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Fuzzy set theory has been applied to fuzzify some of the results obtained. 
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I. INTRODUCTION 

 

By introducing the concept of topological game over 

an idea of Hausdorff space, a game over some special 

product space is played. Fuzzy set theory has been 

applied to fuzzify some of the results obtained. Over 

an idea of a topological space, Kumar B.P[2] has 

played a topological game which is explained here in 

brief. Also, by introducing the concept of rectangle in 

a topological product space, some special types of 

products called D-Product and C-Product are studied 

and a game is played over such products. Lastly, it is 

explained how fuzzy set theory can be applied to 

obtained better results. 

 

II. TOPOLOGICAL MODELLING  

Let G (I, X) be an infinite positional game of pursuit 

and evason over I where X is a topological space and I 

⊂ P (X) s.t. (i) I is closed with respect to union (ii) I 

possesses hereditary property. Such collection I is 

called an ideal over X. This game is played as follows: 

There are two players-P (Pursuer) and E (Evader). 

They choose alternately consecutive terms of a 

sequence < En/nN, Where N = {0,1,2,…n,….)}> of 

subsets of X s.t. each player knows I, E0, E1, ….,En 

when he is choosing En+1. 

A sequence < En > of subset of X is said to be a play of 

the game if for all n N the following holds:  

(i) E0 = X (ii) E1, E3, E5, ……,E2n+1 are the choice of P. 

(iii) E1, E3, E5, ……,E2n+1  I. 

(iv) E2, E4, E6, ……,E2n+2  are the choice of E. 

(v) E1, E2,  ⊂ E0, E3, E4 ⊂E2; ……,E2n+1, E2n+2 ⊂  E2n 

(vi) E1 ∩ E2 = , E3 ∩ E4 = , ……..E2n+1 ∩ E2n+2 = . 

 

If ∩< E2n > = then player P wins the play, otherwise 

Evader wins the play. 
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A finite sequence < Em/ m < n > is admissible for the 

game if the sequence < E0, E1, ……En, ,,,….. > is a 

play of the game. For admissible sequence  

< E0,…..En> and even n if s: < E0,…..,En > P(X) and s 

(<E0,…..,En) = En+1 then s is a strategy for player P. 

In case of odd n, s is said to be strategy for evader E. 

A strategy s is said to be wining for player P in the 

game G (I, X) if P wins each play of the game with the 

help of this s. Similarly, s is said to be winning for E if 

E wins each play of the game with the help of s. 

 

We denote by P (I, X) the set of all winning strategies 

of P in the game G(I,X) and by E(I,X), the set of all 

winning strategies of E in the game G (I,X). 

 

A topological space X is aid to be I-like if the set of all 

winning strategies of player is not empty i.e. if P (I,X) 

  . 

Similarly, a space X is said to be determined, if P (I,X) 

 or E (I,X)  i.e. if X is  

I-like or X is anti I-like. 

A subset A x B of a topological product space X x Y is 

called a rectangle. A rectangle E is said to be: 

(i) Cozero if E' & E" are cozero in X x Y; 

(ii) Zero if E' & E" are zero in X x Y; 

(iii) Open if E' & E" are open in X x Y; 

(iv) Closed if E' & E" are closed in X x Y; 

where E' & E" are the projections of E into X and Y 

respectively so that E = E' x E".  

A topological product X x Y is said to be strong 

rectangular if each locally finite open cover of X x Y 

has a locally finite refinement by cozero rectangles. 

From above definitions the following conditions are 

seen to be equivalent: 

(i) The product X x Y is strongly rectangular. 

(ii) Each finite open cover of X x Y has a locally finite 

refinement by by cozero  rectangles. 

(iii) For each closed subset F and each open set U of X 

x Y with F U, there is  

a locally finite collection w by cozero rectangles 

s.t. F ⊂∪ W U. 

(iv) X x Y is normal and for each zero-set  F and each 

cozero-set U of X x Y with FU, there is a locally 

finite collection W by cozero rectangles such that 

F ⊂∪ W U.  

