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ABSTRACT 

Self-focusing actions have central importance for most nonlinear optical effects. The critical power for self-

focusing is commonly theoretically without considering a material's absorption. This paper aims to 

comprehensively review the critical power of intense laser beams in nonlinear media—numerical results based 

on the nonlinear wave equation. The critical power is a key parameter in nonlinear optics that determines when 

significant nonlinear effects occur using the nonlinear Schrodinger equation(NLSE), which is the fundamental 

equation of nonlinear optics, a nonparaxial approach is used for the mathematical formulation of critical power 

by dropping many approximations. Critical power is numerically calculated without any series expansion and 

compared with the result obtained by the popular paraxial approach.  

Keywords:  Nonlinear Optics, Nonlinear Schrödinger Equation, Self-Trapping, Solitons. 

 

1. INTRODUCTION 

Lasers have revolutionized numerous scientific and industrial fields, from telecommunications to medical 

imaging. One critical aspect of laser technology is the behaviour of intense laser beams when they propagate 

through nonlinear media like plasma, dielectric medium and fiber[1-5]. Nonlinear optics, a field that explores 

how light interacts with matter in ways that depend on the light intensity, is known as self-action. Among these 

phenomena, the concept of critical power holds particular importance. The critical power of a laser beam is the 

threshold at which the nonlinear effects become pronounced, leading to various optical phenomena such as self-

focusing, self-phase modulation, and filamentation. Understanding and controlling this critical power is 

essential for optimizing the performance of laser systems in various applications. 

This paper aims to comprehensively review the critical power of intense laser beams in nonlinear media. It will 

cover the fundamental principles of nonlinear optics and explore the mathematical formulations of critical 

power for paraxial and new nonparaxial method. A new approach that considers the entire spatial propagation 

of laser beams in a medium for calculating critical power is used. 

Furthermore, in this paper, a comparative study is performed. This exploration seeks to elucidate the pivotal role 

of critical power in advancing laser technology and its applications. 

http://www.ijsrst.com/
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2. FUNDAMENTAL EQUATION OF INTENSE LASER BEAM IN NONLINEAR MEDIUM 

The present paper for steady-state self-action assumes that nonlinearity does not depend on time, so the moving 

focus phenomena [19] are excluded when the steady state self focusing equation is used. 

(i) The nonlinear Schrodinger equation 

Maxwell's equations are basic equations for electromagnetic fields. Using these, the wave equation for the 

electric field (E) is written as a beam width parameter differential equation for self-focusing: 

Wave equation governing the electric vector (E) of the propagating beam in the nonlinear medium can easily be 

obtained by solving Maxwell's equations and may be written [1-4] 

∇2𝐸 −
𝜀

𝑐2

∂2𝐸

∂𝑡2 = 0          (1) 

Where ε is the effective dielectric constant of a nonlinear medium. 

Which can be written as 

ε = εL + εNL˂(EE*˃)                               (2) 

Where εL is the linear refractive index, εNL is the nonlinear refractive index coefficient, and˂(EE*˃) is the average 

value of the intensity of the optical beam. For an azimuthally symmetric beam, the wave equation is written as 

𝜕2𝐸

𝜕𝑟2 +
1

𝑟

∂𝐸

𝜕r
+

𝜕2𝐸

𝜕𝑧2 = (𝜖L + 𝜖𝑁𝐿)
𝜕2𝐸

𝜕𝑡2             (3) 

The general solution of the above equation is given as 

[E = A(r, z) exp{i[κz − ωt]}]           (4) 

 Where  k is the wave propagation constant of the beam 

 k=
𝜔√𝜖L

𝑐
             (5) 

and complex amplitude 

A(r,z)=A0(r,z) exp(-ikS(r,z))         (6) 

the equation of propagating in the medium is written as 

2ik
∂𝐴

𝜕z
+ (

∂2A

∂r2 +
1

r

∂A

∂r
) +

𝜕2𝐸

𝜕𝑧2 =k2A-
𝜖L𝜔2

𝑐2 𝐴 −
𝜖NL𝜔2

𝑐2 𝐴      (7) 
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The above equation is parabolic and primarily used in open optical resonators[21]. Using equation (5), we can 

rewrite  

−2 (
∂𝑆

∂𝑧
) + (

𝜕𝑆

𝜕𝑟
)

2
=

1

𝑘2𝐴0
(

∂2𝐴0

∂𝑧2 +
1

𝑟
(

∂𝐴0

∂𝑟
)) + (

𝜖𝑁𝐿

𝜖𝐿
)         (8) 

The wave eikonal S is given as 

S=
𝑟2

2
𝛽(𝑧) + ∅(𝑧)                                (9) 

And 

𝛽(𝑧) =
1

𝑓

𝑑𝑓

𝑑𝑧
                          (10) 

where f(z) is known as the dimensionless beam width parameter, which is associated with the beam's self-

focusing behaviour within the medium during propagation in the z-direction. 

