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 In this paper, we present the theory to find or calculate OOS. The optical 

oscillator strengths (f), of atoms and positive atomic ions is needed in 

astrophysics, atmospheric physics, laser physics, plasma physics, radiation 

physics, gas discharge, mass spectroscopy, space research, and fusion 

research. The most serious problem in fusion research with magnetically 

confined high-temperature plasmas (eg. Tokamaks) is caused by plasma 

impurities, eg., highly ionized metal atoms. It is, therefore vital to 

determine and reduce the impurity concentration. For this purpose, the 

values of f are required. The abundance of the chemical elements in the 

sun is of considerable interest because they contain information about the 

creation of the solar system term. 
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I. INTRODUCTION 

 

Our investigation shows that the inclusion of correlation is indispensable to obtain reliable results. From the 

survey of the literature, it is clear that neither experimental observations nor theoretical predictions for OSS are 

available for the inner-shell excitation transition, which leads to auto-ionization in P4+ ions. 

Recently, we1-9 have calculated the transition energies (E in atomic unit) and OSS of both length and 

velocity forms for several transitions like Li atom using the HF as well as CI wave functions for both initial and 

final states. In our earlier work, we have reported the excitation energies and oscillator strengths, of both length 

and velocity forma (fL and fv respectively), for the resonance transition and non-resonance transitionas in several 

ions of the sodium isoelectronic sequence. We have also calculated the E, fL, and fv values for several outer-shell 

transitions as well as the inner-shell excitation transition in P4 ion which leads to auto-ionization using non-
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relativistic HF and large Cl wavefunctions for both initial and final states involved in the transition. However, 

there is a considerable discrepancy between the length and velocity forms of the oscillator strengths. 

It is well known that the relativistic effects play an extremely important role in obtaining accurate results. 

Consequently, it is indispensable to incorporate the relativistic effects into the study of atomic structure in order 

to generate reliable results. In our earlier work we have calculated the oscillator strengths using the non-

relativistic Cl wavefunction. In this work we have taken into account the relativistic effects which may then be 

used to calculate transitions that are forbidden in purely L - S coupling. 

 

II. THEORY TO CALCULATE OOS 

 

Concerning the increasing accuracy of experimental data obtained from high-resolution techniques, it becomes 

really necessary to introduce relativistic effects into the reliable study of atomic structure. For this, there are so 

many methods but a general method of evaluating relativistic effects in atomic structure problems is described, 

which may be used to calculate transitions that are forbidden in purely L-S coupling 12-20. 

The relativistic corrections to the non-relativistic energy may be determined to order (Z)2 in terms of the 

Breit operator (HB) by first-order perturbation theory, Bethe and Salpeter21. That is these corrections are given as 

the expectation value of the Breit operator concerning the zero-order wave function 0 which satisfies 

𝐻00 = ∑ ℎ𝑖 + ∑
1

𝑟𝑖𝑗
𝑖<𝑗𝑖 0 = 𝐸00      (1) 

where, hi is a one electron Dirac operator and 𝛼 is the fine structure constant. Bethe and Salpeter point out 

that the further development of the perturbation treatment, in which the full Hamiltonian is taken as (H0+HB) 

leads to higher order corrections which are of the wrong order of magnitude. As a consequence, the use of the 

resulting Breit equation to determine the corresponding correction to the wave function is therefore unjustified. 

This point is emphasised by Detrich22 who develops an alternative perturbation formulism in which the 

relativistic energy corrections are not given in terms of an effective Hamiltonian HB. 

In the calculation of transition probabilities, it is not sufficient that the energy corrections are treated 

properly. The corrections to the wavefunction must also be included as well as possible. For fairly low value of Z 

the Pauli approximation is satisfactory. In this approximation the chief contribution to the fine structure splitting 

are the nuclear spin- orbit term and the spin-other-orbit and spin-spin-terms. If indeed the correct wavefunction 

is given as an eigenfunction of H0 and not of (H0+ HB), then in the Pauli approximation, one must determine the 

wavefunction as an eigenfunction of the non-relativistic Hamiltonian plus the nuclear spin- orbit operator. The 

spin other term should not be included. For low Z, all relativistic effects are small, but the nuclear spin-orbit and 

the spin other orbit terms are of comparable order of magnitude. It seems at best anomalous to determine the 

wavefunction by including one but not the other in the full Hamiltonian. 

