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 The optical oscillator strengths (f), of atoms and positive atomic ions is 

needed in astrophysics, atmospheric physics, laser physics, plasma physics, 

radiation physics, gas discharge, mass spectroscopy, space research and 

fusion research. The most serious problem in fusion research with 

magnetically confined high temperature plasmas (eg. Tokamaks) is caused 

by plasma impurities, eg., highly ionized metal atoms. It is, therefore vital 

to determine and reduce the impurity concentration. For this purpose, the 

values of f are required. The abundances of the chemical elements in the 

sun are of considerable interest because they contain information about 

the creation of the solar system term.  
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I. INTRODUCTION 

 

In the solar spectra large number of spectral lines are 

observed from the measured equivalent width, the 

abundances are derived if the f values are known. 

OOS (Optical Oscillator Strengths) provide the 

confidence about the reliability of the wavefunctions 

which are employed in the matrix elements. Ridder 

and Schneider1, Peterson et al.2,3 and Dahl et al. have 

studied several transitions in P4+ ions of the sodium 

isoelectric sequence in ion-atom collision 

experiments. The inner shell excitation 1s22s22p63s1 2se 

→1s22s22p53s2 2p0 transition, which leads to 

autoionization, plays very important role to explain 

the structure observed in the electron impact 

ionization cross-section curves. Recently Tiwar and 

his co-workers6-16, have extensively calculated the 

excitation energies and optical osciallator strengths 

for the outer as well as inner-shell excitation 

transitions in several atoms and ions using the HF and 

CI wavefunctions for both initial and final states 

within the LS coupling scheme.  

 

Our investigation shows that the inclusion of 

correlation is indispensable in order to obtain reliable 

results. From the survey of literature, it is clear that 

neither experimental observations nor theoretical 

predictions for OSS are available for the inner-shell 

excitation transition, which leads to auto-ionization 

in P4+ ions. 
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Recently, we9 have calculated the transition energies 

(E in atomic unit) and OSS of both length and 

velocity forms for several transitions like Li atom 

using the HF as well as CI wave functions for both 

initial and final states. In our earlier work we have 

reported the excitation energies and oscillator 

strengths, of both length and velocity forma (fL and fv 

respectively), for the resonance transition and non-

resonance transitions in several ions of the sodium 

isoelectronic sequence. We have also calculated the 

E, fL and fv values for several outer-shell transitions 

as-well-as the inner-shell excitation transition in P4 

ion which leads to auto-ionization using non-

relativistic HF and large Cl wavefunctions for both 

initial and final states involved in the transition. 

However, there is a considerable discrepancy between 

the length and velocity forms of the oscillator 

strengths. 

 

It is well known that the relativistic effects play an 

extremely important role in obtaining accurate 

results. Consequently, it is indispensable to 

incorporate the relativistic effects into the study of 

atomic structure in order to generate reliable results. 

In our earlier work we have calculated the oscillator 

strengths using the non-relativistic Cl wavefunction. 

In this work we have taken into account of the 

relativistic effects which may then be used to 

calculate transitions which are forbidden in purely L - 

S coupling. 

 

We have calculated the transition probabilities and 

oscillator strengths, of both the length and velocity 

forms, for the inner-shell excitation 1s22s22p63s 2s1/2
e  

→1s22s22p53s2 2 p1/2
0  and 1s22s22p63s 2 s3/2

e  

→1s22s22p53s2 2p3/2
0  transition in Ca9+ ions 𝑇𝑖

11+i of the 

Sodium isoelectronic sequence employing the 

Tiwary17-30 approach in the intermediate coupling 

scheme. 

 

 

 

II. THEORY 

With reference to the increasing accuracy of 

experimental data obtained from high resolution 

techniques, it becomes really necessary to introduce 

relativistic effects into the reliable study of atomic 

structure. For this there are so many methods but a 

general method of evaluating relativistic effects in 

atomic structure problems is described, which may be 

used to calculate transitions which are forbidden in 

purely L-S coupling. 

 

The relativistic corrections to the non-relativistic 

energy may be determined to order (Z)2 in terms of 

the Breit operater (HB) by first order perturbation 

theory, Bethe and Salpeter21. That is these corrections 

are given as the expectation value of the Breit 

operator with respect to the zero order wave function 

0 which satisfies 

 

𝐻00 = ∑ ℎ𝑖 + ∑
1

𝑟𝑖𝑗
𝑖<𝑗𝑖 0 = 𝐸00   (1) 

 

where, hi is a one electron Dirac operator and 𝛼 is the 

fine structure constant. Bethe and Salpeter point out 

that the further development of the perturbation 

treatment, in which the full Hamiltonian is taken as 

(H0+HB) leads to higher order corrections which are of 

the wrong order of magnitude. As a consequence, the 

use of the resulting Breit equation to determine the 

corresponding correction to the wave function is 

therefore unjustified. This point is emphasised by 

Detrich22 who develops an alternative perturbation 

formulism in which the relativistic energy corrections 

are not given in terms of an effective Hamiltonian HB. 