Let us consider the initial intensity distribution of the laser beam at the vacuum-nonlinear medium interface 

(i.e. z =0) along the radial direction is of Gaussian form, which is in a practical situation and given as 

𝐴0
2(𝑟, 𝑧) = 𝐸0

2𝑒𝑥𝑝 − (
𝑟2

𝑟0
2)                            (11) 

The laser beam is propagating along the z-direction in the nonlinear medium, and its intensity distribution in 

the medium at any axial distance, z, may be given by 

𝐴0
2 (𝑟,  𝑧)  =

𝐸0
2

(𝑓2 (𝑧)) 
 𝑒𝑥𝑝  −   (

𝑟2

𝑟0
2

1

𝑓2 (𝑧)
)                (12) 

where r0f(z) represents the beam's spot size at any axial distance z. 

Using equations (8) and (11), the diffraction term is calculated 

𝑟2

𝑘2𝑟0
2

1

𝑓4 (𝑧)
 − 

1

𝑘2𝑟0
2

1

𝑓2 (𝑧)
                                    (13) 

 The equation simplifies 

𝑑2𝑓(𝑧)

𝑑𝑧2 =
2

𝜅2𝑟0
2𝑟2𝑓(𝑧)

−
1

𝜅2𝑟0
4𝑓3(𝑧)

−
𝑓(𝑧) ε𝑁𝐿

𝑟2𝜖𝐿
⋅ ⟨𝑬𝑬∗⟩           (14) 

This equation (14)represents the self-generated lens effect equation for the nonparaxial approach. The entire 

spatial beam, including the paraxial and peripheral portions of the axially peaked laser beam, has been 

considered for the study of the self-generated lens effect.  
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In this theory, the nonlinear part of the dielectric constant is not expanded in series form, and its termination up 

to a specific limit is avoided because these approximations are somewhat restrictive and limit the theory's 

applicability to many real-life situations.  

The main features of  the above equation  are given as 

(1) The equation is a second-order differential equation for the dimensionless beam width parameter f  

(2). During the derivation of the above equation, paraxial approximations are dropped to be used for the spatial 

characteristics of the propagating beam in a nonlinear medium. 

(3) It defines the beam dynamics and can be used to study the self-focusing of the beam with arbitrary cross-

section in all types of nonlinear medium. 

(4) The First two terms of the right hand side (RHS) are responsible for the diffraction divergence effect while 

the third term corresponds to the convergence effect due to the beam's nonlinear refraction. 

(5) The self-trapping condition can be obtained by Combining the refraction and diffraction terms. 

3. SELF TRAPPING CONDITION  

During the propagation of an intense laser beam in a nonlinear medium, the diffraction effect continuously 

competes with the focusing effect, governing the propagation characteristics of the beam and its dynamics. 

 A condition under which an electromagnetic beam can produce its dielectric waveguide and propagate without 

spreading, known as uniform waveguide propagation, has been discussed. This phenomenon is known as self-

trapping or diffractionless propagation. 

 In dielectric waveguide mode, it appears possible for an intense laser beam where the dielectric constant 

depends on the beam's intensity. 

Following equation (14), one can conclude that when the diffraction divergence of the laser beam is precisely 

balanced by the focusing effect in the medium due to different types of nonlinear effects, the beam propagates in 

a self-trapped waveguide mode without convergence or divergence. 

Thus, for an initial plane wavefront of the beam, and hence  

𝑑2𝑓(𝑧)

𝑑𝑧2   = 0 at z = 0 f = 1 r = 𝜌 as well as 
𝑑𝑓(𝑧)

𝑑𝑧
 = 0 This leads to a condition where the terms on the right-hand side 

of equation (14) cancel each other. 

 In this situation, the beam width of the laser does not change during propagation in the nonlinear medium. In 

other words, the beam propagates without convergence or divergence or in the self-trapped mode. 

