
Received 02 July 2018 | Accepted : 25 July 2018 | July-August-2018 [4 (9) : 482-506]

© 2018 IJSRST | Volume 4 | Issue 9 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X

doi : https://doi.org/10.32628/IJSRST2295224

 482

Adaptive Fault-Tolerant distributed Systems for Real-Time Critical Workloads

Bipinkumar Reddy Algubelli, Sai Kiran Reddy Malikireddy

Independent Researcher, USA

ABSTRACT

Functionality in fault-tolerant systems, particularly in maintaining dependability and availability of the actual

time applications for various sectors, including but not limited to healthcare, aerospace, transportation, and

industrial control systems, is indispensable. The systems should run continuously; there are breakup equipment

and network and software glitches. This paper discusses the major concepts and the ways and issues associated

with fault-tolerant distributed computing for real-time applications in safety-critical systems. The course notes

emphasize that such measures as redundancy, replication, consensus algorithms, error detection, and recovery

strategies ensure that system integrity is maintained even during failure modes and that real-time constraints are

met. We consider using case analysis to exploit these approaches to apply such fault-tolerant infrastructures in

various sectors as critical environments with an acute need for existing fault-tolerance mechanisms. Present-day

problems such as scalability, performance in case of failures, and the effectiveness/cost ratio are also presented in

the paper. Finally, future work in self-organizing and self-healing frameworks, which use machine learning,

quantum computing, and other related technologies to minimize the effects of faults occurring in real-time

distributed systems, is considered. This work highlights the role of building and designing infallible, high-

availability system redundancy models to assure such systems' safety, speed, and uninterruptible functionality.

Keywords : Fault-Tolerant Computing, Distributed Systems, Real-Time Applications, Critical Systems,

Redundancy and Replication, Consensus Algorithms, Error Detection and Recovery, Real-Time Scheduling,

Scalability, System Reliability

1. Introduction

1.1. Background and Importance

In recent systems, it has become common to see a

single task executed on several machines instead of

one. This approach is particularly useful in a real-time

application environment where data must be

processed, and something must be done within a

given period. In health care, aeronautics,

transportation, and all areas where personnel or

significant equipment are life-threatening, distributed

systems' availability, dependability, and timeliness are

vital.

Therefore, critical systems are systems where if any of

these fail or malfunction, it results in a great loss or

disastrous consequences on the environment or lives.

Applications where failure to deliver correct results

can cause loss of life, severe injury, or significant

property damage are known as critical systems.

However, the above systems need a distributed

computing environment to make them scalable to a

large volume of data, perform real-time processing,

and integrate multiple activities at different sites.

Fault tolerance is a circuit parameter with a strong

impact on the reliability of these systems since it

relates to the ability of a system to operate correctly

in the presence of faults. Failures in a distributed

environment can come from hardware or software

malfunction, network split, or other external

conditions. Not all failures are avoidable; some are

meant to occur, but this is where fault tolerance

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

483

mechanisms can keep the failures from affecting the

system from functioning and allow the system to get

back to where it was as soon as possible.

The important issue in real-time application is

achieving a trade-off between increasing fault

tolerance and meeting stringent temporal demands.

Mission-critical failures may occur if deadlines aren't

met or system availability is lost. With distributed

systems increasingly being used for applications, the

need to make such systems, at worst, fault-tolerant

and real-time, but ideally both, is reinforced.

1.2. Objective of the Study

The principal concern of this paper is the discussion

on how fault tolerance can be implemented in

distributed computing systems, emphasizing the

importance of real-time systems in critical systems.

All these mechanisms are important for dealing with

system failures in such a way that it can continue to

work with or close to the same performance and

safety level all the time. To cover the topic

comprehensibly, the paper meets several main aims

described below.

Firstly, patterns such as fault tolerance, which the

study has promoted, are essential for reliability and

availability in distributed systems employed in real-

time critical applications. Reliability, therefore,

depicts the system morphology to deliver its

warranted functionalities predictably, while

availability indicates the system's readiness for use at

any time. Robustness is the essential characteristic of

distributed systems in general—a distributed system

must be capable of handling faults to prevent system

failure or loss of available services.

Second, the paper also presents a discussion about the

approaches that have been adopted to provide for

fault tolerance in distributed computation

environments. These are redundancy, where the main

components or system are copied to provide backup;

replication, where details or processes are copied to

ensure backup; error detecting, which helps find a

fault; and recovery tools, which rebuild the system

after a fault. The strategies are essential in

safeguarding system integrity, especially where

failure is unacceptable. The paper also explores the

issue of tolerating faults in real-time systems as an

important criterion in such systems. Real-time

systems have strict deadlines and thus cannot afford

to have faults that would cause them to sacrifice

meeting the set deadlines. More specifically, some

difficulties that can be foreseen include having

limited resources available, the problem of

synchronizing data across distributed processes, and

the general challenges of guaranteeing consistency

with the multiple nodes that may exist in the system.

It is important to understand these to design viable

fault-tolerant systems.

Further, the study discusses the example of using

fault-tolerant distributed systems in narrow-cutting

sectors such as healthcare, aerospace, and transport.

In healthcare, for example, fault tolerance guarantees

the free running of life support systems and accurate

delivery of healthcare services. Aerospace ensures the

safe and reliable operation of navigation and control

systems. Likewise, fault tolerance guarantees the

stability of systems controlling traffic and the

movement of vehicles in transport. These examples

prove how crucial fault-tolerant systems are in

businesses where risks are not an option.

Last, the paper outlines potential research avenues for

improving fault tolerance and performance in

distributed systems. Potential disruptive technologies

are machine learning, quantum computing, and self-

healing systems. Machine learning can also be applied

for fault predictions that, when failed, can be quickly

followed by reactive recovery programs. At the same

time, quantum computing can provide much faster

solutions for fault-tolerant algorithms. Automated

healing, in which a system can diagnose and correct

faults, is a step towards realizing continuous smooth

operation in distributed systems.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

484

1.3. Structure of the Paper

This paper is structured as an in-depth treatment of

fault tolerance for distributed systems but in the

context of real-time critical applications. First, it

provides a background and a review of previous work

to start the discussion. The first part of this section

discusses fault tolerance in distributed systems,

specifically emphasizing the issues specific to the

constraints of real-time critical systems. In addition, it

also presents an extensive background on the existing

relevant literature as a setting into which the

following techniques and issues make sense. The

paper then delves into fault-tolerant mechanisms at a

system level that is more relevant to real-time

distributed systems. This section explores various

techniques such as redundancy, consensus algorithm

techniques, error detection and recovery strategies,

and real-time scheduling. Each mechanism's trade-

offs are discussed, along with its practical challenges.

It highlights how these techniques enhance system.

The next section then concentrates on real-world

applications and presents a case study of fault-

tolerance implementation in critical domains like

healthcare, aerospace, and transportation. The

examples are tangible examples of how fault tolerance

is operationalized in systems where down is not an

option. These fault-tolerant strategies prove useful in

high-stakes environments, and the case studies

demonstrate their practical benefits when protecting

reliability and safety. Later, the paper discusses the

broader challenges and open issues related to fault-

tolerant systems. This section examines the

difficulties of implementing fault-tolerant

mechanisms in real-time distributed systems.

Scalability, performance under fault conditions, and

trade-offs between reliability and cost are analyzed.

The paper highlights the challenges by highlighting

the gaps and areas where further innovations are

required. The remainder of the paper considers future

avenues of research and technological development.

New fields such as artificial intelligence, quantum

computing, and self-healing systems have the

potential to advance fault tolerance and improve

system resilience. Advances in these areas are seen as

tech breakthroughs that will enable breakthrough

performance and reliability in critical real-time

systems beyond what is currently possible.

Lastly, the final section summarizes the main results,

and fault tolerance is posed to be of great essence

within distributed systems. It considers the role of

fault tolerance for providing fault-tolerant and safe

semantics in critical real-time applications that are

intolerant to faults, especially in those domains in

which reliability plays a vital role, It also presents the

directions for further research; an evidence of

increased need to explore the implementation of new

technologies and innovative fault tolerance

approaches more profoundly.

Based on the analysis made by the end of the paper,

readers will comprehend both the approach and the

issues specific in the process of the distributed systems

implementation and aimed to provide the means for

the implementation of the fault tolerance means. By

the end of the paper, readers will understand the

method and challenges of fault tolerance in

distributed systems implementation. The vital role

fault tolerance plays in real-time applications, as well

as the evolving trends that promise to fashion the

future of this important field, will also be addressed.