 

In the calculation of transition probabilities, it is not 

sufficient that the energy corrections are treated 

properly. The corrections to the wavefunction must 

also be included as well as possible. For fairly low 

value of Z the Pauli approximation is satisfactory. In 

this approximation the chief contribution to the fine 

structure splitting are the nuclear spin- orbit term and 

the spin-other-orbit and spin-spin-terms. If indeed 
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the correct wavefunction is given as an eigenfunction 

of H0 and not of (H0+ HB), then in the Pauli 

approximation, one must determine the wavefunction 

as an eigenfunction of the non-relativistic 

Hamiltonian plus the nuclear spin- orbit operator. 

The spin other term should not be included. For low 

Z, all relativistic effects are small, but the nuclear 

spin-orbit and the spin other orbit terms are of 

comparable order of magnitude. It seems at best 

anomalous to determine the wavefunction by 

including one but not the other in the full 

Hamiltonian. 

 

Since relativistic effects are small, they should have 

little in- fluence on the form of the radial functions. 

The time-consuming optimisation of these functions 

may thus be determined in a non-relativistic 

approximation. 

 

The corresponding relativistic corrections to 

transition probabilities have been derived from 

quantum electrodynamics by Drake23-24. He finds that 

in the Pauli approximation, the multipole matrix 

element should be evaluated between eigenfunctions 

of (H0 + HB) provided that only terms up to relative 

order (Z)2 are retained Higher-order powers of Z 

will necessarily be included in a variational treatment 

of (H0 + HB), but the errors should be small when Z 

is small. 

 

The many electrons Dirac-Hamiltonian (HD) for an N-

electron system is in atomic unit. 

 

 

𝐻𝐷 = ∑ {𝑐2𝛽𝑖 + 𝛼𝑖[𝑐𝑃𝑖 + 𝐴(𝑟𝑖)] − (𝑟𝑖)}𝑁
𝑖=1 + ∑

1

𝑟𝑖𝑗
𝑖<𝑗          (2) 

 

where Pi is the momentum operator;  

(𝑟𝑖) and 𝐴(𝑟𝑖) denotes the scalar and vector potentials of the external electromagnetic field, respectively; c is 

the sped of light; rij = |ri - rj| is the distance between the i the j th electrons; ri = position vector of the ith 

electron and  are the Dirac matrices, written, respectively, in terms of the Pauli 2 x 2 matrices and the 2 x 2 

unit matrix 

 

𝐼 =  (
𝑜 𝜎
𝜎 0

)
𝑖

 𝑎𝑛𝑑  𝛽 = (
𝐼 0
0 −𝐼

)                (3) 

𝜎1 = (
0 1
1 0

) ; 𝜎2 = (
0 −𝑖
𝑖 0

) ; 𝜎3 = (
1 0
0 −1

) , 𝐼 = (
1 0
0 1

)            (4) 

 

In the theory of atomic structure we are concerned with electrons interacting with each other as well as with 

an electromagnetic field. The Dirac theory is not sufficient. The most commonly used approximation for 

describing the relativistic interaction between electrons in an approximate way is the Breit Hamiltonian, 

Breit.25,26 

 

H = HD + HB                  (5) 

where, 

𝐻𝐵 = −
1

2
∑

1

𝑟𝑖𝑗
(𝛼𝑖 . 𝛼𝑗)𝑖<𝑖 +

(𝛼𝑖𝑟𝑖𝑗)(𝛼𝑗𝑟𝑖𝑗)

𝑟𝑖𝑗
2                 (6) 

The interaction, equation (5), is of the order (Z)2 relative to the Coulomb interaction and terms of higher 

order in (Z) are omitted. 
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Provided that the velocities of the electrons in the system are sufficiently low that terms of orders higher than 

(2Z2) may be neglected the Breit Hamiltonian for the case where there is no external field becomes  

 

HBP = HNR + HR                                 (7) 

 

Where 

 

 𝐻𝑁𝑅 = −
1

2
∑ ∇i

2 − Z ∑
1

ri
+ ∑

1

rij
i<𝑗

N
i=1

𝑁
𝑖=1                (8) 

is the non-relativistic Hamiltonian and  

HR = HSO + Hmass + 𝐻𝐷1
 + HSOO + HSS + HOO + 𝐻𝐷2

 + HSSC                                       (9) 

is the relativistic correction. HBP is the Breit-Pauli Hamiltonian for low Z [Z < < 137} 

For derivation of the Breit-Pauli Hamiltonian we refer the reader to Bethe and Salpeter21, Slater28, Iroh29, 

Akhiezer and Berestetky30, and Amstrong and Feneuille.31 

 

𝐻𝑆𝑂 =
𝛼2𝑍

2
∑

1

𝑟𝑖
3

𝑁
𝑖=1 (𝐼𝑖. 𝑆𝑖)               (10) 

 

represents the one-body spin interaction of each electron's magnetic moment with the magnetic field arising 

from the electron's own motion in the Coulomb field of the nucleus; 

 

𝐻𝑚𝑎𝑠𝑠 = −
𝛼2

8
∑ ∇i

4𝑁
𝑖=1                      (11) 

 

is the relativistic mass correction; 

 

𝐻𝐷1
= −

𝛼2𝑧

8
∑ ∇i

2 (
1

ri
)𝑁

𝑖=1           (12) 

 

is the one body Darwin term; the relativistic correction to the potential energy; 

 

𝐻𝑆𝑂𝑂 = −
𝛼2

2
∑ (

𝑟𝑖𝑗

𝑟𝑖𝑗
3 × 𝑃𝑖) . (𝑆𝑖 + 2𝑆𝑗)𝑖≠𝑗                     (13) 

 

represents the spin other orbit interaction and is made up of two parts. 