On applying these conditions in equation (14), one obtains 
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2

𝜅2𝑟0
2𝜌2 −

1

𝜅2𝑟0
4 −

 ε𝑁𝐿

𝜌2𝜖𝐿
⋅ ⟨𝑬𝑬∗⟩  = 0                (15) 

Finally, one gets a self-trapped equation. 

Ω𝑝ρ

𝑐
= (2𝑟0

2 − ρ2)1/2 ρ

𝑟0
2 [ε𝑁𝐿⟨𝑬𝑬∗⟩]−1/2                (16) 

This equation is valid for all types of plasma and dielectric medium nonlinearities. Compared to many popular 

paraxial ray methods 

4. CRITICAL POWER 

The critical power of beam Pcr is a vital parameter in self-focusing problems. It is defined as the minimum power 

of the incident beam for which it propagates in a nonlinear medium without converging or diverging, i.e. in 

uniform waveguide mode. In general, the minimum power of the incident beam is required to create a self-

focused channel.[1-10] 

We have considered a Gaussian beam propagating in the medium. The axial (central) part of the beam having a 

higher intensity, should The axial (central) part of the beam having a higher intensity, should experience an 

extensive refractive index (εNL) than the edge for the medium with a positive value. Consequently, the plane 

wavefront of the wave is progressively more distorted and as the wave propagates in the medium, it bends 

towards the propagation axis. It undergoes focusing, and the medium behaves like a lens. The remaining portion 

of the medium where the beam is not interacting will have a dielectric constant approach. The critical angle 

related to total internal reflection (𝜃𝑐)        then 

𝜃𝑐
2 =

𝑛𝑁𝐿

 𝑛𝐿 
𝐸0

2        (17) 

 If 𝜃𝑐 is a critical angle and related with intensity 𝐸0
2 if  

Rays with 𝜃  > 𝜃𝑐  emerge to the outside, and rays with theta 𝜃 < 𝜃𝑐 theta return to the axis. However, the beam 

self-focuses only when the refraction effect is more effective than the diffraction. 

Similarly, because of Fraunhoffer diffraction, all the beam's power will not be carried by rays parallel to the 

propagation axis, but there will be a directional distribution of intensity in the medium.  

For a beam whose phase front at the entrance to the medium is plane, the angle of diffraction is given by 

𝜃𝑑 =
1.22𝜆

𝑟0𝑛𝐿
                      (18) 

Where 𝜆 is the wavelength of the wave in vacuum and r0 represents the initial size of the beam.  

In all nonlinear mediums, the diffraction effect and refraction effect also play an essential role in wave 

propagation and produce many interesting situations. 
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In a particular situation where  𝜃𝑑  = 𝜃𝑐, i.e. convergence due to the refraction effect is equal to the divergence 

of the beam due to the diffraction effect, the beam propagates any change in size. The dimensions and form of 

the beam remain unchanged during propagation in a nonlinear medium. This beam produces an optical 

waveguide in the medium by itself. The propagation mode of the beam is known as uniform waveguide mode 

[11-19] 

Using equations (17) and (18), one can write. 

 
𝑛𝑁𝐿

 𝑛𝐿 
𝐸0

2 =  ( 
1.22𝜆

4𝑟0𝑛𝐿 
)2                                              (19) 

 

For the Gaussian beam at z=0, the intensity distribution is written as  

E 2 = E0 2  exp (- r 2 / r02)    (20) 

 

By using the above two equations, one can  obtain the critical value of the electric field we  

𝐸0𝑐𝑟
2   =  

(1.22 λ)2

16 𝑟0
2 𝑛𝐿 𝑛𝑁𝐿

 𝑒𝑥𝑝  (  −
𝑟2

2

𝑟0
2  )             (21) 

 

where 𝐸0𝑐𝑟
2  square of the critical value of electric field amplitude and can be calculated using the self-trapping 

condition). Above the critical power level, the incident beam may be trapped at any arbitrary diameter and not 

spread unless some instability and related phenomena force it to do so. 