Since relativistic efffects are small, they should have little in- fluencee on the form of the radial functions. 

The time consuming optimisation of these functions may thus be determined in a non-relativistic approximation. 

The corresponding relativistic corrections to transition probabilities have been derived from quantum 

electrodynamics by Drake23-24. He finds that in the Pauli approximation, the multipole matrix element should be 

evaluated between eigenfunctions of (H0 + HB) provided that only terms up to relative order (Z)2 are retained 

Higher-order powers of Z will necessarily be included in a variational treatment of (H0 + HB), but the errors 

should be small when Z is small. 

The many electron Dirac-Hamiltonian (HD) for an N-electron system is in atomic unit. 
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𝐻𝐷 = ∑ {𝑐2𝛽𝑖 + 𝛼𝑖[𝑐𝑃𝑖 + 𝐴(𝑟𝑖)] −(𝑟𝑖)}𝑁
𝑖=1 + ∑

1

𝑟𝑖𝑗
𝑖<𝑗    (2) 

where Pi is the momentum operator;  

(𝑟𝑖) and 𝐴(𝑟𝑖) denotes the scalar and vector potentials of the external electromagnetic field, respectively; 

c is the sped of light; rij = |ri - rj| is the distance between the i the j th electrons; ri = position vector of the ith 

electron and  are the Dirac matrices, written, respectively, in terms of the Pauli 2 x 2 matrices and the 2 x 2 unit 

matrix 

𝐼 =  (
𝑜 𝜎
𝜎 0

)
𝑖

 𝑎𝑛𝑑  𝛽 = (
𝐼 0
0 −𝐼

)      (3) 

𝜎1 = (
0 1
1 0

) ; 𝜎2 = (
0 −𝑖
𝑖 0

) ; 𝜎3 = (
1 0
0 −1

) , 𝐼 = (
1 0
0 1

)  (4) 

In the theory of atomic structure we are concerned with electrons interacting with each other as well as 

with an electromagnetic field. The Dirac theory is not sufficient. The most commonly used approximation for 

describing the relativistic interaction between electrons in an approximate way is the Breit Hamiltonian, Breit.25,26 

H = HD + HB       (5) 

where, 

𝐻𝐵 = −
1

2
∑

1

𝑟𝑖𝑗
(𝛼𝑖 . 𝛼𝑗)𝑖<𝑖 +

(𝛼𝑖𝑟𝑖𝑗)(𝛼𝑗𝑟𝑖𝑗)

𝑟𝑖𝑗
2      (6) 

The interaction, equation (5), is of the order (Z)2 relative to the Coulomb interaction and terms of higher 

order in (Z) are omitted. 

Provided that the velocities of the electrons in the system are sufficiently low that terms of orders higher 

than (2Z2) may be neglected the Breit Hamiltonian for the case where there is no external field becomes  

HBP = HNR + HR        (7) 

where 

 𝐻𝑁𝑅 = −
1

2
∑ ∇i

2 − Z ∑
1

ri
+ ∑

1

rij
i<𝑗

N
i=1

𝑁
𝑖=1     (8) 

is the non-relativistic Hamiltonian and  

HR = HSO + Hmass + 𝐻𝐷1
 + HSOO + HSS + HOO + 𝐻𝐷2

 + HSSC   (9) 

is the relativistic correction. HBP is the Breit-Pauli Hamiltonian for low Z [Z < < 137} 

For derivation of the Breit-Pauli Hamiltonian we refer the reader to Bethe and Salpeter21, Slater28, Iroh29, 