Since its approach is structured, the speaker sticks to

the expected logical discussion, giving a holistic view

of the subject and analyzing its theoretical or practical

touches.

2. Background and Related Work

2.1. Fault Tolerance in Distributed Systems

Distributed systems require fault tolerance to stay

operational in the face of fault. This allows these

systems to continue working correctly, up to some

amount of 'breakdown' or 'loss of critical

functionality.' Faults in distributed systems can come

from many places, including hardware failures,

software bugs, network disruptions, or human errors.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

485

Individual components or systems may have trouble

due to these issues, so fault tolerance is a fundamental

design concern.

In distributed systems, fault tolerance mechanisms are

used to detect, isolate, and recover from faults so that

operations are disrupted to the least extent. Moreover,

these mechanisms usually incorporate redundancy,

error detection, and failover strategies to perform

important tasks even if some segments fail. Besides,

the resilience of distributed systems can be improved

through fault tolerance, which can also improve the

overall reliability and availability of these systems,

making them usable for sensitive applications where

system downtime is not acceptable.

With distributed systems now powering everything

from telecommunications to cloud computing, fault

tolerance is a basic requirement. Emphasizing

potential failures allows systems to maintain

operational performances in improper conditions. The

issue of tolerance to faults is one of the critical

questions at the core of the development of

dependable distributed systems.

Fault Types in Distributed Systems:

1. Hardware Failures: This is a situation where one or

more of the hardware used in a distributed system

fails, be it the server, the storage devices, or network

appliances. They may occur due to normal usage, poor

artistry during assembly, or such mishaps as

overheating. Distributed systems typically utilize

redundancy or replication throughout the system to

continue operation despite hardware loss.

2. Software Failures: Software failures result from

glitches, hang-ups, or anomalies in the application or

operating system in a distributed system environment.

These failures can lead to a lack of functionality, data

integrity, or even services going offline. Such

problems should be easily fixed through ordinary

software testing, upgrades, and monitoring to reduce

their impact in causing long-term system outages.

3. Network Failures: Network faults are inherent

attributes of distributed systems, and they could be in

the form of congestion, loss of messages or nodes, or

partitioning of nodes. These failures likely cause

delays or get in the way of data synchronization

between system components. Some of the strategies of

fault-tolerant distributed systems include message

repeating, path adaptation, and consensus

mechanisms involving a quorum.

4. Environmental Failures: Environmental losses

occur independently of the enterprise and include

such factors as loss of power supply, heat or cold, and

actual deterioration in structures like fire or

inundation. Because it is unlikely that an organization

would have duplicate hardware and services for

distributed systems, interruptions in availability can

be detrimental to critical systems. Environmental

failures are usually combatted through backup power

systems, disaster recovery plans, and geophysical

distributed data centers.

Fault tolerance in distributed systems is generally

achieved through several key mechanisms:

Redundancy and Replication: Redundancy and

replication are central mechanisms to fault tolerance:

data are duplicated, or system components are

replicated. If an element fails, these backups act as

your backups, so continuity is maintained. For

example, the data is often duplicated to several servers

or locations to avoid losses or lack of data service.

Checkpointing: Checkpointing entails saving the

system's state periodically to provide a capability to

recover from a previously known good state in the

event of a failure. The system can minimize the

impact of failures by this mechanism and get back to

operations without starting all over from the

beginning.

Error Detection: Techniques like checksum and

monitoring tools are utilized for error detection,

which detects failure when experienced. This enables

systems to quickly notice a problem and thereafter

minimize the amount of downtime as well as any

further trouble that may be caused.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

486

Fault Recovery: Then fault recovery involves

restoring functionality after the errors occur. When

one system component fails, it may need to redirect a

task, reassign resources, or reboot the component to

keep it running at near-optimal performance.

Fig.1: Distribution of Redundancy Mechanisms Across

Fault Types in Distributed Systems

To maintain the operation of distributed systems in

the presence of failures, fault-tolerant algorithms are

critical. It is to ensure that similar systems are

consistent, available, reliable, and the opposite, where

a component could fail or be out of reach.

Paxos and Raft are consensus protocols that try to

allow several nodes in a distributed system to co-

ordinate so that they choose one data value when

some of the nodes fail to respond and when some of

the nodes do not behave similarly. Although Paxos is

reliable, it is assumed to be complicated, and Raft

makes it easy to understand and implement with no

compromise to reliability. They are widely used in

low variability environments.

Approaches based on quorum are based on producing

a decision by selecting a subset of nodes able to decide

on a specific issue. It is possible to fail nodes within

the system thanks to the guarantee that most nodes

agree on such a move and the nodes reach a consensus

state. In distributed databases or replicated systems,

for that matter, read-and-write operations commonly

utilize quorum-based techniques.

Altogether, these algorithms enable systems with

tolerance to faults to work as expected in conditions

characterized by high availability while maintaining

data integrity.

Table 1 : Comparison of Key Features and Use Cases of Algorithms

Algorithm Key Features Use Cases Strengths Weaknesses

Linear

Regression

Simple, interpretable,

assumes linear

relationship

Predictive

modeling, trend

analysis

Easy to implement,

interpretable

results

Sensitive to outliers

Decision Tree Hierarchical

structure,

interpretable, non-

linear

Classification,

regression,

decision-making

Handles non-linear

data well

Prone to

overfitting

K-Nearest

Neighbors

Instance-based

learning, no training

phase, non-

parametric

Recommendation

systems, pattern

recognition

Simple, adaptable

to complex

boundaries

Computationally

expensive

Support Vector

Machine (SVM)

Maximal margin

classifier, effective in

high-dimensional

spaces

Text classification,

image recognition

Effective in high

dimensions

Sensitive to

parameter selection

Neural Networks Highly flexible,

capable of capturing

Image recognition,

natural language

Handles complex

data well

Requires large

datasets, high cost

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

487

complex patterns processing

Random Forest Ensemble learning,

robust to overfitting,

interpretable feature

importance

Fraud detection,

medical diagnosis

Robust and

accurate

Computationally

intensive

K-Means

Clustering

Partition-based,

unsupervised

learning

Customer

segmentation,

market analysis

Fast and efficient Sensitive to initial

cluster centers

Naive Bayes Probabilistic,

assumes feature

independence

Spam filtering,

sentiment analysis

Fast and scalable Assumption of

independence

2.2. Real-Time Constraints in Critical Systems

Real-time systems refer to methods and systems that

must answer to an event or are in the process of

analyzing data at some fixed period. This constraint

they are often grouped into the following two

categories. Hard ERT systems have zero tolerance for

the scheduling deadline because the deadline’s breach

results in severe repercussions. For instance, in an

aerospace control system, the penalty of not

completing and meeting the set and agreed time can

perhaps mean a mission loss or even a loss of lives.

Soft real-time systems can, however, allow a degree of

delay, but when deadlines are being missed

frequently, the performance decreases. An example is

multimedia streaming, where minor delays can be

allowed, but frequent delays harm usability.

To achieve adequate functionality of real-time

systems, these systems must also be dependable,

responding to time constraints and handling faults.

That is why, in critical systems, certain changes

become crucial: Flexibility is also important, as the

system must always be up and running, which can be

especially important in safety-critical applications.

Safety is a priority equally as well/especially in health

or transport, since a breach in a system can result in

loss or affect the environment negatively. For

example, a loss of control in an automobile can cause

a traffic mishap.

Timing constraints form a crucial aspect of systems

that require the implementation of fault tolerance.

Fault tolerance strategies should ensure that the

failure to meet deadlines is done as infrequently as

possible when faults occur. Such mechanisms should

not lead to increased latency; otherwise, the ability to

meet timing constraints will likely be compromised.

Further, the system has to be deterministic to ensure

it responds as expected under failure states so

engineers can design systems with worst-case

performance.

2.3. Previous Research on Fault-Tolerant Distributed

Computing

The area of design of fault-tolerant distributed

computing has developed over a few last decades,

with most of the work being aimed at proper

functioning of the system even under failure

conditions.

Key milestones in the field include:

Replication Techniques: Early work on fault-tolerant

distributed systems focused on replicating critical data

or services to prevent a single point of failure. This

work led to the development of systems like Google’s

Bigtable, which uses replication to maintain high

availability.

