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I. INTRODUCTION 

 

The topological games G (I,X) with a slight change as 

follows: 

Each topological space considered in this paper is 

assumed to be a Hausdorff space. N denotes the set of 

all natural numbers and m denotes an infinite cardinal 

number. Also let L = {Ei | Ei are closed subsets of X}. 

There are two players P and E. Player P chooses a 

closed set Et of X with E1 L and player E chooses an 

open set U1 of X with E1 ⊂ U1. 

Again, player P chooses a closed set E2 of X with E2 L 

and player E chooses an open set U2 of X with E2 ⊂ U2 

and so on. 

The infinite sequence < E1, U1, E2, U2……> is play of 

G (L,X). Player P wins the play < E1, U2, E2, U2,…> if 

{Un :  n N} covers X, otherwise player E wins. 

A finite sequence < E1, U1,…., En, Un > of subsets in X 

is said to be admissible for G(L,X) if the infinite 

sequence < E1, U1, …En, Un, ,,…..> is a play of G 

(L,X). 

A function s is said to be a strategy for player P in G 

(L,X) if the domain of S consists of the void sequence 

 and the finite sequence < U1, …..,Un > of open sets 

in X and if s () ad s (U1,……,Un) are closed in X an 

belong to L. 

A strategy s for player P in the game G (L,X) is said to 

be winning if he wins each play < E1, U1, E2, U2,….. in 

(L,X) such that E1 = S () and En+1 = S (U1, ….,Un), for 

all n  N.  

We denote the following: 

DL - The class of all spaces which have a discrete 

closed cover consisting of members of L. 

FL - The class of all spaces which have a finite closed 

cover consisting opf members of L. 

C - The class of all compact spaces. 

Cm - The class of m-compact space. 

I1, I2 - Arbitrary classes of spaces possessing hereditary 

property s.t. 

I1 x I2 = {X x Y : X  I1 and Y I2} 

  Firstly, we define the following two product 

spaces: 
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D- Product: A product space X x Y is said to be a D-

product if for each closed set M of X x Y and each 

open set O of X x Y with M ⊂ O, there is a discrete 

collection J by closed rectangles in X x Y such that M 

⊂∪  J⊂ O. 

For a closed rectangle R in X x Y, R' and R" denote 

the projection of R into X and Y respectively. Thus, R 

is a closed rectangle in X x Y iff R' and R" are closed 

in X & Y and R is an open rectangle in X x Y iff R'R" 

are open in X and Y such that R = R' and R". 

C-Product: A product space X x Y is said to be a C-

product if for each closed set M of X x Y and each 

open set O of X x Y with M ⊂ O there is a countable 

collection J by closed rectangles in X x Y such that M 

⊂∪ J ⊂ O. With the help of definition of D-product, 

we have,  

Theorem: (1) Let X and Y be spaces such that X x Y is 

a D-Product. If player P has winning strategies in G (l1, 

X) and (l2,Y), then he has a winning strategy in G (D 

(l1 x l2), X x Y). 

Now we prove the following 

Theorem: (2)  Let X be a collection wise normal space 

and Y a subpar compact space with  (Y) < m. If 

player P has a winning strategy in G (DCm, X), then 

every open cover of X x Y with power < m has a -

discrete refinement by closed rectangles in X x Y.  

Proof: Let s be a winning strategy of player P in G 

(DCm, X). Let C be an arbitrary open cover of X x Y 

with |C| < m. 

We construct: 

(i) a sequence {Jn : n > 0} collections of closed 

rectangles in X x Y; 

(ii) sequence {<  n, < n > : n > 0} of the pairs of 

collections Rn by closed  

    rectangles in X x Y; 

(iii) the function n : n → n-1; satisfying the 

following five conditions: 

(a) Jn is -discrete in X x Y. 

(b) Rn is -discrete in X x Y. 

(c) Each F  Jn is contained in some G  C. 

(d) If (x,y)  Rn-1  n-1 and (x,y)  ⋃Jn. 

Then there is Rn  n such that (x,y)  Rn and n (Rn) 

= Rn-1. 

(e) for an R  n, Let Un = X - R and Uk = X - 

(k+1 0…….0 n(R))', for 1 < k < 

  n-1. 

Then the finite sequence < E1, U1, ….., En, Un > is 

admissible for G (DCm, X).  

Let J0 = {} and 0 = {X x Y}. 

We suppose that the above {Ji : i < n} and {< Ri, I > : I 

< n} are already constructed. We pick an R  n. 

Let < E1, U1,……, En, Un > be the admissible sequence 

in G (DCm, X). 

Hence there is a discrete collection {C :    (R)} 

by m-compact closed sets in R1 such that s(U1,……., 

Un) R' =  {C :    (R)}. 

We can a choose discrete collection {W :    (R)} 

of open sets in R' s.t. C ⊂ W, for all   (R).  

