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ABSTRACT 

A theoretical study for forming self-trapping solitons in the nonlinear medium 

using the entire transverse spatial characteristics of the intense beam is analysed. 

Using the nonlinear Schrödinger equation (NLSE) as the basic equation, 

conditions for self-action like self-trapping for different types of expressions 

nonlinearity in various nonlinear mediums are derived using the nonparaxial 

approach in other media. The results obtained for self-guided beam formation are 

compared with well-known paraxial theory, providing insights for applications in 

optical communication and photonic devices. 

Keywords:  Nonlinear optics, Nonlinear Schrödinger equation, self-trapping, 

solitons. 

 

1. INTRODUCTION 

Self-focusing and self-trapping are significant in nonlinear optics, with applications ranging from optical 

communication to advanced photonic devices. 

Self-trapping is a fascinating phenomenon in nonlinear media, where an intense beam maintains its shape 

while propagating through a medium due to a balance between diffraction and nonlinearity. This balance 

allows the wave to localise in space, effectively "trapping" itself. It is observed in various nonlinear mediums 

like optical fibres, dielectric medium and plasma.[1-7] 

An electromagnetic beam can produce its own dielectric waveguide and propagate without spreading. This may 

occur in materials whose dielectric constant increases with field intensity but are pretty homogeneous in the 

absence of the electromagnetic wave. Such self-trapping in dielectric waveguide modes appears to be possible in 

intense laser. Such self-trapping in self-made waveguide modes, also known as solitons, are a manifestation of 

self-trapped light waves that maintain their shape during propagation in optical fibres[8-15]   

 A new approach using entire spatial characteristics, also known as the nonparaxial approach for nonlinear 

Schrodinger equation for intense electromagnetic beam wave propagation in plasma, is considered by dropping 

many approximations as used in the known paraxial approach[7,8,14].  
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2. DIELECTRIC CONSTANT  

The concept of an effective dielectric constant in the presence of a beam, particularly a high-intensity optical 

beam, arises from the nonlinear optical properties of a medium. In nonlinear optics, a material's refractive index 

depends on the intensity of the light passing through it, leading to a modification of the material's dielectric 

constant. The refractive index in a nonlinear medium can be expressed as: 

ε = εL + εNL˂(EE*˃)                                                         (1) 

Where εL is the linear refractive index, εNL is the nonlinear refractive index coefficient, and˂(EE*˃) is the average 

value of the intensity of the optical beam. 

Using Maxwell's equations for the electromagnetic field, the nonlinear Schrodinger equation for self-focusing 

using non - paraxial approximation method avoiding Taylor series expansion of dielectric constant and 

dropping various approximations as used in paraxial ray approximation is written as[17]  

𝑑2𝑓(𝑧)

𝑑𝑧2 =
2

𝜅2𝑟0
2𝑟2𝑓(𝑧)

−
1

𝜅2𝑟0
4𝑓3(𝑧)

−
𝑓(𝑧) ε𝑁𝐿

𝑟2𝜖𝐿
⋅ ⟨𝑬𝑬∗⟩                                (2) 

Where 

𝑑2𝑓(𝑧)

𝑑𝑧2
 

• represents the second derivative of the function f(z)) concerning z. 

• f(z)  represents the dimensionless beamwidth parameter of an optical beam along the propagation direction 

z. 

• 
2

𝜅2𝑟0
2𝑟2𝑓(𝑧)

−
1

𝜅2𝑟0
𝐴𝑓3(𝑧)

 

o These terms represent diffraction term which depends on several factors: 

o Characteristic scales related to the wave number and initial beam width or curvature. 

o r2 denotes a radial coordinate or some measure related to beam radius. 

o f(z) in the denominator suggests that this effect weakens as f(z) increases. 

• 
𝑓(𝑧) ε𝑁𝐿

𝑟2𝜖𝐿
⋅ ⟨𝑬𝑬∗⟩ 

This represents a nonlinear effect related to a self-focusing or defocusing process, such as a 

pondermotive relativistic, Kerr nonlinearity, 

• ε𝑁𝐿⟨𝑬𝑬∗⟩  

⟨EE∗⟩ is the time-averaged intensity of the electric field, E is the electric field vector and E∗ is its complex 

conjugate, which is responsible for variation in the nonlinear part of the dielectric constant. 
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3. SELF TRAPPING  

During the propagation of an intense laser beam in a nonlinear medium, the diffraction effect continuously 

competes with the focusing effect, governing the propagation characteristics of the beam and its dynamics.[1-8] 

Here, the condition under which an electromagnetic beam can produce its own dielectric waveguide and 

propagate without spreading is known as uniform waveguide propagation has been discussed[15] 

. Such self-trapping or diffraction-less propagation in dielectric waveguide mode is possible for intense laser 

beams where the dielectric constant depends on the beam's intensity. 

 

Figure 1. Self-trapping of the beam when convergence due to the dielectric effect is equal to the divergence due 

to the diffraction effect. The parallel lines show the self-generated uniform waveguide in a nonlinear medium. 

It can be explained by the following equation (2). One can conclude that when the diffraction divergence of the 

laser beam is precisely balanced by the focusing effect in the medium due to different types of nonlinear effects, 

the beam propagates in a self-trapped waveguide mode without convergence or divergence. 

Thus, for an initial plane wavefront of the beam, at z = 0, f = 1 r = 𝜌 This leads to a condition where the terms in 

the right-hand side of equation (2) cancel each other 

In this situation, the beam width of the laser does not change during propagation in the nonlinear medium. In 

other words, the beam propagates without convergence or divergence or in the self-trapped mode. 