Consensus Algorithms: The development of consensus

algorithms such as Paxos and Raft revolutionized how

distributed systems handle fault tolerance, ensuring

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

488

that a majority of nodes in the system agree on a state,

even if some nodes fail.

Distributed Databases: Research into distributed

databases, including techniques like master-slave

replication, leader election, and quorum-based

approaches, has contributed to making large-scale

systems more fault-tolerant.

Real-Time Fault Tolerance: Research specific to real-

time systems in critical applications has focused on

ensuring that fault-tolerant mechanisms do not

interfere with meeting stringent timing requirements.

Techniques like priority-based scheduling and fault-

tolerant scheduling algorithms have been proposed

for real-time systems.

Table 2 : Comparison of Systems: Fault Tolerance, Real-Time Performance, and Domain Suitability

System Fault Tolerance Real-Time

Performance

Domain Suitability

System A High (e.g., replication,

failover)

Moderate (limited

latency control)

Industrial automation,

distributed systems

System B Moderate (e.g., error

correction)

High (low latency,

deterministic)

Real-time embedded

systems, robotics

System C Low (minimal redundancy) Low (non-

deterministic

behavior)

Consumer

applications, general

computing

System D High (e.g., checkpointing,

redundancy)

High (predictable and

low-latency)

Mission-critical

applications, avionics

System E Moderate (fault recovery

mechanisms)

Moderate (some real-

time constraints)

Telecommunications,

healthcare systems

Recent Advancements: The latest enhancements have

been made in applying recent technologies like

machine learning in predicting faults, blockchain

technologies in building secure fault-tolerant

networks, and edge computing for enhanced fault

tolerance of networks on the edges. In addition, self-

healing/autonomous fault recovery mechanisms will

likely be new directions for the future generation of

FT real-time systems.

While designing FSs, different advancements have

gradually been made in redundancy, replication,

consensus algorithms, and error detection systems.

However, achieving fault tolerance and ‘real-time’

provision for critical infrastructures poses a major

research question. Specifically, with future

advancements of critical applications evolving into

COTS software with increased size and

interconnectivity, future research advances would

address the issues of scalability of the fault tolerance

solutions to meet real-time requirements in case of

various failures and incorporation of new

technologies such as artificial intelligence and

quantum computing for fault detection and

remediation.

This section provides the context within which the

framework of fault-tolerant distributed computing is

established, the issues relating to real-time systems,

and the current trends and research in attempting to

provide reliability and high performance within high-

risk environments. The graph, table, and image

placeholders will compare different approaches to

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

489

implementing fault tolerance and their respective

implications for system performance.

3. Fault-Tolerant Mechanisms for Real-Time

Distributed Systems

That is why in real-time distributed systems, fault

tolerance means not only the inability to lose

functionality; it also takes into account strict temporal

constraints necessary for the correct system

functioning. These systems are normally used in such

sectors as aerospace, process industries, healthcare,

and financial centers where a failure or slowdown can

have serious implications. HA approaches satisfy the

real-time constraints and protect against fault

identification and correction while allowing for

dependability and on-time execution.

Redundancy is the simplest technique that entails the

duplication of system parts. Doubling up the FW or

OS or replicating data pathways means a nearly

identical copy can quickly switch over without

further complicated problems in the event of a

failure. The Paxos and Raft algorithms are well

known for building consensus to achieve a consistent

state among nodes. They guarantee that regardless of

node failures or network partitions, the system makes

decisions on certain data or state transitions in the

shortest time possible since operations are real-time.

Fault detection and fault tolerant techniques are used

to catch any mistake early and rectify without much

harm. This is done using checksums, watchdogs, and

failure detectors; rollback recovery or failover allows

the system to recover quickly. Robust scheduling

approaches guarantee that tasks to be executed

proceed within the permitted time framework, even

if there are failures. Such algorithms are also sensitive

to environmental conditions; they can reassign

workloads to idle work units and ensure that time-

sensitive tasks do not miss their deadlines. Combined,

these mechanisms enable tolerant fault real-time

distributed systems with reconfiguration with

guaranteed availability, correctness, and timing

constraints despite failure occurrences.

3.1. Redundancy and Replication

Redundancy and replication are two of the most used

techniques in fault tolerance in distributed systems.

These techniques include replicating vital parts of the

system like data, service, or computation, where in

case one part of the replication fails, the next one

takes up the work to ensure that the system will

continue running.

Types of Redundancy:

Data Replication:

In distributed systems, data is duplicated to improve

redundancy availability and increase system

dependability. It is much more critical for the systems

in which data integrity and availability are crucial.

Primary-Backup Replication: Every one of these

nodes acts as a primary node while others act as the

backup or, more specifically, the master. If the

primary node is down, one of the standby nodes will

be elevated to a primary node.

Multi-Master Replication: There is distributed

computing where all nodes can process requests and

contain data copies. This approach improves

availability and load balancing while adding a layer of

complication to offer uniformity.

 Service Replication:

Active Replication: A given service or process has

numerous instances operating simultaneously to deal

with incoming requests. If one replica of the server is

out of operation, others will keep working without

any hindrance.

Standby Replication: Like backup servers, standby

replicas do not perform any computations until an

active replica fails, and it then takes its place. This

model is less resource-consuming than the previous

model, but it has the demerit of delayed fault

recovery.

Challenges in Redundancy:

Consistency vs. Availability: In replicated systems,

there is a problem of detecting that all replicas or

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

490

copies of the data value are synchronized or

consistent, particularly if the nodes are split across

different network partitions or if two nodes try to

update a value simultaneously.

Latency: Replication can introduce latency, especially

when synchronizing data between replicas in real-

time systems. This is a critical challenge in systems

where low-latency responses are required.

Fig 2 : Diagram illustrating two types of replication

Primary-Backup Replication:

1. A primary node synchronizes data to backup

nodes.

2. Fault tolerance is achieved by switching to a

backup node if the primary fails.

Multi-Master Replication:

1. Multiple master nodes synchronize with each

other.

2. Fault tolerance is enhanced as any master can

handle requests in case of another's failure.

The arrows represent data synchronization pathways.

3.2. Consensus Algorithms for Fault Tolerance

Consensus algorithms are essential for achieving

coordination in distributed systems and, specifically,

for handling failures. These algorithms provide ways

for nodes in the system to agree on a given point in

time a value or state and be certain that sent messages

are correct even if some nodes fail or don’t function as

intended.

1. Paxos Protocol

Paxos is an algorithm for distributed systems that

allows for choosing a single value in case of node

failure and network division. It is useful when

making decisions because it provides constant and

dependable results, which is very helpful in functions

for which consensus is very important. But of course,

Paxos is complex, making it rather hard to implement

and understand. Also, it entails high message

overhead, especially in a distributed environment

with many nodes, which translates to poor

performance. Nonetheless, Paxos remains a

fundamental algorithm in distributed computing and

is used to foster more straightforward and easy-to-

understand solution Raft for systems requiring

consensus in failure scenarios.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

491

2. Raft Algorithm

The Raft algorithm is a consensus algorithm intended

to simplify Paxos and used to decide a state to be

replicated among distributed nodes. Currently

implemented in applications like Kubernetes and Etcd,

Raft has been famous for its simplicity and stability. It

uses the leader-follower approach, in which a leader

node is in charge of the system state and updates, and

the followers are in charge of replicating the leader

node's log. The leader deals with the client requests

regarding changes by confirming the changes before

implementation. Original post: If the leader is

somehow High, Raft immediately replaces it,

ensuring system exposure and reliability and making

consensus.

Challenges: Leader Election and Scalability in

Consensus Algorithms

Leader Election: In consensus algorithms such as Raft,

the leader's node controls the system state and

operations. If the leader node is abstracted, another

one has to be selected from the rest of the nodes. This

process uses communication and agreement, bringing

latency, which may cause system problems. Real-time

systems require fast leader election, and in cases

where there is the need to meet significant cliffs then

every second matters. To minimize response time, fast

failure detection and pre-selected backup leaders are

commonly used to reduce latency.

Scalability: With the increase in the number of nodes

in the distributed system, it becomes challenging to

achieve consensus. The scale has more overhead,

communications are slow, mistakes are more common

at significant scales, and nodes are more likely to fail

at larger scales, all negatively impacting performance.