(v) There exists a continuous map 

f: X x Y [0,1] such that f (x,y) = ∑ 𝑔𝑡(𝑥)ℎ1(𝑦)tT  

where gt : X→ [0,1] and ht : Y→ [0,1] are continuous. 

 

III.  MODIFIED FUZZY GAMES 

 

We define the topological games G (I,X) with a slight 

change as follows: 

Each topological space considered in this paper is 

assumed to be a Hausdorff space. N denotes the set of 

all natural numbers and m denotes an infinite cardinal 

number. Also let L = {Ei | Ei are closed subsets of X}. 

There are two players P and E. Player P chooses a 

closed set Et of X with E1 L and player E chooses an 

open set U1 of X with E1 ⊂ U1. 

Again, player P chooses a closed set E2 of X with E2 L 

and player E chooses an open set U2 of X with E2 ⊂ U2 

and so on. 

The infinite sequence < E1, U1, E2, U2……> is play of 

G (L,X). Player P wins the play < E1, U2, E2, U2,…> if 

{Un :  n N} covers X, otherwise player E wins. 

A finite sequence < E1, U1,…., En, Un > of subsets in X 

is said to be admissible for G(L,X) if the infinite 

sequence < E1, U1, …En, Un, ,,…..> is a play of G 

(L,X). 

A function s is said to be a strategy for player P in G 

(L,X) if the domain of S consists of the void sequence 

 and the finite sequence < U1, …..,Un > of open sets 

in X and if s () ad s (U1,……,Un) are closed in X an 

belong to L. 

A strategy s for player P in the game G (L,X) is said to 

be winning if he wins each play < E1, U1, E2, U2,….. in 

(L,X) such that E1 = S () and En+1 = S (U1, ….,Un), for 

all n  N.  

We denote the following: 

DL - The class of all spaces which have a discrete 

closed cover consisting of members of L. 
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FL - The class of all spaces which have a finite closed 

cover consisting opf members of L. 

C - The class of all compact spaces. 

Cm - The class of m-compact space. 

I1, I2 - Arbitrary classes of spaces possessing hereditary 

property s.t. 

I1 x I2 = {X x Y : X  I1 and Y I2} 

Firstly, we define the following two product spaces: 

D- Product: A product space X x Y is said to be a D-

product if for each closed set M of X x Y and each 

open set O of X x Y with M ⊂ O, there is a discrete 

collection J by closed rectangles in X x Y such that M 

⊂∪  J⊂ O. 

For a closed rectangle R in X x Y, R' and R" denote 

the projection of R into X and Y respectively. Thus, R 

is a closed rectangle in X x Y iff R' and R" are closed 

in X & Y and R is an open rectangle in X x Y iff R'R" 

are open in X and Y such that R = R' and R". 

C-Product: A product space X x Y is said to be a C-

product if for each closed set M of X x Y and each 

open set O of X x Y with M ⊂ O there is a countable 

collection J by closed rectangles in X x Y such that M 

⊂∪ J ⊂ O. 

With the help of definition of D-product, we have,  

Theorem: (1) Let X and Y be spaces such that X x Y is 

a D-Product. If player P has winning strategies in G (l1, 

X) and (l2,Y), then he has a winning strategy in G (D 

(l1 x l2), X x Y). 

Now we prove the following 

Theorem: (2)  Let X be a collection wise normal space 

and Y a subpar compact space with  (Y) < m. If 

player P has a winning strategy in G (DCm, X), then 

every open cover of X x Y with power < m has a -

discrete refinement by closed rectangles in X x Y.  

Proof: Let s be a winning strategy of player P in G 

(DCm, X). Let C be an arbitrary open cover of X x Y 

with |C| < m. 

