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OOS (Optical Oscillator Strengths) provides confidence about the 

reliability of the wavefunctions that are employed in the matrix elements. 

Ridder and Schneider1, Peterson et al.2,3 and Dahl et al. have studied 

several transitions in P4+ ions of the sodium isoelectric sequence in ion-

atom collision experiments. In this paper, we have carried out a study of 

oscillator strengths (fl and fv) and transition probabilities (al and av) for the 

inner-shell excitation 1s22s22p63s 2se1/2 →1s22s22p53s2 2p01/2 transition in the 

sodium isoelectronic sequence. 
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I. INTRODUCTION 

 

After the beginning of computational quantum chemistry1-10, the description of electronic structure based on 

the Hartree Fock (HF) approximation still forms the basis of most theoretical approaches. The number of 

problems that one may solve performing Hartree-Fock calculations is rather limited. Excited states, transition 

states, and many atomic, molecular, and ionic properties are not adequately described by a single-determinant 

Hartree-Fock function. Even ground states of atoms and molecules may require Hartree-Fock treatment not 

only for a quantitative but sometimes even for a qualitatively correct description. For such hard cases, the 

concept of correlation energy, defined as the difference between the exact energy from the non-relativistic 

Shroedinger equation and the Hartree-Fock energy, is not useful because the single determinant HF model is no 

longer adequate as the zeroth-order solution. Despite great efforts to develop the many-body theory, 

configuration-interaction (CI) is the most frequently used for Hartree-Fock calculations. We have also 

performed theoretical calculations of the threshold energy and dimensionless absorption optical oscillator 

strengths (OOS), of both the length and velocity forms (fL and fv respectively), for the electric dipole-allowed 

resonance excitation in the same ions as mentioned above using the configuration interaction wave functions 

for the 2Se and 2P0 states involved in the transition matrix elements. 

http://www.ijsrst.com/
mailto:shiv.sahay2004@gmail.com
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II. OSCILLATOR STRENGHTS  

In order to obtain formulae for transition probabilities, we must begin with the time-dependent Schrodinger 

equation 

𝐻 = 𝑖ℎ


𝑡
          (1) 

where the Hamiltonian H contains not  only the electrostatic interaction, but, because of the radiation 

field involved, it also contains electromagnetic corrections which, for one-electron systems, have the form 

(e/mc) A.P. Here, A is the vector potential associated with the electromagnetic field, and P is the momentum of 

the electron11-16.  

The wave function is then expanded in terms of the stationary-state wave functions {n}, with energies 

{En}. 

 = ∑ 𝑐𝑛(𝑡)𝑒𝑥𝑝𝑛 (−
𝑖

ℎ
𝐸𝑛𝑡)𝑛      (2) 

where the sum includes as integration over the continuum. If the atom is in state |i > at time t = 0, then 

(ci (0) = 0 for ni. If the velocity potential is expanded in a Fourier series of plane waves of the form A0cos(wt- 

k.r.), then first-order perturbation theory gives, for absorption in one-electron atoms.  
1

𝑡
|𝑐𝑗(𝑡)|

2
=

2𝜋

3

𝑐2

ℎ2𝑗𝑖
2 |< 𝑗|

𝑒

𝑚𝑐
𝑃𝑒𝑥𝑝 (𝑖𝑘. 𝑟)|𝑖 > |2(𝑗𝑖)    (3) 

= 𝐵𝑖𝑗(𝑗𝑖)         (4) 

where hji = Ej - Ei        (5) 

Bij is the Einstein coefficient for absorption, and (ij) is the energy density per unit frequency range. 

The absorption Oscillator strength fij is related to the Einstein coefficient by 

𝑓𝑖𝑗 =
𝑚

𝜋𝑒2 ℎ𝑗𝑖𝐵𝑖𝑗         (6) 

thus retaining the usual convention that absorption oscillator strengths are positive. 