The first one, containing the factor Si, is the spin-orbit coupling of electrons i in the Coulomb field of electron j.  

 

The second, with the factors 2sj comes from the interaction of the spin magnetic moment of electron j with the 

orbital current of electron i; 

 

𝐻𝑆𝑆 = 𝛼2 ∑
1

𝑟𝑖𝑗
3 (𝑆𝑖. 𝑆𝑗)𝑖<𝑗 − 3

(𝑆𝑖.𝑆𝑖𝑗)(𝑆𝑗.𝑆𝑖𝑗)

𝑟𝑖𝑗
2                (14) 

 

is the ordinary dipole interaction of the spin magnetic moments of two electrons;  
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𝐻00 = −
𝛼2

2
∑ {

𝑃𝑖𝑃𝑗

𝑟𝑖𝑗
+

𝑟𝑖𝑗(𝑟𝑖𝑗.𝑃𝑖).𝑃𝑗

𝑟𝑖𝑗
3 }𝑖<𝑗         (15) 

is the orbit-orbit interaction 

𝐻𝐷2
=

𝛼2

4
∑ ∇i

2
𝑖<𝑗 (

1

𝑟𝑖𝑗
)        (16). 

is the two body Darwin term; the relativistic correction to the potential energy. 

 

𝐻𝑆𝑆𝐶 = −
8𝜋𝛼2

3
∑ (𝑠𝑖. 𝑠𝑗)𝛿(𝑟𝑖. 𝑟𝑗)𝑖<𝑗       (17) 

is the electron-spin-contact term. 

 

we can re-write equation (7) as 

HBP = non fine structure + fine structure      (18) 

where, 

non fine structre = HNR + Hmass+ 𝐻𝐷1
 + HOO + 𝐻𝐷2

 + HSCC     (19) 

and, 

Fine structure = HSO + HSOO + HSS      (20) 

 

The non-fine structure interactions commute with S2, SZ, L2 and LZ can therefore be considered in the 

|LSMLMS> representation. 

The fine-structure interactions only commute with L2; S2, J2 and Jz where J and Jz are the total angular 

momentum and its azimuuthal component, respectively. For these we use the |LSJMj> representation. 

 

J-dependent CI expansion takes the form  

(𝐽, 𝑀𝐽) = ∑ 𝑎𝑗𝑗(𝛼𝑗𝐿𝑗𝑆𝑗𝐽𝑀𝑗)𝑗         (21) 

 

where {i} denotes a set of single configuration wavefunctions, j defines the coupling of the angular momenta 

of the electrons 

 

J = L + S          (22) 

 

for each j, and {aj) are determined as the components of the appropriate eigenvector of the Hamiltonian matrix 

with basis {j}. The Hamiltonian consists of the usual non-relativistic terms plus the relativistic corrections. 

 

The Hamiltonian matrix with typical element is  

 

Hij = < i |H|j>        (23) 

 

Once we have the J-independent and J-dependent CI wave functions, we can calculate the oscillator strengths. 
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III. OSCILLATOR STRENGHTS  

 

In order to obtain formulae for transition probabilities, we must begin with the time-dependent Schrodinger 

equation 

 

𝐻 = 𝑖ℎ


𝑡
           (24) 

 

where the Hamiltonian H contains not only the electrostatic interaction, but because of the radiation field 

involved, it also contains electromagnetic corrections which, for one-electron systems, have the form (e/mc) 

A.P. Here, A is the vector potential associated with the electromagnetic field, and P is the momentum of the 

electron.  

The wave function is then expanded in terms of the stationary-state wave functions {n}, with energies {En}. 

 

 = ∑ 𝑐𝑛(𝑡)𝑒𝑥𝑝𝑛 (−
𝑖

ℎ
𝐸𝑛𝑡)𝑛       (25) 

 

where the sum includes as integration over the continuum. If the atom is in state |i > at time t = 0, then (ci (0) = 

0 for ni. If the velocity potential is expanded in a Fourier series of plane waves of the form A0 cos (wt- k.r.), 

then first-order perturbation theory gives, for absorption in one-electron atoms.  

 
1

𝑡
|𝑐𝑗(𝑡)|

2
=

2𝜋

3

𝑐2

ℎ2𝑗𝑖
2 |< 𝑗|

𝑒

𝑚𝑐
𝑃𝑒𝑥𝑝 (𝑖𝑘. 𝑟)|𝑖 > |2(𝑗𝑖)     (26) 

= 𝐵𝑖𝑗(𝑗𝑖)          (27) 

where hji = Ej - Ei         (28) 

 

Bij is the Einstein coefficient for absorption, and (ij) is the energy density per unit frequency range. 