We construct: 

(i) a sequence {Jn : n > 0} collections of closed 

rectangles in X x Y; 

(ii) sequence {<  n, < n > : n > 0} of the pairs of 

collections Rn by closed  

    rectangles in X x Y; 

(iii) the function n : n → n-1; satisfying the 

following five conditions: 

(a) Jn is -discrete in X x Y. 

(b) Rn is -discrete in X x Y. 

(c) Each F  Jn is contained in some G  C. 

(d) If (x,y)  Rn-1  n-1 and (x,y)  ⋃Jn. 

Then there is Rn  n such that (x,y)  Rn and n (Rn) 

= Rn-1. 

(e) for an R  n, Let Un = X - R and Uk = X - 

(k+1 0…….0 n(R))', for 1 < k < n-1. 

Then the finite sequence < E1, U1, ….., En, Un > is 

admissible for G (DCm, X).  

Let J0 = {} and 0 = {X x Y}. 

We suppose that the above {Ji : i < n} and {< Ri, I > : I 

< n} are already constructed. We pick an R  n. 

Let < E1, U1,……, En, Un > be the admissible sequence 

in G (DCm, X). 

Hence there is a discrete collection {C :    (R)} 

by m-compact closed sets in R1 such that s(U1,……., 

Un) R' =  {C :    (R)}. 

We can a choose discrete collection {W :    (R)} 

of open sets in R' s.t. C ⊂ W, for all   (R).  

Since C is m-compact, |C| < m, (Y) < m and R" is 

subparacompact. 

There is a collection 𝐽𝑛+1
𝛼 = {𝐶𝑙 𝑈

𝛼,𝑖 × 𝐻: 𝑖 =

𝑙, … … , 𝐾 𝑎𝑛𝑑  (𝑘)}and by closed rectangle in R, 

which satisfying the following four conditions: 

(i)  Each 𝑈
𝛼,𝑖 is open in R'. 

(2) 𝐶  {𝑈
𝛼,𝑖: 𝑖 = 1, … … , 𝐾} 𝑊 . 

(3)  Each CI 𝑈
𝛼,𝑖 × H is contained in some G  C. 

(4) {H :  ()} is a -discrete closed cover of 

R". Then 

Jn+1
α (R) =  {Jn+1

α :  } is a -discrete in X x Y. 

Put 𝑅
 = {𝐶𝐼 𝑊 −  {Un+1

α : 1 ≤ i ≤  K} × H}, for 

all  (𝑘). 

Again put  R̅ = (R′ −  {Wα ∶  αϵ (R)}) × R" 

Moreover, we put Rn+1 (R) = { �̅�  

{R
α: ()} and  (𝑅)}.  
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Then Rn+1 (R) is also -discrete collection by closed 

rectangles in R. 

We set Jn+1 = {Jn+1 (R) : R  n} and n+1 =  {n+1 (R) : 

R  n}. 

The function n: n+1 → Rn  defined as n+1 : (n+1) (R) 

= (R) for all R  . 

From (a), Jn+1 and n+1 are -discrete in X x Y. 

The conditions (a) and (b) are satisfied. 

By (3), the the condition (c) is also satisfied. 

The conditions (d) and (e) are very clear. 

Let J =  {Jn : n N}. 

We can easily show that J is a cover of X x Y. There 

fore J is a -discrete refinement of C by closed 

rectangles in X x Y. 

With the consequences of the above theorem and by 

assuming PCm to be the class of all product spaces 

with the first factor being non-compact, the following 

results can be obtained easily. 

(R1) Let X be a collection wise normal space and Y 

and a sub paracompact space with (Y) < m. If player 

P has a winning strategy in G (DCm, X), then X x Y is 

a  

D-product.  

(R2) Let X be a paracompact space and Y be a sub 

paracompact space. 

IF player P has a winning strategy is G (DC, X), then 

X x Y is sub paracompact. 

(R3) Let X be a collection wise normal space and Y be 

a sub paracompact space with (Y) < m. If player P 

has a winning strategy in G (DCm, X), then he has a 

winning strategy in G (D(PCmm), X x Y). 
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