The magnitude of wave vector k is k = 2/. Hence for wavelengths large compared with the size of the 

atom, k.r << 1, and the expansion  

exp(𝑖𝑘. 𝑟) = 1 + 𝑖𝑘. 𝑟 +
1

2!
(𝑖𝑘. 𝑟)2 + ⋯       (7) 

will converge rapidly. The use of the first leading term of equation (7) constitutes the dipole 

approximation of the multipole expansion. Also,  
𝑖ℏ

𝑚
𝑝 ≡ 𝑖ℏ𝑟̇ ≡ [𝑟, 𝐻0]        (8) 

whenever the matrix elements of these operators are being taken with respect to exact eigenfunctions 

of HO, the electrostatic part of the Hamiltonian. Hence the matrix element within the dipole approximation can 

be expressed as 

< 𝑗 |
𝑒

𝑚𝑐
𝑝| 𝑖 >=

𝑖𝑒

ℏ𝑐
𝑗|𝐻0𝑟 − 𝑟𝐻0|𝑖 >=

𝑖

ℏ𝑐
(𝐸𝑗 − 𝐸𝑖) < 𝑗|𝑒𝑟| >   (9) 

Hence we have two equivalent forms for the absorption oscillator strength: 

𝑓𝑖𝑗
1 =

2𝑚

3ℏ2 (𝐸𝑗 − 𝐸𝑖)|< 𝑗|𝑟|𝑖 > |2       (10) 

𝑓𝑖𝑗
𝑣 =

2

3

1

𝑚

1

(𝐸𝑗−𝐸𝑖)
|< 𝑗|𝑝|𝑖 > |2       (11) 

These are the length and velocity forms respectively. The identities (11) may be applied to r instead of r, 

and in this way an acceleration form may be derived: 

fij
a =

2

3

ℏ2

m

1

(Ej−Ei)
3 |< 𝑗|∇V |i > |2 =

2

3

z2e4ℏ2

m(Ej−Ei)
3| < 𝑗 |

1

r3 r⃗| i > |2    (12) 

where V is the electrostatic potential energy.  
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So far, we have assumed that the levels i and j are non-degenerate. If level j is degenerate, with different 

states being distinguished by the (2Jj+1) parameters mj, then there are several 'Channels' open for the transition. 

The total absorption oscillator strength (length form) is then 

𝑓𝑖𝑗
1 =

2

3

𝑚

ℏ2 (𝐸𝑗 − 𝐸𝑖) ∑ |< 𝑗𝑚𝑗|𝑟|𝑖 > |2
𝑚𝑗

      (13) 

The level i may also be degenerate, with different states distinguished by mi. It is then convenient to 

introduce the line strength Sij, whose length form is defined by 

𝑆𝑖𝑗
1 = 𝑆𝑗𝑖

1 = ∑ |< 𝑗𝑚𝑗|𝑒𝑟|𝑖𝑚𝑖 > |2
𝑚𝑖𝑚𝑗

     (14) 

= ∑ |< 𝑗𝑚𝑗|𝑒𝑟 [
4𝜋

3
]

1/2
𝑌1𝜇|𝑖𝑚𝑖 >|2

𝑚𝑖𝑚𝑗𝜇     (15) 

where {Y1m} are normalized spherical harmonics. Now, according to the Wigner-Eckart theorem 17-22, 

the m dependence of the matrix element in (15) is contained in the Clebsch-Gordan coefficient C (JilJj; mi𝜇mj), 

for which 

∑ |𝐶(𝐽𝑖𝑙𝐽𝑖; 𝑚𝑖𝜇𝑚𝑗)|2
𝑚𝑗𝜇  =      (16) 

Thus the sum over mi in (15) contains gi = (2ji+1) equal contributions, where gi is the statistical weight 

of level i. Then (16) may be written 

𝑓𝑖𝑗
1 =

2

3

𝑚

𝑒2ℏ2 (𝐸𝑗 − 𝐸𝑖)
𝑆𝑖𝑗

𝑙

𝑔𝑖
        (17) 

with similar expression for velocity and acceleration forms. 

The above formulation assumes a single-electron atom. In the calculations was shall be discussing, we 

shall be concerned with N-electron atoms, and for them we make the replacements 

𝑟 → ∑ 𝑟𝑘 , 𝑃 →𝑁
𝑘=1 ∑ 𝑃𝑘 ,

1

𝑟3 𝑟 → ∑
1

𝑟𝑘
3 𝑖𝑘

′𝑁
𝑘=1

𝑁
𝑘=1       (18) 

in (15) - (16) although the third of these replacements follows from (18) only since  

∑ ∇k
𝑁
𝑘=1 (∑

1

𝑟𝑖𝑗
𝑖<𝑗 ) = ∑ (∇i + ∇j)

1

𝑟𝑖𝑗
= 0𝑖<𝑗       (19) 