 

The absorption Oscillator strength fij is related to the Einstein coefficient by 

 

𝑓𝑖𝑗 =
𝑚

𝜋𝑒2 ℎ𝑗𝑖𝐵𝑖𝑗          (29) 

 

thus, retaining the usual convention that absorption oscillator strengths are positive. 

The magnitude of wave vector k is k = 2/. Hence for wavelengths large compared with the size of the atom, 

k.r << 1, and the expansion 

  

exp(𝑖𝑘. 𝑟) = 1 + 𝑖𝑘. 𝑟 +
1

2!
(𝑖𝑘. 𝑟)2 + ⋯        (30) 

 

will converge rapidly. The use of the first leading term of equation (30) constitutes the dipole approximation of 

the multipole expansion. Also 

 
𝑖ℏ

𝑚
𝑝 ≡ 𝑖ℏ𝑟̇ ≡ [𝑟, 𝐻0]         (31) 
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whenever the matrix elements of these operators are being taken with respect to exact eigenfunctions of HO, 

the electrostatic part of the Hamiltonian. Hence the matrix element within the dipole approximation can be 

expressed as 

 

< 𝑗 |
𝑒

𝑚𝑐
𝑝| 𝑖 >=

𝑖𝑒

ℏ𝑐
𝑗|𝐻0𝑟 − 𝑟𝐻0|𝑖 >=

𝑖

ℏ𝑐
(𝐸𝑗 − 𝐸𝑖) < 𝑗|𝑒𝑟| >   (32) 

 

Hence, we have two equivalent forms for the absorption oscillator strength: 

 

𝑓𝑖𝑗
1 =

2𝑚

3ℏ2 (𝐸𝑗 − 𝐸𝑖)|< 𝑗|𝑟|𝑖 > |2       (33) 

𝑓𝑖𝑗
𝑣 =

2

3

1

𝑚

1

(𝐸𝑗−𝐸𝑖)
|< 𝑗|𝑝|𝑖 > |2       (34) 

These are the length and velocity forms respectively. The identities (30) may be applied to r instead of r, and in 

this way an acceleration form may be derived: 

 

fij
a =

2

3

ℏ2

m

1

(Ej−Ei)
3 |< 𝑗|∇V |i > |2 =

2

3

z2e4ℏ2

m(Ej−Ei)
3| < 𝑗 |

1

r3 r⃗| i > |2    (35) 

 

where V is the electrostatic potential energy.  

So far, we have assumed that the levels i and j are non-degenerate. If level j is degenerate, with different states 

being distinguished by the (2Jj+1) parameters mj, then there are several 'Channels' open for the transition. The 

total absorption oscillator strength (length form) is then 

 

𝑓𝑖𝑗
1 =

2

3

𝑚

ℏ2 (𝐸𝑗 − 𝐸𝑖) ∑ |< 𝑗𝑚𝑗|𝑟|𝑖 > |2
𝑚𝑗

      (36) 

 

The level i may also be degenerate, with different states distinguished by mi. It is then convenient to introduce 

the line strength Sij, whose length form is defined by 

 

𝑆𝑖𝑗
1 = 𝑆𝑗𝑖

1 = ∑ |< 𝑗𝑚𝑗|𝑒𝑟|𝑖𝑚𝑖 > |2
𝑚𝑖𝑚𝑗

     (37) 

= ∑ |< 𝑗𝑚𝑗|𝑒𝑟 [
4𝜋

3
]

1/2
𝑌1𝜇|𝑖𝑚𝑖 >|2

𝑚𝑖𝑚𝑗𝜇     (38) 

 

where {Y1m} are normalised spherical harmonics. Now, according to the Wigner-Eckart theorem (Rose32 1957), 

the m dependence of the matrix element in (38) is contained in the Clebsch-Gordan coefficient C (JilJj; mi𝜇mj), 

for which 

 

∑ |𝐶(𝐽𝑖𝑙𝐽𝑖; 𝑚𝑖𝜇𝑚𝑗)|2
𝑚𝑗𝜇  =      (39) 

 

Thus, the sum over mi in (38) contains gi = (2ji+1) equal contributions, where gi is the statistical weight of level 

i. Then (35) may be written 

𝑓𝑖𝑗
1 =

2

3

𝑚

𝑒2ℏ2 (𝐸𝑗 − 𝐸𝑖)
𝑆𝑖𝑗

𝑙

𝑔𝑖
        (40) 
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with similar expression for velocity and acceleration forms. 

