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I. INTRODUCTION 

 

The purpose of this article is to give a brief and 

informal overview on C*- and von Neumann algebras. 

We will also mention some of the classical results in 

the theory of operator algebras that have been crucial 

for the development of several areas in mathematics 

and mathematical physics. We have also included a 

few exercises to motivate further thoughts on the 

subjects treated. In this section we present three 

different ways one may look at operator algebras. 

Operator algebras as non-commutative spaces: 

There are structure theorems stated in [1] saying 

that, essentially, the prototypes mentioned 

(C0(X), ǁ ·  ǁ)
 

and L∞(Z, dµ) 

are the only possible commutative examples of C*- 

and von Neumann algebras, respectively. In the 

context of commutative C*-algebras it is also 

possible to recapture the topological space X from 

the algebraic structure of the set of continuous 

functions on X decaying at infinity. It is therefore 

rea- sonable to think of non-commutative C*-

algebras as the non-commutative counterpart of 

topological spaces. In the same way non-

commutative von Neumann algebras can be 

associated with non-commutative measure spaces. 

The correspondence 

space    ↔     algebraic structure 

opens, in the non-commutative setting, a wide and 

difficult field of current research that includes 

advanced topics like non-commutative geometry, 

non-commutative Lp-spaces or quantum groups. [2-

5]. 

Operator   algebras    as   a    natural   universe    for    

spectral   theory: 

In the present subsection we will argue that 

operator algebras are a natural universe for studying 

the properties of a single operator. The following 
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proposition shows that the fundamental 

constituents in which one may decompose a single 

operator are contained in the corresponding von 

Neumann algebra. In other words, von Neumann 

algebras are stable under natural operations 

performed with its elements. 

Proposition 1.1: 

Let M ⊂ L(H) be a von Neumann algebra and 

M ∈ M 

 (i) If M = V |M | is the polar decomposition, 

then V ∈ M ∋ |M |. (Recall that |M | : = (M∗M)
1

2 is 

a positive operator and that V  is a partial 

isometry satisfying ker V = ker M). 

 (ii) If M = M∗ and M = ∫ λdEM (λ)  is the 

corresponding spectral de-composition of the self-

adjoint operator, then for the set of spectral 

projections we have 

{EM (B) | B ⊂ ℝ , Borel } ⊂ ℳ 

(iii) If M = M∗ and f ∈ C([−ǁM ǁ, ǁM ǁ]), then 

f (M ) is in any C*- algebra containing M. In 

particular, f (M ) ∈ ℳ. 

Proof. : 

We sketch only a few ideas of the proof: to show 

that any operator is contained in the von 

Neumann algebra M, it is enough to verify that it 

commutes with all unitaries  U ′  ∈  M′. To prove (i) 

note that  for  any U ′ ∈  M′ we have 

V |M | = M = U ′ M (U ′)∗ = (U ′ V (U ′)∗)(U ′ |M | 

(U ′)∗) . 

From the uniqueness of the polar decomposition, 

we conclude that 

(U ′ V (U ′)∗) = V    and     U ′ |M | (U ′)∗ = |M |    for 

all     U ′ ∈ M′ , 

hence V, |M | ∈ M′′  = M.  Item  (ii) is shown 

similarly using the uniqueness of the spectral 

decomposition of self-adjoint operators. For (iii) 

take a sequence pn of polynomials approximating f 

in the sup-norm. Then it follows that pn(M ) ∈ M 

approximates in the operator-norm the operator f 

(M). 

Hence  

f (M) is in any C*-algebra containing M . Since any 

von Neumann algebra is also closed concerning 

the operator norm we conclude that f (M ) ∈ ℳ. Q 

The precedent proposition implies that any von 

Neumann algebra is generated as a norm closed 

subspace by the set of spectral projections 

corresponding to its self-adjoint elements. 

 

II. SOME CLASSICAL RESULTS  

 

In the present section, we recall some classical 

applications of operator algebras in mathematics 

and mathematical physics. 

2.1 Operator algebras in functional analysis. 

At the heart of the following results lies the 

structure theorem for commutative C*- and von 

Neumann algebras. 

2.1.1 Spectral theorem. An immediate success of 

operator algebraic methods in functional analysis 

was the proof of the spectral theorem for bounded 

as well as unbounded normal operators on a Hilbert 

space. The spectral theorem is a generalization of 

the elementary result that any normal linear 

operator on Cn is unitary equivalent to a diagonal 

matrix. It can be stated in many ways. One of them 

says that any normal operator is equivalent to a 

multiplication operator. In applications, the 

spectral theorem is often stated in terms of the 

spectral resolution E(·) of a self-adjoint operator. 

(Recall that the orthogonal projections {E(λ)} λ 

satisfy the usual properties of monotonicity, right 

continuity and completeness.) For additional 

comments and results concerning the spectral 

theorem see [7-9] and references therein. 

Theorem 2.1. For any self-adjoint operator T on 

a complex Hilbert space H, there is a unique 

spectral resolution ET (·) such that 

T = ∫sp(T)  λdET(λ) 

Here, sp (T) denotes the spectrum of the operator  

T and the right-hand in-integral is a Riemann-

Stieltjes integral. 

Finally, we mention a class of groups, where the 

previous decomposition results become 
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particularly simple. A group G is of type I if all its 

unitary continuous representations U are of type I, 

i.e. each U is quasi-equivalent to some 

multiplicity-free representation. Compact or 

Abelian groups are examples of type I groups. If 

G is of type I, then the dual G (i.e. the set of all 

equivalence classes of continuous unitary 

irreducible representations of G) becomes a nice 

measure space (“smooth” in the terminology. In 

this case, one can take G as the measure space Z in 

the Mautner decomposition mentioned in the 

preceding item (ii). 

 

Operator algebras in quantum physics: 

The publication of the seminal books of Weyl, 

Wigner, and van der Waerden in the late twenties 

shows that quantum mechanics was using group 

theoretical methods almost from its birth. A nice 

summary of this circle of ideas can be found in [2]. 

Moreover, it is suggested by Ulam in that the 

spectral theorem and functional calculus are as 

fundamental to quantum mechanics, as 

infinitesimal calculus is for classical mechanics. 

Therefore, operator algebraic methods are 

indirectly present in quantum physics through the 

representation theory of groups and functional 

analysis. A direct application of operator algebraic 

methods in the first years of quantum theory was 

von Neumann’s rigorous proof of the mathematical 

equivalence of the two main competing formalisms 

at that time:  the wave mechanics of Schrödinger and 

the matrix mechanics of Born, Heisenberg, and Jordan; for a 

thorough historical account on the equivalence 

problem [13-15]. 

 

Remark 2.5. A brief historical introduction to the 

relation between the representation theory of 

groups and quantum mechanics is given. In this 

paper, the author also proposes K-theory for 

operator algebras as a new synthesis of these topics. 

 

 

III. CONCLUSIONS 

 

In particular, causality is expressed in this context 

in the following natural way: if Θ1 and Θ2 are 

space-like separated regions in Minkowski space, 

then A(Θ1) commutes elementwise with A(Θ2) for 

further details. Non-local aspects in quantum field 

theory like the notion of the vacuum, S-matrix etc. 

are related to the states. Local quantum physics 

complements other modern developments in 

relativistic quantum field theory and is particularly 

powerful in the analysis of structural questions as 

well as for the rigorous treatment of models. 

Algebraic quantum field theory has been very 

successfully applied in super selection theory, the 

theory that studies three characteristic aspects of 

elementary particle physics: composition of charges, 

classification of statistics and charge conjugation. 

For applications of Modular Theory to quantum 

field theory and references.  
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