigcup \{ J_{n+1}^{\alpha} : \alpha \in \Omega \} \text{ is a -discrete in X x Y.} \\ \text{Put } R_{\lambda}^{\alpha} &= \{ CI W_{\alpha} - \bigcup \{ U_{n+1}^{\alpha} : 1 \leq i \leq K_{\lambda} \} \times H_{\lambda} \}, \text{ for all } \lambda \in \Lambda(k). \end{aligned}$

Again put $\overline{\mathbf{R}} = (\mathbf{R}' - \cup \{\mathbf{W}_{\alpha} : \alpha \in \Omega(\mathbf{R})\}) \times \mathbf{R}''$ Moreover, we put \mathbf{R}_{n+1} (\mathbf{R}) = { $\overline{\mathbf{R}} \cup \{\mathbf{R}^{\alpha}_{\lambda} : \lambda \in \Lambda(\alpha)\}$ and $\lambda \in \Lambda(\mathbf{R})\}.$ Then R_{n+1} (R) is also σ -discrete collection by closed rectangles in R.

We set $J_{n+1} = \{J_{n+1} (R) : R \in \mathfrak{R}_n\}$ and $\mathfrak{R}_{n+1} = \bigcup \{\mathfrak{R}_{n+1} (R) : R \in \mathfrak{R}_n\}$.

The function $\psi_n: \mathfrak{R}_{n+1} \to R_n$ defined as $\psi_{n+1}: (\mathfrak{R}_{n+1}) (R)$ = (R) for all $R \in \mathfrak{R}$.

From (a), J_{n+1} and \mathfrak{R}_{n+1} are $\sigma\text{-discrete}$ in $X \mathrel{x} Y.$

The conditions (a) and (b) are satisfied.

By (3), the the condition (c) is also satisfied.

The conditions (d) and (e) are very clear.

Let $J = \bigcup \{J_n : n \in N\}$.

We can easily show that J is a cover of X x Y. There fore J is a σ -discrete refinement of C by closed rectangles in X x Y.

With the consequences of the above theorem and by assuming PC_m to be the class of all product spaces with the first factor being non-compact, the following results can be obtained easily.

(R₁) Let X be a collection wise normal space and Y and a sub paracompact space with $\chi(Y) \leq m$. If player P has a winning strategy in G (DCm, X), then X x Y is

a

D-product.

(R₂) Let X be a paracompact space and Y be a sub paracompact space.

IF player P has a winning strategy is G (DC, X), then X x Y is sub paracompact.

(R₃) Let X be a collection wise normal space and Y be a sub paracompact space with $\chi(Y) \leq m$. If player P has a winning strategy in G (DCm, X), then he has a winning strategy in G (D(PCm_m), X x Y).

REFERENCES

- [1]. Engelking, R. (1966): Outline of general topology, Amesterdan.
- [2]. Kumar, B.P. (1982): Lattice & topological approach to game theory, Ph.D. thesis, B.R.A.Bihar University, Muzaffarpur.
- [3]. Telgarsky, R. (1974) : Closure preserving covers, Fund. Maths., 85.

- [4]. Zedeh, L.A. (1965): Fuzzy Sets, Information and Control 8.
- [5]. George J. Klir and Bo Yuan (1995) : Fuzzy sets and Fuzzy Logic : Theory and Applications.
- [6]. Von Neumann (1965) : Theory of Games and Economic Behavour.