The above formulation assumes a single-electron atom. In the calculations was shall be discussing, we shall be 

concerned with N-electron atoms, and for them we make the replacements 

 

𝑟 → ∑ 𝑟𝑘 , 𝑃 →𝑁
𝑘=1 ∑ 𝑃𝑘 ,

1

𝑟3 𝑟 → ∑
1

𝑟𝑘
3 𝑖𝑘

′𝑁
𝑘=1

𝑁
𝑘=1       (41) 

 

in (32) - (37) although the third of these replacements follows from (3.38) only since  

∑ ∇k
𝑁
𝑘=1 (∑

1

𝑟𝑖𝑗
𝑖<𝑗 ) = ∑ (∇i + ∇j)

1

𝑟𝑖𝑗
= 0𝑖<𝑗       (42) 

 

In jj or intermediate coupling, (40) holds with gi = (2Ji+1). For LS coupling (with which we shall be mainly 

concerned), the form of (40) continues to hold with gi = (2Li + 1) (2Si + 1), the degeneracy of the multiplet, 

while Sij, the multiplet strength is given by 

𝑆𝑖𝑗
1 = ∑ |< 𝐿𝑗𝑆𝑗𝑀𝐿𝑗

𝑀𝑆𝑗
| |∑ 𝑒𝑟𝑘

𝑁
𝑘=1 |𝑀𝐿𝑗𝑀𝑆𝑖

𝑀𝐿𝑖𝑀𝑆𝑗

𝐿𝑖𝑆𝑖𝑀𝐿𝑖
𝑀𝑆𝑖

> |2    (43) 

Thus, the emission of radiation resulting in an atom de-exciting can be spontaneous (for which the transition 

rate depends only on the population of the upper level) or induced [for which the transition rate also depends 

upon the density  (ij)]. 

The Einstein coefficients for these emission processes, respectively Aji, Bji, satisfy 

 

𝐴𝑗𝑖 =
8𝜋𝑗𝑖

2

𝑐3 (𝐸𝑗 − 𝐸𝑖)𝐵𝑗𝑖       (44) 

and, 

giBij = gjBji        (45) 

 

Then the absorption oscillator strength is related to the (emission) transition probability by 

 

𝑓𝑖𝑗 =
𝑚𝑐

8𝜋2𝑒2 𝑗𝑖
2 𝑔𝑗

𝑔𝑖
𝐴𝑗𝑖         (46) 

 

where ji = c/ji is the wavelength of the transition. (Note that Aji, although termed simply 'transition 

probability' has units [T]-1. The absorption and emission oscillator strengths are related by 

 

gifij = - gjfji        (47) 

gifij + gjfji = 0        

 

In order to compare the contributions to the oscillator strengths from individual configuration, it is convenient 

to define for the length form 

 

Fij = (
2∆E

3gi
)

½
aibji

|r⃗|
j
       (48) 

 

The value of Fij are given in table (with an equivalent expression for the velocity form) in terms of the CI 

wavefunctions of the two states involved in the transition: 
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𝑖 = ∑ aii𝑖           (49) 


j

= ∑ bjj𝑗           (50) 

 

Then, in either form, the electric dipole oscillator strength is 

 

𝑓 = (∑ ∑ 𝐹𝑖𝑗𝑗𝑖 )
2
        (51) 

 

General expression for the transition probability of the 2-pole radiation emission from state |i > to state |j > is  

 

𝐴𝑖𝑗 =
2(+1)

(2+1)[(2−1)‼]2

1

𝑔𝑖
(

𝐸𝑖−𝐸𝑗

ℏ𝑐
)

2+
      (52) 

1

ℏ
∑ |jmj|Qμ|imi|

mi,μ,mj

2

 

and the lifetime 𝜏−1 = ∑ 𝐴𝑖𝑗𝑗      (53) 

where (2-1)!! = 1×3×5….×(2-1) 

gi is the multiplicity of the upper state, and the electric and magnetic multipole operators for an N-electron 

atom are  

 

𝑄𝜇
(𝑒𝑙)

= 𝑒 ∑ 𝑟𝑘
 (

4𝜋

2+1
)

2
𝑌

𝜇
(𝑘)𝑁

𝑘=1       (54) 

𝑄𝜇
(𝑚𝑎𝑔)

=
𝑒

𝑚𝑐
∑ ∇𝑁

𝑘=1 [𝑟𝑘
 (

4𝜋

2+1
)

½
𝑌

𝜇
(𝑘)]     (55) 

[( + 1)−1𝑙𝑘 +
1

2
𝑔𝑠𝑔𝑘]  

 

with gs = 2.00232, the gyromagnetic spin ratio. These operators can be expressed as tensor with rank . For the 

electric dipole (E1) transition, Aij are determined using the CIV3 code. 

 

The parameters for the basis orbitals used in the present calculations chosen on the criterion is a sum of Slater-

type orbitals which are shown in tables 1-5 for Ca9+, SC10+ in sodium isoelectronic sequence. Tables give 

Hamiltonian matrix and 6W-15W give the configuration weights. 

 

IV. RESULTS AND DISCUSSION 

 

We have calculated the OOS, of both the length and velocity forms, of the oscillator strengths for the inner-

shell excitation, which leads to atuo-ionization 1s22s22p63s 2Se1/2 → 1s22s22p53s2 2P01/2 and 1s22s22p63s 2Se1/2 → 

1s22s22p53s2 2P03/2 transition in Ca9+, SC10+ systems of the sodium isoelectronic sequence employing J-dependent 

HF and CI wavefunctions generated by using a new approach proposed by Tiwary19-20. 

