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ABSTRACT 

In this paper we show that trans-Sasakian manifolds satisfying the conditions R(X, Y ) · S = 0, C̃ (ξ , X) · S 

= 0 are Einstein.  
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I. INTRODUCTION 

 

A class of almost contact metric manifolds known as trans-Sasakian manifolds was introduced by J.A.Oubina [6] 

in 1985. This class contains α-Sasakian, β-Kenmotsu and co-symplectic  manifolds.  

Trans-Sasakian manifolds are an important generalization of Sasakian, Kenmotsu and co-symplectic manifolds 

in differential geometry. They arise naturally in the study of contact geometry and Riemannian geometry. An 

almost contact metric structure on a manifold M is called a trans-Sasakian structure if the product manifold 

M × R belongs to the class W4, a class of Hermitian manifolds which are closely related to a locally conformal 

Kahler manifolds. Trans-Sasakian manifolds were studied extensively by J.C. Marrero [5], C.S. Bagewadi and 

Venkatesha [1, 2], M.M. Tripathi [9] and others. Trans-Sasakian manifolds are an important generalization of 

Sasakian and cosymplectic manifolds in differential geometry. They arise naturally in the study of contact 

geometry and Riemannian geometry. Trans-Sasakian manifolds are used in theoretical physics, particularly in 

string theory and contact mechanics. They also appear in Hamiltonian dynamics, differential geometry, and sub-

Riemannian geometry. They provide a unifying framework to study different geometric structures that arise 

naturally in complex geometry and topology. 

In this paper, we study the trans-Sasakian manifolds satisfying the conditions R(X, Y ) · S = 0 and C̃ (ξ , 

X) · S = 0  are Einstein where C̃  is a concircular curvature tensor. 

Preliminaries 

An n-dimensional smooth manifold M is said to be an almost contact metric manifold if it admits a (1, 

1) tensor field φ, a vector field ξ, a 1-form η and a Riemannian metric g, which satisfy 

(2.1) φ2X =  −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1, 

(2.2) g(φX, Y )  =  −g(X, φY ), η(X) = g(X, ξ), 
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(2.3) g(φX, φY )  =  g(X, Y ) − η(X)η(Y ), 

for all vector fields X, Y on M. 

n almost contact metric manifold M (φ, ξ, η, g) is said to be trans-Sasakian manifold if (M × R, J, G) 

belongs to the class W4 of the Hermitian manifolds, where J is the almost complex structure on M × R 

defined for any vector field Z on M and smooth  function f on M × R and G is the product 

metric on M × R. This may be stated by the condition 

(2.4) (∇Xφ)Y = α{g(X, Y )ξ − η(Y )X} + β{g(φX, Y )ξ − η(Y )φX}, 

where α, β are smooth functions on M and such a structure is said to be the trans-Sasakian structure of 

type (α, β). From (2.4) it follows that 

(2.5) ∇Xξ =  −αφX + β{X − η(X)ξ}. 

Note: 

(1) If we consider α and β are smooth functions in equation (2.4) and α /= 0, β = 0 then the 

trans-Sasakian manifolds of type (α, β) reduces as α-Sasakian manifolds. Similarly, if α and β are 

scalars and α = 1, β = 0 then the trans-Sasakian manifolds reduces as Sasakian manifolds. 

(2) If we consider α and β are smooth functions in equation (2.4) and α = 0, β /= 0 then the trans-

Sasakian manifolds of type (α, β) reduces as β-Kenmotsu manifolds. Similarly, if α and β are 

scalars and α = 0, β = 1 then the trans-Sasakian manifolds reduces as Kenmotsu manifolds. 

In a trans-Sasakian manifold M (φ, ξ, η, g) the following relations hold: 

R(X, Y )ξ =  (α2 − β2)[η(Y )X − η(X)Y ] − (Xα)φY − (Xβ)φ2Y 

(2.6) +  2αβ[η(Y )φX − η(X)φY ] + (Y α)φX + (Y β)φ2X, 

 

η(R(X, Y )Z)  =  (α2 − β2)[g(Y, Z)η(X) − g(X, Z)η(Y )] − 2αβ[g(φX, Z)η(Y ) − g(φY, Z)η(X)] 

 — (Y α)g(φX, Z) − (Xβ){g(Y, Z) − η(Y )η(Z)} + (Xα)g(φY, Z) 

(2.7) 
 

+ (Y β){g(X, Z) − η(X)η(Z)}, 

(2.8) R(ξ, 

X)ξ 

= (α2 − β2 − (ξβ))[η(X)ξ − X], 

(2.9) S(X, ξ) = [(n − 1)(α2 − β2) − (ξβ)]η(X) − ((φX)α) − (n − 2)(Xβ), 

(2.10) S(ξ, ξ) = [(n − 1)(α2 − β2) − (ξβ)], 

(2.11) 
  

ξα + 2αβ = 0. 