In jj or intermediate coupling, (19) holds with gi = (2Ji+1). For LS coupling (with which we shall be 

mainly concerned), the form of (19) continues to hold with gi = (2Li + 1) (2Si + 1), the degeneracy of the 

multiplet, while Sij, the multiplet strength is given by 

𝑆𝑖𝑗
1 = ∑ |< 𝐿𝑗𝑆𝑗𝑀𝐿𝑗

𝑀𝑆𝑗
| |∑ 𝑒𝑟𝑘

𝑁
𝑘=1 |𝑀𝐿𝑗𝑀𝑆𝑖

𝑀𝐿𝑖𝑀𝑆𝑗

𝐿𝑖𝑆𝑖𝑀𝐿𝑖
𝑀𝑆𝑖

> |2    (20) 

Thus, the emission of radiation resulting in an atom de-exciting can be spontaneous (for which the 

transition rate depends only on the population of the upper level) or induced [for which the transition rate also 

depends upon the density  (ij)]. 

The Einstein coefficients for these emission processes, respectively Aji, Bji, satisfy 

𝐴𝑗𝑖 =
8𝜋𝑗𝑖

2

𝑐3 (𝐸𝑗 − 𝐸𝑖)𝐵𝑗𝑖       (21) 

and, 

giBij = gjBji        (22) 

Then the absorption oscillator strength is related to the (emission) transition probability by 

𝑓𝑖𝑗 =
𝑚𝑐

8𝜋2𝑒2 𝑗𝑖
2 𝑔𝑗

𝑔𝑖
𝐴𝑗𝑖         (23) 

where ji = c/ji is the wavelength of the transition. (Note that Aji, although termed simply 'transition 

probability' has units [T]-1. The absorption and emission oscillator strengths are related by 

gifij = - gjfji        (24) 

gifij + gjfji = 0        
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To compare the contributions to the oscillator strengths from individual configurations, it is convenient 

to define the length form 

Fij = (
2∆E

3gi
)

½
aibji

|r⃗|
j
       (25) 

The value of Fij are given in table (with an equivalent expression for the velocity form) in terms of the 

CI wavefunctions of the two states involved in the transition: 

𝑖 = ∑ aii𝑖           (26) 


j

= ∑ bjj𝑗           (27) 

Then, in either form, the electric dipole oscillator strength is 

𝑓 = (∑ ∑ 𝐹𝑖𝑗𝑗𝑖 )
2
        (28) 

General expression for the transition probability of the 2-pole radiation emission from state |i > to state 

|j > is  

𝐴𝑖𝑗 =
2(+1)

(2+1)[(2−1)‼]2

1

𝑔𝑖
(

𝐸𝑖−𝐸𝑗

ℏ𝑐
)

2+
      (29) 

1

ℏ
∑ |jmj|Qμ|imi|

mi,μ,mj

2

 

and the lifetime 𝜏−1 = ∑ 𝐴𝑖𝑗𝑗       (30) 

where (2-1)!! = 1×3×5….×(2-1) 

gi is the multiplicity of the upper state, and the electric and magnetic multipole operators for an N-

electron atom are  

𝑄𝜇
(𝑒𝑙)

= 𝑒 ∑ 𝑟𝑘
 (

4𝜋

2+1
)

2
𝑌

𝜇
(𝑘)𝑁

𝑘=1       (31) 

𝑄𝜇
(𝑚𝑎𝑔)

=
𝑒

𝑚𝑐
∑ ∇𝑁

𝑘=1 [𝑟𝑘
 (

4𝜋

2+1
)

½
𝑌

𝜇
(𝑘)]     (32) 

[( + 1)−1𝑙𝑘 +
1

2
𝑔𝑠𝑔𝑘]  

with gs = 2.00232, the gyromagnetic spin ratio. These operators can be expressed as tensors with rank . 

For the electric dipole (E1) transition, Aij are determined using the CIV3 code. 

The parameters for the basis orbitals used in the present calculations chosen on the criterion is a sum of 

Slater-type orbitals which are shown in tables 1-2 for Ca9+, SC10+ in sodium isoelectronic sequence.  

 

III. RESULTS AND DISCUSSION 

 

We have calculated the OOS, of both the length and velocity forms, of the oscillator strengths for the inner-

shell excitation, which leads to atuo-ionization 1s22s22p63s 2Se1/2 → 1s22s22p53s2 2P01/2 and 1s22s22p63s 2Se1/2 → 

1s22s22p53s2 2P03/2 transition in Ca9+, SC10+ systems of the sodium isoelectronic sequence employing J-dependent 

HF and CI wavefunctions generated by using a new approach proposed by Tiwary19-20. 