 

Displays the J-dependent HF and CI optical oscillator strengths (OOS), of both the length and velocity forms, of 

the inner-shell excitation 1s22s22p63s 2Se1/2 → 1s22s22p53s2 2P01/2 in the of the sodium isoelectronic sequence. 
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Table represents exactly the same quantities as in table  but for the transition 1s22s22p63s 2Se1/2 → 1s22s22p53s2 
2P03/2. Several features of importance emerge from table. First, the optical oscillator strengths, of both length and 

velocity forms, increase with increase of atomic number (Z) for both transitions 1s22s22p63s 2Se1/2 → 1s22s22p53s2 
2P01/2 and 1s22s22p63s 2Se1/2 → 1s22s22p53s2 2P03/2 in all ions of our present consideration. Second, the values of CI fL 

and fv are larger than HF fL and fv for both transitions given in table in all ions which reflect that the correlation 

enhances the oscillator strengths. Third, the disagreement between CI fL and fv decreases with increase of Z 

which shows that the effect of correlations increases in all ions of our present consideration. Fourth, the 

disagreement between HF fL and fv is substantially large whereas the CI fL and fv are in good agreement which 

demonstrate the importance of correlation. Fifth, the relativistic fL and fv values for J=0 are significantly 

smaller compared to the fL and fv values for the J = 1 transition. Finally, our present investigation indicates 

that it indispensable to incorporate the relativistic and correlation effects simultaneously in order to obtain 

accurate results.  

 

V. CONCLUSION 

 

Our present theoretical investigation of J-dependent transition probabilities ( AL and Av ) and oscillator 

strengths (fL and fv), of both the length and velocity formulations, demonstrates that the Tiwary approach is 

very compact, convenient, economic from computational point of view and capable of yielding encouraging 

results for the complex inner-shell excitation transition in the medium ionized atoms of the sodium 

isoelectronic sequence. This approach may provide significant advantages also in the case of the CI calculations 

in molecules, clusters and solids. The present CI wave functions may be of use for calculations of scattering 

cross sections for the inner-shell excitation process in Ca9+, Sc10+ ions. However, there is disagreement between 

the length and velocity forms of atomic transition probabilities and oscillator strengths which may be probably 

due to the lack of inseparable way of including correlation and relativity, quantum electrodynamic (QED) or 

Lamb shift and nuclear size effects. Our theoretical results suggest that the reliable theoretical predictions of 

atomic transition probabilities and oscillator strengths require methods that account for correlation, relativistic, 

QED and nuclear- size effects in a systematic and coheherent manner. At present we do not have a 

comprehensive and practical method that accounts for all effects mentioned above on equal footing. We hope 

that this work will stimulate reliable experimental as well as other accurate theoretical investigations. 

 

Table-1 

Parameters for the bound orbitals used in the present calculation for Ca9+. Each orbital is a sum of Clementi-

type and Slater-type orbitals 

Orbitals Clementi-type 

Coefficient 

Slater-Type 

Coefficient 

Power of r Exponent 

1s 0.9181687 

0.0207600 

0.0035400 

0.0740599 

0.0002600 

0.0013700 

167.6041870 

7.1944447 

0.6669434 

122.7318120 

0.0140933 

-0.4169066 

1 

1 

2 

2 

3 

3 

20.2716064 

31.0809024 

7.6744404 

18.3130955 

4.0049801 

6.5566196 

2s -0.2649509 -48.3646088 1 20.2716064 
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-0.0081700 

1.0751629 

-0.1472206 

0.0009500 

0.0456902 

-2.8313532 

202.5633540 

-243.9732510 

0.0514950 

13.9040546 

1 

2 

2 

3 

3 

31.0809021 

7.6744404 

18.3130951 

4.0049801 

6.5566196 

3s -0.1105004 

-0.0032000 

0.4956020 

-00.0666903 

-1.3161945 

0.3022813 

-20.1709442 

-1.1089754 

93.3726044 

-110.5189210 

-71.3444824 

91.9877777 

1 

1 

2 

2 

3 

3 

20.2716064 

31.0809021 

7.6744404 

18.3130955 

4.0049804 

6.556196 

2p 0.7259261 

0.2817987 

0.0216599 

101.8049320 

116.1832120 

32.5886688 

2 

2 

2 

6.81496602 

10.49776998 

17.6188049 

3p 5.9909449 

-6.0151453 

840.1789550 

-9506.3515600 

2 

3 

6.8196603 

10.4976997 

3d 0.9999996 349.2272950 3 6.8196603 

  