In matters concerning real-time systems, this greatly

distorts the necessary compliance with deadlines and

the overall system performance. The overhead of such

confirmation may also be greatly managed by

employing such consensus algorithms and techniques

as hierarchical clustering or quorum-based

approaches to make the entire system scalable and

more apt to fit real-time parameters.

Table 3 : Paxos, Raft, and View stamped Replication

in Real-Time Distributed Systems

Aspect Paxos Raft View

stamped

Replicatio

n (VR)

Ease of

Understandi

ng

Complex

and difficult

to

implement

Simpler

and more

intuitive

Moderate

complexit

y

Consensus

Model

Decentraliz

ed with

multiple

proposers

and

acceptors

Leader-

follower

with a

single

leader

node

Leader-

follower

with

primary-

replica

structure

Failure

Handling

Handles

failures but

with higher

overhead

Efficient

leader re-

election

mechanis

m

Similar to

Raft,

relies on

primary

failover

Performance

in Real-Time

Systems

High

latency

under heavy

contention

Lower

latency

due to

simplicity

Moderate

latency

Primary Use

Cases

Distributed

databases

and systems

requiring

strong

consistency

Real-time

systems

like

Kubernete

s

Fault-

tolerant

systems

with high

availabilit

y

Scalability Performs

well in

small to

medium

clusters but

struggles at

Scales

efficiently

with

optimized

mechanis

ms

Similar

scalability

to Raft

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

492

scale

Leader

Election

Latency

Relatively

high latency

Quick

leader

election to

minimize

downtime

Moderate

latency

3.3. Error Detection and Recovery Strategies

Real-time systems must incorporate robust error

detection mechanisms to identify faults as soon as

they occur, ensuring timely recovery and preventing

system failure. Several strategies are employed to

detect and recover from errors:

1. Heartbeat Mechanisms:

Each heartbeat mechanism constantly generates

messages between the system elements to check

whether these elements are running correctly. If a

component does not check in after a biological

heartbeat cycle, then that cycle is concluded to have

failed, and corrective measures are instituted.

Example: In distributed databases, if a node does not

send a heartbeat signal, the system may consider it

unhealthy and redirect all requests to other nodes.

2. Watchdog Timers:

A watchdog timer supervises the system's functioning

and initiates repair measures when specific marks are

reached (e.g., the failure to meet a deadline or non-

responsiveness).

Example: Watchdog timers are utilized in safety-

critical real-time systems, for example, in medical

devices, to observe critical processes and thereafter

restart the system when the processes do not function

correctly.

3. Rollback and Checkpointing:

Checkpointing refers to saving the system's state at

some interval from which the system can revert in

case of failure.

Rollback recovery is especially important for

guaranteeing that important operations can be carried

out without data loss and inconsistency.

Challenges:

Recovery and Overhead in Real-Time Systems,

challenges

Latency in Recovery

Other recovery techniques like Rollback and

Checkpointing are important for the reliability of the

real-time system. However, these task

implementations can lead to the inclusion of a time

aspect in the recovery process. In systems concerned

about the timeliness of operations, such delays

interfere with real-time interfere with real-time

processes within the system. One major consideration

when engendering recovery mechanisms is

maintaining that the mechanisms must operate in and

through the stipulated time or frame but without any

constraint.

There are severe consequences regarding system

integrity and timeliness of the analyses being

produced if the system is out of operation for long.

Overhead

Most error detection and recovery approaches

increase the computation and communication

overhead. Complete error checking or frequent

checkpointing is computationally intensive and

memory demanding, bringing in and requiring more

network bandwidth. This overhead hampers the total

system throughput, thus taking a toll on the basic

operations. Furthermore, the increased workload

entails high relations with energy consumption and

operational costs, especially where the available

computational resources are constrained. To a great

extent, increasing resistance to errors while at the

same time trying not to impair the performance of a

real-time system significantly is a crucial problem in

this context.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

493

3.4. Fault-Tolerant Scheduling

Thus, in real-time systems, Resource allocation, and

timely work dispatch are done by identifying specific

scheduling algorithms. In a faults scenario, the system

has to change the schedule of the resources to recover

the failed task and still not violate the real-time

requirements.

Rate-Monotonic Scheduling (RMS): This is a fixed-

priority scheduling algorithm in which tasks with a

shorter period (higher frequency rates) are prioritized

over other tasks. It is popular in real-time operating

systems owing to its simplicity and the element of

predictability in system performance.

Fault-Tolerant Modifications: Modifications to RMS

in fault-tolerant systems contain changes in the task

assignment if one node fails in the formulation to

ensure that the tasks remain tight with time

constraints.

Earliest Deadline First (EDF): EDF stands for the

earliest deadline. First, it is a dynamic priority

scheduling algorithm, meaning the tasks are ordered

according to their Deadline (Wikipedia.org). While

this approach is simple and suitable for uniprocessor

systems, it may be complicated in a distributed system.

Fault-Tolerant Modifications: In distributed systems,

the fault-tolerant requirements of modifications may

entail redistributing tasks among different processors

or changing the real-time scheduling depending on

the system's condition.

Fault-Tolerant Scheduling Algorithms: Algorithms to

support the migration of tasks, replication, and

recovery in the context of faults have been made

specifically. These algorithms ensure that tasks run on

the available resources at times when some may be

out of order.

Example: In an aerospace system, suppose a

processing node malfunctions; instead of losing all the

tasks and missing important deadlines, a fault-tolerant

scheduler would reroute all those tasks to a redundant

node.

Challenges:

Dynamics and resource management are fundamental

elements of fault-tolerant scheduling in real-time

systems. Real-time scheduling is challenging since it

has to provide a schedule based on given constraints

while accommodating the uncertainties of the

operational environment. Dynamic adaptation

increases the problem level by adding the necessity to

change the system's schedule in response to failures or

other exceptional conditions. This level of flexibility

means that the system continues to run at reduced

efficiency due to the perturbation of ongoing

detractive conditions, and the perpetual tensions

between flexibility and response time are constant.

The scheduling mechanism has to be able to manage

and change tasks and priorities on the fly, which can't

happen if time constraints are an issue for any

particular component; efficiently managing resources

and tasks requires good algorithms and feedback.

Resource allocation is just as important because

resources available in real-time applications,

including CPU time, memory, and bandwidth, are

restricted. The capacity is further needed to perform

error checks, corrections, or redo during fault

recovery. These resources can likewise be wound up

in recuperation processes, which are detrimental to

the system's specialties and hinder it in executing its

transaction processes. Resource management is

crucial to support system operations while mitigating

fault recovery's interruption to other work.

Maintaining an effective and efficient system fault-

tolerant capability continues to be on

4. Case Studies and Applications

Using fault-tolerant mechanisms for real-time

distributed computational systems is wide and

unpredictable, including aerospace applications and

autonomous vehicles, industrial control, and health

control systems. These systems have to fulfill strict

real-time requirements, and in addition, the systems

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

494

need to remain functional and stable even when

experiencing hardware, software, or network faults.

In the following section, we shall discuss some use-

case scenarios with real practical examples that

describe how these mechanisms work in distributed

environments and their consequences on system

performance and dependability.

4.1. Aerospace Systems

Aerospace systems, such as satellite control systems,

space exploration vehicles, and aircraft avionics, are

prime examples of critical real-time systems where

fault tolerance is paramount. These systems are

designed to operate in extreme environments, where

failures could result in catastrophic consequences. To

maintain operational integrity under all conditions,

fault-tolerant mechanisms must be carefully

integrated into both the hardware and software

architectures.

Case Study: Mars Rover (NASA)

An example of using a rock-solid fault-tolerant real-

time distributed application is the Mars Rover, which

is actively functioning on Mars with support from

NASA. If the initial system components fail, the

Rover will also have spare communication, electrical

power, and data analysis systems. The Rover also

employs real-time fault-tolerant algorithms to modify

the behavior of the Rover and alter the scheduling of

tasks in case of a failure.

Nonetheless, the Rover has stand-by redundant units

for some of the most vital aspects, such as the

communication system, the battery, and processors,

all of which comprise a system for reliability. The

work is carried out in time with real-time scheduling

techniques to ensure that priorities and time

constraints are carefully given and that important

processes such as Earth communication or data

acquisition and analysis are completed when required.

However, what is unique to the Rover is its ability to

perform self-fault diagnosis and remedial action. The

Rover can reroute the system or switch to backup

subsystems if any fails.

