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Abstract  

In this chapter, we study the vertex minimal dominating graph )(GDM v  of a graph G and some of its 

properties. Also, we present some more basic results on vertex minimal dominating graph, in particular a 

characterization of )(GDM v  which are complete, tree, Eulerian, Hamiltonian and planar. In addition we find 

the connectedness and diameter of )(GDM v . 

. 

1. INTRODUCTION 

The eccentricity )(ve  of v  is defined by )}(/).(max{)( GVuvudve = . 

The diameter diam )(G of G  is defined by )}.(/)(max{)( GVuueGdiam =  

 

 A graph is said to be embedded in a surface S  when it is drawn on S  so that no edges intersect 

geometrically except at a point to which they are both incident. A graph is called planar if it can be embedded in 

the plane; a planar graph has already been embedded in the plane. 

 

 A planar graph is called outerplanar if it can be embedded in the plane so that all its vertices lie on the 

same face. It is well-known that a graph is outerplanar if and only if it has no subgraph homeomorphic to 4K  or 

3,2K  except xK −4 , where x  is any edge of 4K . 

 

 The subdivision graph )(GS  of G  is obtained by inserting a vertex in each edge.  

 The common minimal dominating graph )(GCD  of a graph G  is the graph having the same vertex set as 

G  with two vertices adjacent in )(GCD  if and only if there exists a minimal dominating set in G  containing 

them. (see [4] ). 

 

 The interesting graph valued function that is, the vertex minimal dominating graph of a graph is 

introduced by Kulli, Janakiram and Niranjan in [6]. 

 

 The vertex minimal dominating graph )(GDM v  of a graph G  is a graph with 

SVVGDMV v ==))(( , where S  is the collection of all minimal dominating sets of G  with two vertices 

Vvu ,  are adjacent if either they are adjacent in G  or Dv =  is a minimal dominating set of G  containing u . 

We illustrate this concept through Fig 3.1. 
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Figure: 3.1. A graph and its vertex minimal dominating graph 

 

The following Theorems are useful to prove our next results. 

THEOREM 3.A [3]. Every maximal independent set in a graph G is a minimal dominating set of G . 

THEOREM 3.B [2]. A graph G is eulerian if and only if every vertex of G  has even degree. 

THEOREM 3.C [2]. A  graph G  is planar if and only if it has no subgraph homeomorphic to 5K  or 3,3K . 

 

3.2. SOME BASIC PROPERTIES OF THE VERTEX 

MINIMAL DOMINATING GRAPH 

First we present the characterizations of graph G for which )(GDM v  is complete. 

THEOREM 3.1. For any graph G , )(GDM v  is connected. Further, it is complete if and only if 1KG = . 

PROOF: Since for each Vv there exists a minimal dominating set containing  v , every vertex in )(GDM v  is 

not an isolated. Suppose )(GDM v  is disconnected and 1G  and 2G  be two components of )(GDM v . Then there 

exists two nonadjacent vertices Vvu , such that )( 11 GVVu =  and )( 22 GVVv = . This implies that there is 

no minimal dominating  set in G  containing u and v , which is a contradiction. Since there exists a maximal 

independent set containing u  and v and by Theorem 3.A, every maximal independent set is a minimal 

dominating set. Hence, )(GDM v  is connected. Now, we prove second part. Suppose )(GDM v  is complete. Then 

G  is complete and has exactly one minimal dominating set. This implies that 1KG = . Converse is obvious.  

This completes the proof. 

THEOREM 3.2. For any graph G , 

diam ,3))(( GDM v      )1(  

where diam )(G  is diameter of G . 

PROOF: Suppose G  has at least two vertices. Then )(GDM v  has at least three vertices. Let Vvu , . We 

consider the following cases: 

{1

} 

MvD(G) : 
{3,4

} {2,4} 

2 3 

1
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Case 1. Suppose Vvu , . Then in 2),(),( vudGDM v . 

Case 2. Suppose Vu and Vv . Then Dv = is a minimal dominating set of G .  If Du , then in 

1),(),( =vudGDM v . If Du , then there exists a vertex Dw adjacent to u and hence in )(GDM v  

  ),(),(),( vwdwudvud += =2 . 

Case 3. Suppose Vvu , . Then Du = and Dv = are two minimal dominating sets of G . If D and D  are 

disjoint set, then every vertex Dw  is adjacent to some vertex Dx   and vice versa. This implies that in 

)(GDM v  

  ),(),(),(),( vxdxwdwudvud ++=  

  3),( =vud . 

 If  D and D  have a vertex in common, then in )(GDM v  

),(),(),( vwdwudvud +=  

  2),( =vud  . 

Thus, from Theorem 3.1, and above all the three cases (1) follows. 

This completes the proof. 

In the next result, they give bounds for order of )(GDM v . 