Thus, the critical power of the beam for electric field E0CR is given as 𝑃𝐶𝑅  (for new nonparaxial method) 

 

𝑃𝐶𝑅 =
𝑐

128
⋅

(1.22 𝜆)2

𝑛𝑁𝐿
exp (−

𝑟2

𝑟0
2)                      (22) 

 

For the paraxial approximation approach, the critical power can be written as  

𝑃𝐶𝑅 =
𝑐

128
⋅

(1.22 𝜆)2

𝑛𝑁𝐿
                             (23) 

 

Equation (22) shows that the critical power depends on the size of the incident beam and the critical value of 

the electric field amplitude 

There may be three possibilities for wave propagation  in the medium  

(i)  if the power of beam P > PCR 

1) The self-focusing effect is stronger than the diffraction, due to which the beam tends to focus at the 

axial point 

(ii) When the Power of the Beam is Less Than P < PCR  

2) If the power of the laser beam P is less than the critical power Pcr, the self-focusing effect will be 

weaker than the diffraction effect. Here's what happens in this regime: 

1. Predominant Diffraction: The natural tendency of the beam to spread due to diffraction will dominate 

over the nonlinear self-focusing effect. This means the beam will expand as it propagates through the 

medium. 
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2. Reduced Nonlinear Effects: The intensity-dependent nonlinear refractive index change will decrease, 

leading to a weaker modification of the beam's phase front. 

(iii) When the Power of the Beam is Less Than P = PCR  

it is the most useful condition, which is known as the self-trapped condition for this case[15-18] 

1. Balanced Self-Focusing and Diffraction: The nonlinear self-focusing effect exactly compensates for the 

natural diffraction of the beam. This creates a stable propagation regime known as the nonlinear focus. 

2. Formation of a Self-Trapped Beam (Soliton): In certain conditions, this balance can lead to the formation 

of a soliton, a self-trapped beam that maintains its shape and size over a long distance. Solitons occur 

when the nonlinear change in the refractive index precisely balances the spreading effect of diffraction. 

5. NUMERICAL CALCULATION  

For numerical calculation of critical power for the paraxial approach by equation(23) and nonparaxial 

approach for different types of nonlinearity by equation(24)with the help of the Runga-kutta analytical 

method and the following parameters  are used[23,24] 

𝜔p=2.5*1013 rad/sec, 𝜔=1.0*1014 rad/sec and r0=30 µm and tabulated  

For pondermotive nonlinearity is as follows 

Table 1 

Critical power(PCR)corresponding to different spatial positions of the incident beam cross-section 

considering pondermotive nonlinearity in plasma and its ratio to paraxial method value  

Spatial distance   

 in um            

Pcr 

 in kw 

Critical power ratio  

Pcrn/pcr*(paraxial) 

10 279.27 1.00 

15 321.13 1.15 

20 390.53 1.40 

25 502.38 1.80 

30 683.77 2.46 

For  relativistic nonlinearity in plasma 

Table 2 

Critical power(PCR)corresponding to different spatial positions of the incident beam cross-section 

considering  relativistic nonlinearity in plasma and its ratio to paraxial method value  

Spatial distance  in um            Pcr in kw Critical power ratio 

Pcrn/pcr*(paraxial) 

10 344.5 1.09 

15 379.8 1.20 
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20 456.6 1.44 

25 577.5 1.83 

30 775.3 2.57 

For Kerr nonlinearity in optical fiber 

Table 3 

Calculated values of Critical power(PCR) for step-index optical fiber filled with Kerr nonlinear medium at 

a different radial distance(r0) by using the entire spatial part of the beam method and its ratio to the 

value obtained by paraxial ray approximation .here Pcr*(paraxial) =9.34 kw [20] 

Radial  distance   

 in um            

Pcr 

 in kw(Non paraxial) 

Critical power ratio  

Pcrn/pcr*(paraxial) 

.01 9.34 1 

5 9.72 1.04 

10 10.96 1.17 

15 13.39 1.43 

20 17.71 1.89 

25 25.39 2.71 

6. DISCUSSION 

 The analysis results in Tables 1 to 03 show fascinating behaviours for critical power. For the near axis region 

where spatial distance value of critical power for the plasma medium as well optical fibre of specific parameters 

(used in the present numerical analysis and it compares nearly well with the paraxial approximation 

method[23,24], which indicates that the approach used in the present analysis is quite satisfactory. For higher 

axial distance values, the critical power increases for all types of medium, as shown in the tables. For the entire 

beam, the critical power obtained is nearly three times that of the paraxial approach, and it matches with 

experimental results [22] 

7. CONCLUSION 

The present hod for formulation, calculation and comparison for critical power of intense laser beam in all types 

of nonlinear medium, especially plasma and optical fibre, using entire spatial characteristics of incoming laser 

beam provides exciting results. The calculated value for this approach is much closer to the experimental results. 

Understanding this balance is crucial for effectively utilizing high-power lasers in various scientific and 

industrial applications. 
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