Since C is m-compact, |C| < m, (Y) < m and R" is 

subparacompact. 

There is a collection 𝐽𝑛+1
𝛼 = {𝐶𝑙 𝑈

𝛼,𝑖 × 𝐻: 𝑖 =

𝑙, … … , 𝐾 𝑎𝑛𝑑  (𝑘)}and by closed rectangle in R, 

which satisfying the following four conditions: 

(i)  Each 𝑈
𝛼,𝑖 is open in R'. 

(2) 𝐶  {𝑈
𝛼,𝑖: 𝑖 = 1, … … , 𝐾} 𝑊 . 

(3)  Each CI 𝑈
𝛼,𝑖 × H is contained in some G  C. 

(4) {H :  ()} is a -discrete closed cover of 

R". Then 

Jn+1
α (R) =  {Jn+1

α :  } is a -discrete in X x Y. 

Put 𝑅
 = {𝐶𝐼 𝑊 −  {Un+1

α : 1 ≤ i ≤  K} × H}, for 

all  (𝑘). 

Again put  R̅ = (R′ −  {Wα ∶  αϵ (R)}) × R" 

Moreover, we put Rn+1 (R) = { 𝑅̅  

{R
α: ()} and  (𝑅)}.  

Then Rn+1 (R) is also -discrete collection by closed 

rectangles in R. 

We set Jn+1 = {Jn+1 (R) : R  n} and n+1 =  {n+1 (R) : 

R  n}. 

The function n: n+1 → Rn  defined as n+1 : (n+1) (R) 

= (R) for all R  . 

From (a), Jn+1 and n+1 are -discrete in X x Y. 

The conditions (a) and (b) are satisfied. 

By (3), the the condition (c) is also satisfied. 
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The conditions (d) and (e) are very clear. 

Let J =  {Jn : n N}. 

We can easily show that J is a cover of X x Y. There 

fore J is a -discrete refinement of C by closed 

rectangles in X x Y. 

With the consequences of the above theorem and by 

assuming PCm to be the class of all product spaces 

with the first factor being non-compact, the following 

results can be obtained easily. 

(R1) Let X be a collection wise normal space and Y 

and a sub paracompact space with (Y) < m. If player 

P has a winning strategy in G (DCm, X), then X x Y is 

a  

D-product.  

(R2) Let X be a paracompact space and Y be a sub 

paracompact space. 

IF player P has a winning strategy is G (DC, X), then 

X x Y is sub paracompact. 

(R3) Let X be a collection wise normal space and Y be 

a sub paracompact space with (Y) < m. If player P 

has a winning strategy in G (DCm, X), then he has a 

winning strategy in G (D(PCmm), X x Y). 

 

II. FUZZY STOCHASTIC GAME 

 

A game is determined by information, decisions and 

golas. But human notions (ideas) and decisions are 

fuzzy. For, a man with immense entropy functions 

may err, set right and understanding a little may 

increase his understanding in the pursuit of some 

knowledge. Therefore, in a game, perfect information, 

decisions & goals may not be feasible. We are 

therefore, led to the introduction of fuzzy games. 

 

Let G = (N,v) be a nonfuzzy game of the set N = 

{1,2,3,…, n} of n players in which v : S → R is a real 

valued function (characteristic function) from a 

family of coalition S  N to the set of real numbers R. 

Hence v(A) means the gain which a coalition. A can 

acquire only through the action of A, the coalition A 

can be specified by the characteristic function A as 

follows:  

   1 if I  A; 

 A (i) =  0 if I  A. 

A rate of participation A (i) of a player i is defined by 

A (i) = 1, if a player i participates in A and 

A (i) = 0, if a player i does not not participate in A. 

Consequently, a coalition A is represented by 

= (A (1),  (2),….. A (n)). 

A fuzzy coalition  is defined as a coalition in which a 

player I can participate with a rate of participation I 

 [0,1] instead of {0,1}. The characteristic function 

nor coalitional worth function of a fuzzy game is a 

real valued function  f: [0,1]n →R which specifies a 

real number f () for any fuzzy coalition . 

This fuzzy game is denoted by FG = (N. f). 

 

III. REFERENCES 

 

[1]. Engelking, R. (1966): Outline of general 

topology, Amesterdan. 

[2]. Kumar, B.P. (1982): Lattice & topological 

approach to game theory, Ph.D.  thesis, B. R. A. 

Bihar University, Muzaffarpur. 

[3]. Telgarsky, R. (1974) : Closure preserving covers, 

Fund. Maths., 85. 

[4]. Zedeh, L.A. (1965): Fuzzy Sets, Information and 

Control 8. 

[5]. George J. Klir and Bo Yuan (1995) : Fuzzy sets 

and Fuzzy Logic : Theory and Applications. 

[6]. Von Neumann (1965) : Theory of Games and 

Economic Behavour. 