[ρ2 = 𝑘2𝑟0
4 (

2

𝑘2𝑟0
2 − ε𝑁𝐿⟨𝐸𝐸∗⟩)]                      (3) 

On applying these conditions in equation (2), one  

ω𝑝ρ

𝑐
= (2𝑟0

2 − ρ2)1/2
ρ

𝑟0
2

[ε𝑁𝐿⟨𝑬𝑬∗⟩]−1/2                (4) 
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From the above equation for self-trapping, one can conclude that the normalised radius of the self-trapped 

beam( 
ω𝑝ρ

𝑐
)  depends on the nonlinear part of the dielectric constant of the medium, which is 

ε𝑁𝐿⟨𝑬𝑬∗⟩ developed due to intensity 𝑬𝑬∗ of the beam  

Some fundamental nonlinearities in plasma are as follows  

(i) Pondermotive nonlinearity in plasma 

The nonlinear part of the dielectric constant  for pondermotive nonlinearity 

ε𝑁𝐿  =
𝜔𝑝

2

𝜔2 [1 − exp [−
3𝑚

4𝑀
𝛼𝐸0

2𝑒𝑥𝑝 {−
𝑟2

𝑟0
2} ]]               (5) 

(ii) Collisional nonlinearity in plasma 

The nonlinear part of the dielectric constant  for collisional nonlinearity is given as  

 

              ε𝑁𝐿  =
𝜔𝑝

2

𝜔2 [1 − {
1

1+𝛼
𝐸𝐸∗

2

}

1−
𝑆

2

]                            (6) 

Where (a) For weakly ionised laboratory plasmas, where electron-neutral particle collision takes place, the 

collision parameter (s) value is found to be one, i.e. s = 1 

(b) In the case of electron-diatomic molecule collision, the value of s = 2 

(c) For the electron-ion collision process, s = - 3 

 

(iii) relativistic nonlinearity in plasma 

 

The nonlinear part of the dielectric constant  for pondermotive nonlinearities is given as 

ε𝑁𝐿  =
𝜔𝑝

2

𝜔2 [1 − {1 + 𝛼
𝐸𝐸∗

2
}

−
1

2
]                                       (7) 

(iv) Kerr nonlinearity in a dielectric medium 

The nonlinear part of the dielectric constant  for Kerr nonlinearity is given as 

ε𝑁𝐿  = ε𝑠 [1 − 𝑒𝑥𝑝 {−
𝜀2

𝜀𝑠
} < 𝐸𝐸 > ]     (8) 

4. WAVEGUIDE MODE PROPAGATION OF LASER BEAM: SOLITON FORMATION  

 

Using the self-trapping equation for a nonlinear medium (4 ) and different types of nonlinearity, the 

nonlinear part of dielectric constant, as mentioned in equations (5 to 8), different equations for self-

trapped radius for rays incoming into a nonlinear medium.  
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ω𝑝ρ

𝑐
= (2𝑟0

2 − ρ2)1/2
ρ
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                (9) 

Where 
𝛚𝒑𝛒

𝒄
, is a normalised self-trapped radius of an intense beam in pondermotive nonlinear plasma. and  

3𝑚

4𝑀
𝛼𝐸0

2 , is the intensity parameter, which is the function of the intensity of the incident beam. 

For different initial sizes ( ρ) , the trapped radius has been calculated numerically using the nonparaxial 

approach  for different values of intensity parameter  and plotted as given below 

 

                        Figure(2) 
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 Many other methods based on different approaches, like the moment method based on the invariants of 

nonlinear Schrödinger equation (NLSE) such as moment method developed initially by Vlasov et al. [10] and 

later generalised by Lam as well as the variation method of Anderson[16] has proved to be quite helpful in 

estimating the self-focusing effect. These methods are supposed to be equivalent to a corrected paraxial theory 

because they intrinsically take care of the approximations. 

The equation for self-trapped radius calculated by variational method[16] is given as 

ω𝑝ρ

𝑐
= [[{−

𝛽𝐸0
2

𝐸(𝛽𝐸0
2) + exp(−𝛽𝐸0

2) − 1
} ]]

1/2

                                                         (10) 

 

From the paraxial approximation method, the self-trapped radius (21) is written as 

ω𝑝ρ

𝑐
= {

exp(0.5𝛽𝐸0
2)

𝐸(0.5𝛽𝐸0
2)

}                                              (11) 

The variation of the dimensionless normalised self-trapped radius with intensity parameter is plotted for 

present analysis and for variational method with paraxial ray method as shown in figure(3)  

 

Figure (3) 
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 The decadence of normalised self-trapped radius for pondermotive nonlinearity on intensity parameter. Curve 

(A) for the present nonparaxial approach, Curve(B) for the variational method And Curve( C) for the paraxial 

approximation method 

5. CONCLUSION 

Considering the entire spatial part of the incoming laser beam for self-actions, such as self-focusing self-

trapping in a nonlinear medium, the present nonaxial approach provides exciting results. Other methods are 

supposed to be equivalent to a corrected paraxial theory because they intrinsically take care of the 

approximations. The fact that the results for self-trapping, like the present analysis, predict a self-made 

waveguide is reasonably consistent with the values estimated by moments, variational theory and numerical 

calculations, makes the present study also interesting. Higher intensity values show that the medium behaves 

like a self-guided wave guide known as soliton formation in a dielectric medium mainly used in optical 

communication. Optical fibres are used to transmit information over long distances with minimal signal 

degradation. The stable, localised nature of solitons helps maintain the data's integrity. Self-trapping of plasma 

waves can lead to the formation of stable structures in plasmas, which are essential for understanding wave 

propagation and energy transfer in space and laboratory plasmas. 
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