Challenges:

Resource Limitations:

The Rover operates under strict constraints of limited

processing power and energy. This requires careful

management of fault tolerance mechanisms to ensure

they function efficiently without depleting critical

resources. Optimal resource utilization is essential to

maintain operational reliability and longevity in the

harsh Martian environment.

Latency and Autonomy:

Because of the four-and-a-half-minute delay now

separating the Rover on Mars and the Mars Mission

control room on Earth, the Rover proceeds on its own.

It is intended to operate autonomously or with

minimal directions supplied from the Earth for

overall direction. It will also give the Rover the

autonomy to respond to its problems and execute its

mission when communications are significantly

delayed.

Fig.3 : The flowchart representing the redundancy

and fault recovery mechanisms in a Mars Rover

system:

1. Command Center: Sends tasks to the rover.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

495

2. Task Scheduler: Distributes tasks to the system

components.

3. Primary System: Handles core functions, with

data flowing to sensor arrays, data processors,

and actuator controls.

4. Backup System: Provides redundancy for the

primary system.

5. Sensor Array, Data Processor, and Actuator

Control: Perform environmental sensing, data

analysis, and mechanical operations.

6. Recovery Module: Manages fault recovery and

re-integrates the system into operations.

Arrows illustrate task flow, synchronization, and

recovery pathways.

4.2. Autonomous Vehicles

Autonomous vehicles, including self-driving cars and

drones, rely heavily on real-time distributed systems

to make split-second decisions based on sensor data

and environmental conditions. These systems must

operate safely and effectively, even during component

failures or degraded sensor data, while ensuring real-

time performance to meet safety requirements.

Case Study: Waymo’s Self-Driving Cars (Google)

Autonomous vehicle Waymo, formerly named

Google’s self-driving car project, already employs

fault tolerance on various levels of its system

hierarchy to implement safety and reliability in real-

time operations. Since the sensors are redundantly

deployed in retrospection, the real-time scheduling of

the sensors and a fault-tolerant communication

system are implemented within Waymo vehicles.

Hence, the car continues to work while particular

sensors or systems remain dysfunctional.

• Redundancy: Backup sensors, including LiDAR,

cameras, and GPS sensors, are provided to guarantee

the vehicle has adequate data to make decisions if one

of the sensors fails.

• Real-Time Decision Making: In the vehicle control

system, real-time scheduling mechanisms ensure that

vital actions like evading an object or applying brakes

are suddenly executed first.

• Error Detection and Recovery: The vehicle uses

Watchdog timers to detect whether the particular

systems are running well. In the event of a failure, the

system can either regain control or cause a safe

stoppage to avoid anarchy.

Challenges:

• Sensor Failure: Any problem with the sensors or the

data they produce can lead to a compromising

situation as far as safety is concerned. An important

requirement that the system should demonstrate is

the fail-safe sensors fail-safe capability.

• System Latency: Self-driving cars must respond to

events as soon as possible not to have collisions.

System safety, as well as avoiding high latency,

requires fault-tolerant mechanisms to be included and

designed.

Table 4 : A comparison table highlighting the fault

tolerance strategies of autonomous vehicles like

Waymo

Fault

Tolerance

Strategy

Description Key

Benefits

Challenges

Redundan

cy

Critical

systems

(e.g.,

sensors,

processors,

power

supplies)

have

redundant

backups to

prevent

failures.

Increases

reliability

and ensures

system

continuity

Adds

complexity

and cost to

design and

maintenance

Sensor Combines Improves Complex data

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

496

Fusion data from

multiple

sensors

(e.g.,

LiDAR,

cameras,

radar) to

ensure

accurate

perception

of the

environmen

t.

robustness

and fault

detection

integration

and potential

processing

overhead

Real-Time

Monitorin

g

Continuousl

y monitors

system

health to

detect

anomalies

or failures

in real time.

Enables

quick

identificati

on of issues

High

computationa

l demands for

real-time

analysis

Autonomo

us

Decision-

Making

The vehicle

can make

independen

t decisions

in case of

faults, such

as switching

to safe mode

or pulling

over.

Enhances

safety and

minimizes

human

interventio

n

Requires

sophisticated

algorithms

and real-time

processing

Fail-Safe

Mechanis

ms

Systems are

designed to

enter a safe

state during

critical

failures,

such as

slowing

down or

stopping.

Protects

passengers

and the

environme

nt

May disrupt

traffic flow

or delay

system

recovery

Software

Updates

Regular

over-the-air

Keeps the

system

Requires

secure and

and

Patching

updates to

fix bugs,

enhance

features,

and address

potential

vulnerabiliti

es.

updated

and reduces

failure risks

reliable

update

mechanisms

Cloud

Connectiv

ity

Uses cloud-

based

systems to

offload

processing,

access maps,

and receive

updates or

alerts.

Enhances

computatio

nal capacity

and fault

recovery

Dependence

on stable and

secure

network

connectivity

Distribute

d Systems

Tasks are

distributed

across

multiple

processors

to reduce

single

points of

failure.

Improves

fault

tolerance

and

scalability

Synchronizat

ion and

coordination

challenges

4.3. Industrial Control Systems

Industrial control systems, including SCADA

(Supervisory Control and Data Acquisition) systems,

power grid management, and robotics in

manufacturing, are critical real-time distributed

systems used to monitor and control processes in

various industries. These systems require continuous

operation and must be highly resilient to faults, as any

downtime could result in significant economic losses

or safety hazards.

Case Study: Power Grid Management Systems

In power grid management, fault tolerance is crucial

to maintain a stable and reliable power supply,

especially in the case of equipment failures or natural

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

497

disasters. Modern power grids incorporate distributed

control systems that rely on fault-tolerant

mechanisms to ensure that the grid continues to

operate efficiently even in the presence of failures.

• Redundancy: Power grids often feature multiple

power generation and distribution nodes, with

backup systems to take over in case of failures.

• Consensus Algorithms: Distributed decision-

making protocols, such as consensus algorithms,

ensure that all parts of the grid reach agreement on

the state of the system, even if some nodes

experience failures.

• Real-Time Monitoring and Recovery: Fault

detection and recovery mechanisms are employed

to detect faults in real-time, such as equipment

malfunctions, and initiate recovery procedures to

restore the grid to normal operation.

Challenges:

• Scalability: Power grids can span vast geographical

areas, requiring scalable fault tolerance solutions

that can handle failures across different regions of

the grid.

• Synchronization: Ensuring that the grid remains

synchronized while recovering from faults is a key

challenge in maintaining continuous operation.

Fig.4: The diagram shows a typical power grid

management system, illustrating the redundancy in

power generation and distribution, and the fault-

tolerant decision-making processes.

4.4. Healthcare Systems

Healthcare systems, particularly those that manage

critical care units, telemedicine, and medical device

monitoring, are becoming increasingly dependent on

real-time distributed systems. Fault tolerance in

healthcare is essential to ensure that patient data is

continuously monitored and that critical treatments

can be delivered without interruption.

Case Study: Real-Time Patient Monitoring Systems

Many hospitals now use real-time patient monitoring

systems in which patients’ vital signs, such as the rate

of heartbeat, blood pressure, and oxygen level, are

frequently observed. Their main task is to promptly

inform clinicians about any vital condition changes in

the patient so they can address the situation as early

as possible. In this context, there is a strong need for

fault tolerance in these systems because a failure can

cost time, which is undesirable when lives are at stake.

The chosen systems incorporate redundancy, effective

error detection, and fail-safe attributes and, therefore,

remain dependable and accurate even in adverse

conditions. Maintaining uninterrupted ease of use and

timely notifications is crucial to improving safety for

those in acute care settings and informing clinical

interventions.

• Redundancy: Some parts of the monitoring

system, like the sensor and the servers, are

duplicated to avoid interruption of the

monitoring process.

• Real-Time Alerts: The system employs real-time

schedules and error check methods to alert

healthcare providers when abnormal readings are

identified.

• Fault Recovery: In case one of the sensors or a

connection to the network is lost, the system

switches to backup systems to maintain the

productivity of the sensors.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

498

Challenges:

• Data Integrity: To guarantee the memorized

patient data remains up-to-date and

synchronized with the rest of the network or

hardware failure events.

• Latency: Generally, a delay in the data

transmission or the initiation of the system alert

will contribute to a critical delay in providing

care to the patient.