Displays the J-dependent HF and CI optical oscillator strengths (OOS), of both the length and velocity 

forms, of the inner-shell excitation 1s22s22p63s 2Se1/2 → 1s22s22p53s2 2P01/2 in the of the sodium isoelectronic 

sequence. 

Table represents exactly the same quantities as in table  but for the transition 1s22s22p63s 2Se1/2 → 

1s22s22p53s2 2P03/2. Several features of importance emerge from table. First, the optical oscillator strengths, of 

both length and velocity forms, increase with increase of atomic number (Z) for both transitions 1s22s22p63s 
2Se1/2 → 1s22s22p53s2 2P01/2 and 1s22s22p63s 2Se1/2 → 1s22s22p53s2 2P03/2 in all ions of our present consideration. 
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Second, the values of CI fL and fv are larger than HF fL and fv for both transitions given in table in all ions which 

reflect that the correlation enhances the oscillator strengths. Third, the disagreement between CI fL and fv 

decreases with increase of Z which shows that the effect of correlations increases in all ions of our present 

consideration. Fourth, the disagreement between HF fL and fv is substantially large whereas the CI fL and fv are 

in good agreement which demonstrate the importance of correlation. Fifth, the relativistic fL and fv values for 

J=0 are significantly smaller compared to the fL and fv values for the J = 1 transition. Finally our present 

investigation indicates that it indispensable to incorporate the relativistic and correlation effects simultaneously 

in order to obtain accurate results.  

IV. CONCLUSION 

 

Our present theoretical investigation of J-dependent transition probabilities ( AL and Av ) and oscillator 

strengths (fL and fv), of both the length and velocity formulations, demonstrates that the Tiwary approach is 

very compact, convenient, economic from computational point of view and capable of yielding encouraging 

results for the complex inner-shell excitation transition in the medium ionized atoms of the sodium 

isoelectronic sequence. This approach may provide significant advantages also in the case of the CI calculations 

in molecules, clusters and solids. The present CI wave functions may be of use for calculations of scattering 

cross sections for the inner-shell excitation process in Ca9+, Sc10+ ions. However, there is disagreement between 

the length and velocity forms of atomic transition probabilities and oscillator strengths which may be probably 

due to the lack of inseparable way of including correlation and relativity, quantum electrodynamic (QED) or 

Lamb shift and nuclear size effects. Our theoretical results suggest that the reliable theoretical predictions of 

atomic transition probabilities and oscillator strengths require methods that account for correlation, relativistic, 

QED and nuclear- size effects in a systematic and coheherent manner. At present we do not have a 

comprehensive and practical method that accounts for all effects mentioned above on equal footing. We hope 

that this work will stimulate reliable experimental as well as other accurate theoretical investigations. 

Table-1: Oscillator Strengths (fL and fV) and transition probabilities (AL and AV) for the inner-shell excitation 

1s22s22p63s 2Se1/2 →1s22s22p53s2 2P01/2 transition in the sodium isoelectronic sequence 

 HF CI 

Syste

m 

fL fV AL AV fL fV AL AV 

Ca9+ 0.240288

E-01 

0.215148

E-01 

0.126783E+

12 

0.113496E+

12 

0.317136

E-01 

0.307436

E-01 

0.167278E+

12 

0.162459E+

12 

SC10+ 0.235478

E-01 

0.211989

E-01 

0.165887E+

12 

0.149428E+

12 

0.344648

E-01 

0.302888

E-01 

0.221878E+

12 

0.213514E+

12 

Table-2: Oscillator Strengths (fL and fV) and transition probabilities (AL and AV) for the inner-shell excitation 

1s22s22p63s 2Se1/2 →1s22s22p53s2 2P03/2 transition in the sodium isoelectronic sequence 

 HF CI 

Syste

m 

fL fV AL AV fL fV AL AV 

Ca9+ 0.475864

E-01 

0.434604

E-01 

0.123016E+

12 

0.112863E+

12 

0.625478

E-01 

0.616988

E-01 

0.161635E+

12 

0.159816E+

12 

SC10+ 0.465826

E-01 

0.438616

E-01 

0.160687E+

12 

0.147865E+

12 

0.619457

E-01 

0.667659

E-01 

0.218554E+

12 

0.269589E+

12 
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