Table-2 

Parameters for the bound orbitals used in the present calculation for Sc10+. Each orbital is a sum of Clementi-

type and Slater-type orbitals 

Orbitals Clementi-type 

Coefficient 

Slater-Type 

Coefficient 

Power of r Exponent 

1s 0.9280059 

0.0213799 

0.0029400 

0.0621097 

0.0001900 

0.0010500 

180.3726500 

7.8733130 

0.6512018 

111.9006350 

0.0136523 

-0.3940876 

1 

1 

2 

2 

3 

3 

21.1378024 

32.3654022 

8.1876698 

18.9356995 

4.3408604 

6.9615298 

2s -0.2724483 

-0.0074500 

1.0777836 

-0.1517589 

-0.0012900 

0.0539297 

-52.9546356 

-2.7435007 

238.7270810 

-273.4179690 

-0.0926917 

20.2410431 

1 

1 

2 

2 

3 

3 

21.1378024 

32.3654022 

8.1876698 

18.9356995 

4.3408604 

6.9615297 

3s -0.1165200 

-0.0026900 

0.5066005 

-0.0699200 

-1.3505297 

0.3400303 

-22.6475067 

-0.9906133 

112.2110290 

-125.9721370 

-97.0417175 

127.6211700 

1 

1 

2 

2 

3 

3 

21.1378021 

32.3654022 

8.1876698 

18.935695 

4.3408604 

6.9615297 

2p 0.7303165 121.7976680 2 7.3090897 
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0.2764527 

0.0207102 

130.8816680 

36.4648590 

2 

2 

11.0946999 

18.7624054 

3p 6.4064493 

-6.4381752 

1068.4279800 

-12348.2500000 

2 

3 

7.3090897 

11.0946999 

3d 0.9999996 445.1025390 3 7.3090898 

Table-3H 

Hamiltonian Matrix (Hij) for the excited 2P0½ state used in the present calculation for Ca9+ 

-638.08520500 0.06975889 0.08046442 0.00004613 0.00000000 

0.06968093 -632.94751000 0.60615331 -0.00003163 0.06245163 

0.08048201 0.58272207 -632.29199200 -0.00002364 -0.10818565 

0.00000000 0.00000000 0.00000000 -577.28149400 0.19378930 

0.00000000 0.06245881 -0.10818154 0.27342641 -577.38671900 

 Table-3W 

Configurations used for the excited 2P0½ state used in the present calculation for Ca9+. 

The numbers below the configuration give their weights. 

2P03/2 2P53p2(3P) 2P53s(5P)3d 2P53p2(1D) 2P53s(1P)3d 2P53s2 

2P53s2 0.00000029 -0.01702558 0.00000152 -0.00390998 0.99984744 

2P53s(1P)3d -0.00066664 -0.51223552 -0.00087828 -0.85875914 -0.01208065 

2P53s2(3P)3d 0.00118498 -0.85867578 0.00155904 0.51236022 -0.01261803 

2P53p2(3P) -0.79415333 0.00000333 0.60771781 -0.00000702 -0.00000074 

2P53p2(1D) -060771573 -0.00111679 -0.79415190 0.00195020 -0.00001008 

Table-4H 

Hamiltonian Matrix (Hij) for the excited 2P0½ state used in the present calculation for Sc10+ 

-711.35571300 0.07847345 0.08802545 0.00006770 0.00000000 

0.07837862 -705.68774400 0.65833253 -0.00003256 0.05910773 

0.08803529 0.62866116 -704.98339800 -0.00002323 -0.10239196 

0.00000000 0.00000000 0.00000000 -633.46191400 0.14946818 

0.00000000 0.05911407 -0.10238832 0.27528161 -633.52954100 

 

Table- 4W 

Configurations used for the excited 2P0½ state used in the present calculation for SC10+. 

The numbers below the configuration give their weights. 

2P03/2 2P53p2(3P) 2P53s(5P)3d 2P53p2(1D) 2P53s(1P)3d 2P53s2 

2P53s2 -0.00000018 -0.01711213 0.00000117 -0.00417774 0.99984455 

2P53s(1P)3d -0.00050175 -0.51414633 -0.00063090 -0.85761279 -0.01238294 

2P53s2(3P)3d 0.00088816 -0.85753107 0.00111504 0.51427728 -0.01252760 

2P53p2(3P) -0.78104025 0.00000120 0.62448066 -0.00000315 -0.00000086 

2P53p2(1D) -0.62448013 -0.00080800 -0.78103870 0.00142443 -0.00000708 
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Table-5H 

Hamiltonian Matrix (Hij) for the excited 2P03/2 state used in the present calculation for Ca9+. 

-638.21240200 0.06964189 0.08049077 0.00002306 0.00000000 

0.06968093 -632.92968700 0.57100642 0.00001581 0.06246239 

0.08048201 0.58272207 -632.25732400 0.00001182 -0.10817945 

0.00000000 0.00000000 0.00000000 -577.15356400 0.31324500 

0.00000000 0.06245881 -0.10818154 0.27342641 -577.32324200 

Table-5W 

Configurations used for the excited 2P03/2 state used in the present Ca9+. 

The numbers below the configuration give their weights. 