These case studies demonstrate that fault-tolerant

mechanisms can be applied in multiple areas of real-

time distributed systems. Regardless of whether it is

self-driven vehicles, electric power systems, or health

care networks, the principles of the system, including

redundancy scheme, consensus, error detection, and

fault tolerance schemes, are important in achieving

high dependability and satisfying rigorous real-time

requirements. Nevertheless, issues such as resource

allocation, delay, and scalability remain active

research topics as new issues emerge that demand

considerable research effort and the development of

new fault-tolerant solutions for these systems.

The practical implications of this problem are

illustrated in this section through the discussion of

real-world examples of the application of fault

tolerance for ensuring that distributed systems remain

functional and secure even when there are failures.

Preliminary, the actual examples of fault tolerance

mechanisms described through graphic tables, charts,

and images give rich examples of how these

mechanisms are implemented in actual systems and

the possible issues that require consideration in

sensitive environments.

5. Challenges and Open Issues

However, the Real-Time Distributed Systems

research for fault tolerance in critical applications and

some unresolved issues and unresolved problems are

as follows: These continue to revolve primarily

around system reliability, temporal constraints,

resource constraints, and fault tolerance. The

solutions to these problems are crucial to enhance the

effectiveness and robustness of foul-tolerant systems

integrating aerospace, self-driving cars, industrial

automation, and life sciences. This section explains

these challenges and provides research and

development, opening problems for further study.

5.1. Maintaining Real-Time Performance in Fault-

Tolerant Systems

Ordinarily, other objectives such as fault tolerance are

often in conflict with, or at least secondary to, the

timing constraints inherent to real-time applications.

Real-time systems need to finish tasks within

predetermined timeframes, and such timelines can be

hard to accomplish especially when system failures

occur, or influences call for errors or error detection

schemes, or recovery systems, or, invoking other

back-up systems. Fault tolerance mechanisms when

implemented, usually cause added overhead which

may affect the ability of the system to meet such

time-bound commitments.

Fig.5: Balancing Fault Tolerance and Real-Time

Performance in Distributed Systems

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

499

5.2. Scalability of Fault-Tolerant Mechanisms

That is, as the systems get larger and have more nodes,

more tasks, or are located in more regions, the

problem of preserving system reliability becomes

critical. The question then is one of how it is possible

to support certain fault tolerance mechanisms where

the addition only ever incurs only acceptable levels of

overhead in terms of computation, communication,

and resources. Several demands are then realized with

the requires scalability of solutions by ensuring that

system reliability does not impede the performance

and cost-effectiveness of the solution in larger and

more complex systems.

Table 5 : Scalability Comparison of Fault-Tolerant

Mechanisms in Large-Scale Distributed Systems

Fault-

Tolerant

Mechanism

Strengths Limitations Scalabili

ty

Redundanc

y

(Replication

)

High

availability,

quick

recovery

from failures

High

resource

costs,

increased

storage

requirement

s

Moderat

e to

High

(depend

s on

resource

s)

Consensus

Algorithms

(e.g., Paxos,

Raft)

Strong

consistency,

reliable state

synchronizat

ion

High

communicat

ion

overhead,

limited

scalability

for large

clusters

Low to

Moderat

e

Erasure

Coding

Efficient

storage,

reduced

storage

overhead

Complex

recovery

process,

higher

latency for

reconstructi

on

High

Checkpoint

ing

Efficient

recovery

High

overhead for

Moderat

e

points,

reduced data

loss

frequent

checkpoints,

limited real-

time

scalability

Failure

Detectors

Quick failure

identificatio

n

False

positives,

scalability

issues with

increasing

nodes

Moderat

e

Self-

Stabilizing

Algorithms

Robustness

in dynamic

environment

s

Slower

convergence

in large

systems,

high

computation

al cost

Moderat

e

Quorum-

Based

Techniques

Improved

consistency

and fault

tolerance

High

latency,

performance

degradation

in large

systems

Low to

Moderat

e

Eventual

Consistency

Models

High

performance,

reduced

latency

Weaker

consistency,

increased

programmin

g complexity

High

5.3. Resource Management in Fault-Tolerant Systems:

The management of resources is critical and required

since reliable systems should not unnecessarily stress

computational resources. This is more so in real-time

systems since resources are inherently fixed, and

severe use due to fault-tolerant activities reduces the

system's efficiency. In real-time distributed systems,

dealing with multiple concurrent failures such as

hardware failures ne, network partitions, or software

glitches compounds things further. Synchronized

problems are more difficult to diagnose and remedy

and require alterations in system configurations.

When systems are extensive and complex and depend

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

500

heavily on one another, such failings are compounded

due to interdependence.

Further, Distributed Fault-tolerant systems also cater

to one of the greatest challenges of consistency and

availability. When achieving high consistency during

failure recovery, availability is often challenged, and

vice versa. This trade-off-trade-off becomes especially

important in real-time systems since consistency and

availability comprise considerable values to provide

reliable and time-oriented functionality.

6. Future Directions

Given the continuously growing and encompassing

nature of fault-tolerant distributed computing for

real-time applications in critical systems, there are

several directions for future work in the area. These

directions will help strengthen the practicality,

extendibility, and dependability of fault-tolerant

systems, which have previously been compensated in

earlier sections of this paper. This section discusses

future work directions that will impact the next

generation of fault-tolerant mechanisms in critical

systems.

6.1. Integration of Machine Learning for Fault

Detection and Recovery

One of the most exciting prospects for improving

fault tolerance in real-time distributed systems is

integrating machine learning (ML) techniques for

fault detection, prediction, and recovery. Traditional

fault detection mechanisms typically rely on

predefined thresholds or rule-based systems. Still,

these methods can be limited in adapting to new,

unforeseen faults or complex failure modes.

Machine Learning Applications:

• Anomaly Detection: Recommended machine

learning approaches for failure prediction include

using unsupervised learning techniques for

diagnosing behavior anomalies in the system. These

models can memorize normal operation modes and

signal anomalies that may be indiscernible by

conventional FDD techniques.

• Predictive Maintenance: With ML algorithms, one

can create models that can foresee system failures

from previous data, input data from sensors, and the

current state of the system. Used in systems,

predictive maintenance may enable systems to take

action early to prevent the situation from worsening,

which means that configurations can be changed or

backups activated, reducing time loss and reduction in

performance.

• Fault Recovery Optimization: evidence can point to

the use of machine learning algorithms to enhance

the fault recovery process since the failures’ history

can be used to identify the most efficient recovery

strategies for the given types of failure. This dynamic

optimization could help real-time systems to ‘jump

back’ with relative ease and clear loss in performance.

6.2. Hybrid Fault Tolerance Mechanisms

As distributed systems become more complex, hybrid

approaches to fault tolerance are gaining attention.

Hybrid fault tolerance combines multiple strategies,

such as replication, redundancy, and error correction,

to create more flexible and robust systems that adapt

to different failure scenarios.

Hybrid Approaches

The combined mechanisms or hybrid models are

employed to achieve trade-offs in distributed systems'

availability, scalability, and efficiency. For example,

combining redundancy with checkpointing enables

systems to adopt replication high availability and

avoid resource consumption by checkpointing.

Because backups exist in several fewer places, and

checkpoints are made periodically to allow systems to

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

501

rebound quickly, the saved data does not occupy

massive storage space.

Two other issues are associated with fault tolerance in

hybrid systems, namely, self-configurational fault

tolerance and adaptive fault tolerance, the latter being

used to switch the system between distinct modes

depending on the current condition of the system and

the level of the detected failure. Simple error control

methods may be employed for some mistakes, while

for major errors, means such as replication or backup

recovery may be triggered.

Byzantine fault tolerance is extended with more

contemporary consensus variation using the

principles of hybrid consensus algorithms where ideas

of the classical consensus are complemented with the

modern experience and blockchain consensus. This

fusion makes the hybrid consensus algorithms'

security, efficacy, and scalability suitable for use with

large and complex distributed systems. Incorporating

all these approaches provides a free, light, and robust

strategy for solving variegated fault-tolerance needs

in distributed systems.

Research Focus:

• Investigating how hybrid fault tolerance

mechanisms can be designed to provide flexibility and

efficiency without compromising system performance

or reliability.

• Developing algorithms that can dynamically

choose the most appropriate fault tolerance strategy

based on the current system state and failure

conditions.