Akhiezer and Berestetky30, and Amstrong and Feneuille.31 

𝐻𝑆𝑂 =
𝛼2𝑍

2
∑

1

𝑟𝑖
3

𝑁
𝑖=1 (𝐼𝑖. 𝑆𝑖)      (10) 

represents the one-body spin interaction of each electron's magnetic moment with the magnetic field 

arising from the electron's own motion in the Coulomb field of the nucleus; 

𝐻𝑚𝑎𝑠𝑠 = −
𝛼2

8
∑ ∇i

4𝑁
𝑖=1         (11) 

is the relativistic mass correction; 

𝐻𝐷1
= −

𝛼2𝑧

8
∑ ∇i

2 (
1

ri
)𝑁

𝑖=1         (12) 

is the one body Darwin term; the relativistic correction to the potential energy; 

𝐻𝑆𝑂𝑂 = −
𝛼2

2
∑ (

𝑟𝑖𝑗

𝑟𝑖𝑗
3 × 𝑃𝑖) . (𝑆𝑖 + 2𝑆𝑗)𝑖≠𝑗      (13) 

represents the spin other orbit interaction and is made up of two parts. 

The first one, containing the factor Si, is the spin-orbit coupling of electron i in the Coulomb field of 

electron j.  
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The second, with the factors 2sj comes from the interaction of the spin magnetic moment of electron j with 

the orbital current of electron i; 

𝐻𝑆𝑆 = 𝛼2 ∑
1

𝑟𝑖𝑗
3 (𝑆𝑖. 𝑆𝑗)𝑖<𝑗 − 3

(𝑆𝑖.𝑆𝑖𝑗)(𝑆𝑗.𝑆𝑖𝑗)

𝑟𝑖𝑗
2      (14) 

is the ordinary dipole interaction of the spin magnetic moments of two electrons32-33;  

𝐻00 = −
𝛼2

2
∑ {

𝑃𝑖𝑃𝑗

𝑟𝑖𝑗
+

𝑟𝑖𝑗(𝑟𝑖𝑗.𝑃𝑖).𝑃𝑗

𝑟𝑖𝑗
3 }𝑖<𝑗       (15) 

is the orbit-orbit interaction 

𝐻𝐷2
=

𝛼2

4
∑ ∇i

2
𝑖<𝑗 (

1

𝑟𝑖𝑗
)      (16). 

is the two-body Darwin term; the relativistic correction to the potential energy. 

𝐻𝑆𝑆𝐶 = −
8𝜋𝛼2

3
∑ (𝑠𝑖 . 𝑠𝑗)𝛿(𝑟𝑖. 𝑟𝑗)𝑖<𝑗     (17) 

is the electron-spin-contact term. 

we can re-write equation (7) as 

HBP = non fine structure + fine structure     (18) 

where, 

non fine structre = HNR + Hmass+ 𝐻𝐷1
 + HOO + 𝐻𝐷2

 + HSCC    (19) 

and, 

 Fine structure = HSO + HSOO + HSS    (20) 

The non-fine structure interactions commute with S2, SZ, L2 and LZ can therefore be considered in the 

|LSMLMS> representation. 

The fine-structure interactions only commute with L2; S2, J2 and Jz where J and Jz are the total angular 

momentum and its azimuuthal component, respectively. For these we use the |LSJMj> representation. 

J-dependent CI expansion takes the form  

(𝐽, 𝑀𝐽) = ∑ 𝑎𝑗𝑗(𝛼𝑗𝐿𝑗𝑆𝑗𝐽𝑀𝑗)𝑗        (21) 

where {i} denotes a set of single configuration wavefunctions, j defines the coupling of the angular 

momenta of the electrons, 

J = L + S         (22) 

for each j, and {aj) are determined as the components of the appropriate eigenvector of the Hamiltonian 

matrix with basis {j}. The Hamiltonian consists of the usual non-relativistic terms plus the relativistic corrections. 

The Hamiltonian matrix with typical element is  

Hij = < i |H|j>       (23) 

Once we have the J-independent and J-dependent CI wave functions, we can calculate the oscillator 

strengths. 
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