 

where R is the curvature tensor of type (1, 3) and Q is the symmetric endomorphism of the tangent 

space at each point of the manifolds corresponding to the Ricci tensor S, that is, g(QX, Y ) = S(X, Y 

) for any vector fields X, Y on M. 
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Lemma 2.1. In a trans-Sasakian manifold of type (α, β), if 

(2.15) φ(gradα) = (n − 2)(gradβ), 

then we have 

(2.16) ξβ = 0. 

Thus the directional derivative of β with respect to characteristic vector field ξ is zero. 

The concircular curvature tensor C̃  on Trans-Sasakian manifold M of dimensional n is defined by 

 
for any vector fields X, Y, Z where R is the curvature tensor and r is the scalar curvature. 

Trans-Sasakian manifolds satisfying R(X, Y ) · S = 0 

Definition 3.1. An n-dimensional trans-Sasakian manifold M is said to be Ricci semi-symmetric if 

(3.1) R(X, Y ) · S = 0, 

for any vector  fields X, Y where R is the curvature tensor and S is the Ricci tensor. 

Theorem 3.1. Let M be an n-dimensional trans-Sasakian manifold. Then M is Ricci-semi-symmetric 

if and only if an Einstein manifold. 

Proof. We know that every Einstein manifold is Ricci-semi-symmetric but the converse is not true in 

general. Here, we prove that in a trans-Sasakian manifolds R(X, Y ) · S = 0 implies that the manifold is 

an Einstein manifold. 

(3.2) S(R(X, Y )U, V ) + S(U, R(X, Y )V ) = 0, 

putting X = ξ in equation (3.2), we have 

(3.3) S(R(ξ, Y )U, V ) + S(U, R(ξ, Y )V ) = 0. 

By using (2.6) in (3.3), we obtain 

(α2 − β2)[g(Y, U )S(ξ, V ) − η(U )S(Y, V ) + g(Y, V )S(U, ξ) − η(V )S(U, Y )] 

+2αβ[g(φU, Y )S(ξ, V ) + η(U )S(φY, V ) + g(φV, Y )S(U, ξ) + η(V )S(U, φY )] 

+(Uα)S(φY, V ) + g(φU, Y )S(gradα, V ) + (Uβ)[S(Y, V ) − η(Y )S(ξ, V )] 

−g(φU, φY )S(gradβ, V ) + (V α)S(U, φY ) + g(φV, Y )S(U, gradα) 

(3.4) +(V β)[S(U, Y ) − η(Y )S(U, ξ)] − g(φV, φY )S(U, gradβ) = 0. 

By putting U = ξ in (3.4) and by using (2.9), (2.10), (2.11) and (2.16), we obtain 

(3.5) S(Y, V ) = (n − 1)(α2 − β2)g(Y, V ). 

 

Therefore, M is Einstein manifold. This completes the proof of the theorem.   

Trans-Sasakian manifolds satisfying C̃ (ξ , X) · S = 0 In this section we consider 

C̃ (ξ , X) · S = 0 and prove the following theorem: 

Theorem 4.2. Let M be an n-dimensional trans-Sasakian manifold. If M satisfies the condition 

 
then M is Einstein manifold and has scalar curvature r = n(n − 1)(α2 − β2). 

Proof. Since C̃ (ξ , X) · S = 0, we have 
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In view of (2.18) in (4.3), we have 

 

 

 
This implies that 

(4.7) S(X, Y ) = (n − 1)(α2 − β2)g(X, Y ). 

On contracting (4.7), we have 

(4.8) r = n(n − 1)(α2 − β2). 

Therefore M is an Einstein manifold with the scalar curvature r = n(n − 1)(α2 − β2). 

 

Conclusion 

In a trans-Sasakian manifold if R(X, Y ) · S = 0 and C̃ (ξ , X) · S = 0 then the manifold is Einstein 

manifold. Trans-Sasakian manifolds serve as a bridge between Sasakian, Kenmotsu and cosymplectic 

geometries, making them a rich area of study in modern differential geometry. Researchers continue to explore 

their curvature properties, classification, and applications in various fields of mathematics and physics. The 

concircular curvature tensor provides a refined way to measure the deviation of a manifold from constant 

curvature while preserving geodesic concircularity. It is particularly useful in trans-Sasakian geometry, Einstein 

manifolds, and conformal geometry. Understanding its properties allows for deeper insights into the geometric 

and physical interpretations of various manifolds. 
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