6.3. Real-Time Blockchain for Fault Tolerance

Blockchain technology has been widely recognized

for its ability to provide secure, decentralized

consensus and immutability, which are important for

fault tolerance in distributed systems. However,

traditional blockchain systems, such as those used in

cryptocurrency, often face scalability and latency

issues, particularly when applied to real-time

applications.

Blockchain for Fault Tolerance:

Blockchain-Based Recovery: Blockchain can be used

for fault-tolerant systems to ensure the consistency

and integrity of system states across distributed nodes.

In the event of a failure, the system can use the

blockchain’s immutable ledger to restore the correct

state.

Real-Time Consensus Mechanisms: Future

blockchain-based systems will need to develop

consensus mechanisms that are optimized for real-

time applications. This includes reducing the time

required for block validation and ensuring that the

system can handle a high throughput of transactions

without violating timing constraints.

Decentralized Trust: Blockchain can help mitigate

issues related to trust in fault-tolerant systems by

providing a decentralized ledger that ensures

transparency and accountability in recovery actions.

Research Focus:

Enhancing blockchain’s scalability and performance

to meet the demands of real-time distributed systems,

especially in high-latency environments.

Investigating how blockchain can be integrated with

other fault tolerance strategies (e.g., redundancy,

checkpointing) to improve overall system reliability

and recovery times.

6.4. Edge and Fog Computing for Fault Tolerance

Edge and fog computing are emerging paradigms

where computational resources are distributed closer

to the end users or devices, rather than relying solely

on centralized cloud servers. These approaches have

significant potential for improving the fault tolerance

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

502

of real-time distributed systems, especially in

resource-constrained environments.

Edge and Fog Computing Benefits:

Reduced Latency: By processing data closer to the

source, edge and fog computing can reduce the

latency associated with sending data to distant cloud

servers, which is crucial for real-time applications.

Localized Fault Tolerance: Fault tolerance

mechanisms can be implemented locally at the edge

or fog layer, ensuring that critical applications can

continue to operate even if the central cloud system

fails or experiences high latency.

Resilience in Remote Environments: Edge and fog

computing can provide fault tolerance in remote or

rural areas where internet connectivity is unreliable.

These systems can operate autonomously, ensuring

continued service in areas with intermittent network

access.

Research Focus:

Developing fault tolerance strategies specifically

designed for edge and fog computing environments,

considering resource limitations and the need for

real-time performance.

Exploring how fault-tolerant systems can be

distributed across multiple layers of edge, fog, and

cloud computing to ensure optimal resilience and

performance.

6.5. Quantum Computing for Fault Tolerance

Quantum Computing Applications: Fault-tolerant

quantum computing has the potential for

fundamental growth in several areas due to quantum

technologies. First, quantum error correction that

protects quantum information from noise and

decoherence may improve the error correction code

efficiency in distributed systems, improving the

corresponding systems' error detection and recovery

techniques. Second, quantum computing can enhance

reliable algorithms for faulty systems and scalability

and performance in large-scale systems for which

classical computing fails. Furthermore, the existing

quantum communication and distributed quantum

systems allow new approaches towards implementing

fault tolerance by employing the quantum states

specifically for information transfer with security and

precise synchronization among the nodes.

In this study area, current investigations concern

themselves with tandem issues of quantum computing

and fault tolerance and, more specifically, the

applicability of quantum error correction to

classically implemented systems in real-time,

distributed environments. Another essential research

direction is linked with the viewpoint on how the

new technology of quantum computing can improve

the various types of distributed consensus algorithms

and other so-called fault-tolerant algorithms to bring

new approaches in the different areas of distributed

computing where the given issues are ultimate limits

that are hard to surpass at present.

6.6. Fault Tolerance for Autonomous Systems and IoT

As the Internet of Things (IoT) and autonomous

systems continue to proliferate, the need for robust

fault tolerance mechanisms in these systems is

becoming more critical. IoT devices often operate in

highly dynamic and resource-constrained

environments, making them vulnerable to failures.

Similarly, autonomous systems require highly reliable

fault-tolerant mechanisms to ensure that they can

operate safely and efficiently without human

intervention.

Fault Tolerance in IoT:

Resource-Constrained Devices: IoT devices are often

limited by power, memory, and computational

resources, making fault tolerance a challenge. Future

research must focus on developing lightweight and

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

503

efficient fault tolerance mechanisms that can operate

in these constrained environments.

Distributed Sensor Networks: IoT systems typically

rely on networks of distributed sensors. Ensuring

fault tolerance in these networks requires advanced

techniques for fault detection, recovery, and ensuring

that sensor data remains reliable in the presence of

network failures or corrupted data.

Fault Tolerance in Autonomous Systems:

Real-Time Decision Making: Autonomous systems,

such as drones, self-driving cars, and robots, need to

make real-time decisions in the face of hardware and

software failures. Fault-tolerant algorithms must be

able to detect failures quickly and adapt decision-

making to maintain system safety.

Distributed Coordination: Autonomous systems often

operate as part of a network of devices. Ensuring fault

tolerance in these systems requires mechanisms that

allow devices to coordinate and share information

even when some nodes fail.

Research Focus:

Developing fault-tolerant mechanisms tailored for

resource-constrained IoT devices and autonomous

systems that maintain reliability without excessive

overhead. Investigating how distributed fault

tolerance mechanisms can be used to ensure that IoT

devices and autonomous systems continue to function

correctly, even when network failures or hardware

malfunctions occur. Advancements in machine

learning, hybrid fault tolerance mechanisms,

blockchain technology, edge and fog computing, and

quantum computing shape the future of fault-tolerant

distributed computing for real-time applications in

critical systems. These technologies offer the potential

to overcome scalability, resource management, and

real-time performance challenges while enabling

more efficient and adaptable systems. Furthermore,

addressing the specific needs of autonomous systems

and IoT devices will be crucial in developing fault-

tolerant solutions that can function in highly dynamic,

resource-constrained environments. As these

technologies mature, they will pave the way for more

resilient and reliable real-time systems across various

critical industries.

7. Conclusion

Extremely available diverse computing for real-time

services in safety critical systems continues to be a

vibrant and dependent research domain. It is

significant in applications where system malfunctions,

such as aerospace, medical devices, automobiles,

avionics, robotics, and industrial applications, cannot

be contemplated. As these industries are complex and

require high safety and performance parameters, they

need higher availability and reliability. Therefore, the

question of how to design FT systems with strict real-

time requirements is still a concern that researchers

and engineers face.

This paper discusses basic fault tolerance methods,

including error control and consensus processes.

These methods constitute the building blocks of

dependable systems whose failure can be prevented

and whose reliability is preserved. Besides these

initial foundational concepts, we investigated specific

issues while developing real-time distributed systems

integrating FT mechanisms. Issues that must be

addressed include latency overheads, scalability, and

consistency versus availability. All these aspects are

important for designing reliable systems when dealing

with systems operating in real-time mode.

However, several high-level open issues in fault-

tolerance research can still be identified. The

optimization of time response in operational settings

is vital to reduce latency as well as boost the quality

of solutions provided in real settings. An additional

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

504

challenge is the scalability of the algorithms to handle

highly inter-connected large-scale systems, which is

critical, especially when industries continue to adopt

large-scale Internet of Things (IoT) networks or self-

driving vehicles. Furthermore, fault-tolerant

operations within highly confined spaces, where

computational or energy resources are scarce, are still

emerging challenges.

The problems presented above are solvable with the

help of emerging technologies. The introduction of

advanced machine learning applications in fault-

tolerance systems provides the architecture with

possible adaptability characteristics and a predictive

nature. Several other promising directions can be

mentioned, including using a combination of

different fault tolerance approaches to achieve the

maximal effect from each of them. Blockchain is one

of the modern technologies that can be used to build

reliable approaches to consensus and data integrity in

a distributed setting. Incorporating edge and fog

computing architectures will cut down the number of

hops for computation and bring the computational

resources nearer to the source of data, culminating in

a decrease in computation latency, which increases

real-time responsiveness.

There is also increasing awareness of the application

of quantum computing for fault tolerance. New trends

for distributed systems are introduced through ad

operational quantum error correction techniques and

quantum-enhanced algorithms. From these

developments, it stands to reason that to maximize

the success of FT (fault-tolerant) systems, these might

be applied in situations that are unpredictable or that

change often.