2P03/2 2P53p2(3P) 2P53s(5P)3d 2P53p2(1D) 2P53s(1P)3d 2P53s2 

2P53s2 0.00000109 -0.01662077 0.00000083 -0.00412944 0.99985313 

2P53s(1P)3d -0.00066595 -0.496544645 -0.00087946 -0.86792880 -0.01183877 

2P53s2(3P)3d 0.00118109 -086785078 0.00156144 0.49666768 -0.01237518 

2P53p2(3P) -0.79404575 0.00000692 0.60785764 -0.00001064 0.00000043 

2P53p2(1D) -0.60785562 -0.00115134 -079404432 0.00192982 -0.00000984 

Table-6H 

Hamiltonian Matrix (Hij) for the excited 2P03/2 state used in the present calculation for SC10+. 

-711.51660200 0.07833117 0.08804017 -0.00003385 0.00000000 

0.07837862 -705.66406200 0.61382544 0.00001628 0.05911724 

0.08803529 0.62866116 -704.93994100 0.00001161 -0.10238647 

0.00000000 0.00000000 0.00000000 -6.33.26684600 0.33818829 

0.00000000 0.05911407 -0.10238832 0.27528161 -633.44921900 

Table-6W 

Configurations used for the excited 2P03/2 state used in the present SC10+. 

The numbers below the configuration give their weights. 

2P03/2 2P53p2(3P) 2P53s(5P)3d 2P53p2(1D) 2P53s(1P)3d 2P53s2 

2P53s2 0.00000082 -0.01663761 0.00000037 -0.00441737 0.99985218 

2P53s(1P)3d -0.00048778 -0.49618924 -0.00064226 -0.86813003 -0.01209203 

2P53s2(3P)3d 0.00086146 -0.86805487 0.00113545 0.49631554 -0.01225175 

2P53p2(3P) -0.79375005 0.00000421 0.60824430 -0.00000642 0.00000047 

2P53p2(1D) -0.60824376 -0.00083703 -0.79374856 0.00140750 -0.00000691 

Table-7 

Table for Fij [contribution to the Oscillator Strengths from Individual configuration] Obtained from equation 

3.48. 

Ca9+  Sc10+  

FijI FijV FijI FijV 

-0.15498E+00 -0.14666E+00 -0.15343E+00 -0.14556E+00 

-0.72494E-02 -0.10384E-00 -074978E-02 -0.10594E-01 

-0.13115E-01 -0.18786E-01 -0.13138E-01 -0.18563E-01 
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0.14157E-02 -0.24730E-03 0.16842E-02 -0.35274E-03 

-0.19828E-04 0.760867E-05 -0.22615E-04 0.86744E-05 

-0.18385E-07 -0.32114E-08 -0.15387E-07 -0.3225E-08 

-0.40959E-02 0.71545E-03 -0.49360E-02 0.10338E-02 

-0.34592E-04 0.13274E-04 -0.38712E-04 0.14849E-04 

0.53190E-07 0.92910E-08 0.45094E-07 0.94442E-08 

-0.21809E+00 -0.20844E+00 -0.21580E+00 -0.20698E+00 

-0.99971E-02 -0.14464E-01 -0.10298E-01 -0.14710E-01 

-0.18100E-01 -0.26187E-01 -0.18072E-01 -0.25816E-01 

0.19923E-02 -0.35148E-03 0.23689E-02 -0.50160E-03 

-0.27343E-04 0.10597E-04 -31060E-04 0.12045E-04 

-0.25322E-07 -0.44673E-08 -0.21145E-07 -0.44774E-08 

-0.57637E-02 0.10168E-02 -0.69423E-02 0.14700E-02 

-0.47741E-04 0.18503E-04 -0.53249E-04 0.20650E-04 

0.73259E-07 0.12924E-07 0.61970E-07 0.13122E-07 

Table-8 

Oscillator Strengths (fL and fV) and transition probabilities (AL and AV) for the inner-shell excitation 1s22s22p63s 
2Se1/2 →1s22s22p53s2 2P01/2 transition in the sodium isoelectronic sequence 

 HF CI 

Syste

m 

fL fV AL AV fL fV AL AV 

Ca9+ 0.240288

E-01 

0.215148

E-01 

0.126783E+

12 

0.113496E+

12 

0.317136

E-01 

0.307436

E-01 

0.167278E+

12 

0.162459E+

12 

SC10+ 0.235478

E-01 

0.211989

E-01 

0.165887E+

12 

0.149428E+

12 

0.344648

E-01 

0.302888

E-01 

0.221878E+

12 

0.213514E+

12 

Table-9 

Oscillator Strengths (fL and fV) and transition probabilities (AL and AV) for the inner-shell excitation 1s22s22p63s 
2Se1/2 →1s22s22p53s2 2P03/2 transition in the sodium isoelectronic sequence 

 HF CI 

Syste

m 

fL fV AL AV fL fV AL AV 

Ca9+ 0.475864

E-01 

0.434604

E-01 

0.123016E+

12 

0.112863E+

12 

0.625478

E-01 

0.616988

E-01 

0.161635E+

12 

0.159816E+

12 

SC10+ 0.465826

E-01 

0.438616

E-01 

0.160687E+

12 

0.147865E+

12 

0.619457

E-01 

0.667659

E-01 

0.218554E+

12 

0.269589E+

12 
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