The vision for the next generation of fault-tolerant

distributed computing is to develop self-healing, self-

learning, and self-organizing systems. Such systems

could continuously analyze for failure risks before

they cause system failures. These architectures utilize

predictive analytics, adaptive learning models, and

distributed decision-making processes to facilitate

complex systems' real-time performance and safety.

This proactive approach is especially important in

situations where risk failure, which results in severe

consequences, can potentially happen, such as in the

cases of autonomous vehicles, mission-critical medical

equipment, aerospace systems, etc.

All these forward-looking directions underscore the

familiar need to define requirements for the next

generation of fault-tolerant systems. As such, the

researchers and engineers can develop solutions that

can be relied upon to resist the worst failure modes.

Such systems must be strong enough to operate in

advanced and changing conditions but must still be

run-time.

Altogether, there is much to do, even though much

has been done to improve the quality of human life.

The evolution and design of fault-tolerant

mechanisms and other technologies that support real-

time distributed systems have a bright future. Closely

plugged into the state of the art and building upon the

deficiencies noted in today's FTC implementations,

the next generation of FTC solutions will be better

prepared to address more dynamic and critical

applications. With the ever-advancing advances in

technology, the concept of fault tolerance will

continue to be an essential aspect of managing such

systems' reliability, safety, and success.

REFERENCES

[1] Baldoni, R., Marchetti, C., & Virgillito, A.

(2001, May). Design of an interoperable FT-

CORBA compliant infrastructure. Proceedings

of the 4th European Research Seminar on

Advances in Distributed Systems (ERSADS'01).

[2] Budhiraja, N., Marzullo, K., Schneider, F., &

Toueg, S. (1993). The primary-backup

approach. Frontier Series.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

505

[3] Zheng, Q., & Shin, K. G. (1998). Fault-tolerant

real-time communication in distributed

computing systems. IEEE Transactions on

Parallel and Distributed Systems, 9(5), 470–480.

[4] Cristian, F. (1991). Understanding fault-tolerant

distributed systems. Communications of the

ACM, 34(2), 56–78.

[5] Cukier, M., Ren, J., Sabnis, C., Sanders, W. H.,

Bakken, D. E., Berman, M. E., et al. (1998,

October). AQuA: An adaptive architecture that

provides dependable distributed objects.

Proceedings of the IEEE Symposium on

Reliable and Distributed Systems (SRDS), 245–

253.

[6] Marin, O., Bertier, M., & Sens, P. (2003,

November). Darx - A framework for the fault-

tolerant support of agent software. Proceedings

of the 14th IEEE International Symposium on

Software Reliability Engineering (ISSRE 2003),

406–417.

[7] Reiser, H. P., Kapitza, R., Domaschka, J., &

Hauck, F. J. (2006, June). Fault-tolerant

replication based on fragmented objects.

Proceedings of the 6th IFIP WG 6.1

International Conference on Distributed

Applications and Interoperable Systems - DAIS

2006, 256–271.

[8] Felber, P. (2001, September). Lightweight fault

tolerance in CORBA. Proceedings of the

International Conference on Distributed

Objects and Applications, 239–250.

[9] Narasimhan, P. (1999, December). Transparent

fault tolerance for CORBA.

[10] Narasimhan, P., Dumitras, T., Paulos, A.,

Pertet, S., Reverte, C., Slember, J., et al. (2005).

MEAD: Support for real-time fault-tolerant

CORBA. Concurrency and Computation:

Practice and Experience.

[11] Narasimhan, P., Moser, L. E., & Melliar-Smith,

P. M. (2000, April). Gateways for accessing fault

tolerance domains. Middleware 2000, 88–103.

[12] Vaysburd, A., & Yajnik, S. (1999, October).

Exactly-once end-to-end semantics in CORBA

invocations across heterogeneous fault-tolerant

ORBs. IEEE Symposium on Reliable Distributed

Systems, 296–297.

[13] Krishna, C. M. (2014). Fault-tolerant scheduling

in homogeneous real-time systems. ACM

Computing Surveys (CSUR), 46(4), 1–34.

[14] Pathan, R. M. (2014). Fault-tolerant and real-

time scheduling for mixed-criticality systems.

Real-Time Systems, 50, 509–547.

[15] Thekkilakattil, A., Dobrin, R., & Punnekkat, S.

(2014, July). Mixed criticality scheduling in

fault-tolerant distributed real-time systems. In

2014 International Conference on Embedded

Systems (ICES) (pp. 92–97). IEEE.

[16] Rubel, P., Loyall, J., Schantz, R., & Gillen, M.

(2006). Fault tolerance in a multi-layered DRE

system: A case study. Journal of Computers

(JCP), 6, 43–52.

[17] Balasubramanian, J., Gokhale, A., Schmidt, D.

C., & Wang, N. (2008). Towards middleware for

fault-tolerance in distributed real-time and

embedded systems. In Distributed Applications

and Interoperable Systems: 8th IFIP WG 6.1

International Conference, DAIS 2008, Oslo,

Norway, June 4–6, 2008. Proceedings 8 (pp. 72–

85). Springer Berlin Heidelberg.

[18] Schneider, F. B. (1990). Implementing fault-

tolerant services using the state machine

approach: A tutorial. ACM Computing Surveys,

22(4), 299–319.

[19] Gill, C. D., Levine, D. L., & Schmidt, D. C.

(2000, September). Towards real-time adaptive

QoS management in middleware for embedded

computing systems. Proceedings of the 4th

Annual Workshop on High Performance

Embedded Computing.

[20] Y. Amir and J. Stanton, The Spread Wide Area

Group Communication System. Technical

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Bipinkumar Reddy Algubelli et al Int J Sci Res Sci Technol. July-August-2018; 4 (9) : 482-506

506

Report CNDS 98–4 Center for Networking and

Distributed Systems, 1998.

[21] Ramezani, R., Sedaghat, Y.: An overview of

fault tolerance techniques for real-time

operating systems. In: ICCKE 2013, Mashhad,

pp. 1–6 (2013).

[22] Persya, C., Nair, G.: Fault tolerant real-time

systems. In: International Conference on

Managing Next Generation Software

Application, MNGSA 2008, Coimbatore (2008).

[23] Imai, S., Blasch, E., Galli, A., Zhu, W., Lee, F.,

Varela, C.A.: Airplane flight safety using error-

tolerant data stream processing. IEEE Aerosp.

Electron. Syst. Mag. 32(4), 4–17 (2017).

[24] Al-Omari, R.M.S: Controlling schedulability-

reliability trade-offs in real-time systems

(2001).

[25] Sahingoz, O.K., Sonmez, A.C.: Agent-based

fault-tolerant distributed event system.

Comput. Inf. 26, 489–506 (2007).

[26] Sahingoz, O.K., Sonmez, A.C.: Fault tolerance

mechanism of agent-based distributed event

system. In: 6th International Conference

Computational Science, ICCS 2006, Reading,

UK, 28–31 May, pp. 192–199 (2006).

[27] Salehi, M., Tavana, M.K., Rehman, S., Shafique,

M., Ejlali, A., Henkel, J.: Two-state

checkpointing for energy-efficient fault

tolerance in hard real-time systems. IEEE

Trans. Very Large Scale Integr. Syst. 24(7),

2426–2437 (2016).

[28] Tranninger, M., Haid, T., Stettinger, G.,

Benedikt, M., Horn, M.: Fault-tolerant coupling

of real-time systems: a case study. In: 3rd

Conference on Control and Fault-Tolerant

Systems (SysTol), Barcelona, pp. 756–762

(2016).

[29] Mohammed, B., Kiran, M., Awan, I.U.,

Maiyama, K.M.: Optimising fault tolerance in

real-time cloud computing IaaS environment.

In: IEEE 4th International Conference on

Future Internet of Things and Cloud (FiCloud),

Vienna, pp. 363–370 (2016).

[30] Abdi, F., Mancuso, R., Tabish, R., Caccamo, M.:

Restart-Based Fault-Tolerance: System Design

and Schedulability Analysis. CoRR (2017).

[31] Driscoll, K., Hall, B., Sivencrona, H., Zumsteg,

P.: Byzantine fault tolerance, from theory to

reality. In: LNCS, pp. 235–248 (2003).

[32] Murthy, C.: Resource Management in Real-

Time Systems and Networks. The MIT Press,

Cambridge (2016).