THEOREM 3.3. For any graph G , 

2

)1(
)(

+
+

pp
pGdp    )2(  

Where )(Gd  is the domatic number of G  and p  denotes the number of vertices of )(GDM v . Further, the 

lower bound is attained if and only if pKG =  or pK  or 1,1 −pK and the upper bound is attained if and only if G  

is )2( −p - regular. 

PROOF: The lower bound follows from the fact that every graph has atleast )(Gd  number of minimal 

dominating sets of G  and upper bound follows from the fact that every vertex is in at most )1( −p  minimal 

dominating sets of G . 

 Suppose the lower bound is attained. Then every vertex is in exactly one minimal dominating set of G  

and hence, every minimal dominating set is independent. Further, for any two minimal dominating sets D  and 

D  every vertex in D  is adjacent to every vertex in D . This implies the necessity. Sufficiency is straight forward. 

Suppose the upper bound is attained. Then each vertex is in exactly )1( −p  minimal dominating sets and hence 

G  is )2( −p - regular. Converse is obvious. This completes the proof. 

 In the next result, they give bounds for the size of )(GDM v . 

THEOREM 3.4.  For any graph G , 

 (i)  qppqqp +−+ )1(     )3(  

 (ii)  qGdGpq ++ 2/))}()((2{     )4(  

where q   denotes the number of edges of )(GDM v . Further, the lower bound in (i) and (ii) are attained if and 

only if every vertex of G  is in exactly one minimal dominating set of G  and pKG =  or pK  respectively and 

the upper bound in (i) attained if and only if G  is )2( −p - regular. 

PROOF: First we prove (3). The lower bound follows from the fact that for every vertex Vv  there is a minimal 

dominating set containing v . 
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 Suppose the lower bound is attained. Then obviously each vertex is in exactly one minimal dominating set. 

Converse is obvious. 

 The proof for the upper bound is on the same lines of Theorem 3.3. 

Now we prove (4). 

 
=

=

1

1

)deg(2
p
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ivq               
= +=
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p
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pi

ii vv
1 1

1

)deg()deg(  

))}()((2{2 GdGpqq ++   

2/))}()((2{ GdGpqq ++   

This proves (4). 

 Suppose the bound is attained. On the contrary, if pp KKG , , then either there exists a vertex Vv  

which is in at least two minimal dominating sets of G  or there exist two minimal dominating sets D  and D  

such that DD  , which is a contradiction and hence, pKG = or pK . Converse is obvious. This completes the 

proof. 

 In the next result, a characterization is given for graphs G  for which )(GDM v  is a tree.  

THEOREM 3.5. For any graph G , )(GDM v  is a tree if and only if pKG =  or 2K . 

PROOF: Suppose is a )(GDM v  tree. Clearly, G  has no cycle. On the contrary, if 2, KKG p , then we consider 

the following cases. 

Case 1. If 3,1)( −= ppG , then G  is a star and hence )(GDM v  contains a cycle, a contradiction.  

Case 2. If 2)( − pG , then there exists three vertices vu,  and Vw  such that u  and v  are adjacent and w  

is not adjacent to both u  and v . This implies that in )(GDM v , u  and v  are connected by at least two paths, 

once again a contradiction. Thus, from the above two cases necessity follows. Sufficiency is easy to see. This 

completes the proof. 

COROLLARY 3.6. For any graph G , 

qGdGpqqp +++ }2/))}()((2{,max{    )5(  

THEOREM 3.7. For any graph G , 

 })(,max{))(( 00 KGppGDM v +−=     )6(  

where K  is the maximum number of minimal dominating set in a vertex cover of G  and )(0 G  is the 

independence number of G . 

PROOF: Let S   be a maximal independent set of vertices in )(GDM v . Then SS =  or 11 SD  , where S  is the 

collection of all minimal dominating set of G , 1D  be the maximum independent set of vertices in G  and 1S  be 

the collection of all minimal dominating sets of G  in 1DV −  with KS =1 . This proves the theorem. This 

completes the proof. 

COROLLARY 3.8. For any graph G . 

(i) if G  has no isolates, then 

}1)(),(max{))(( 00 + GGDGDM v     )7(  

(ii) for otherwise 

)())(( 00 GGDM v   .     )8(  
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3.3. EULERIAN AND HAMILTONIAN PROPERTIES OF VERTEX MINIMAL DOMINATING GRAPH 

They characterized vertex minimal dominating graphs which are eulerian.   

THEOREM 3.9. For any graph G , )(GDM v  is eulerian if and only if the following conditions are saticified: 

(i) every minimal dominating set contains even number of vertices; 

(ii) if Vv  is a vertex of odd degree, then it is in odd number of minimal dominating sets, otherwise it is in 

even number of minimal dominating sets. 

PROOF: Suppose )(GDM v  is eulerian. On the contrary, if one of the given conditions say (i) is not satisfied, then 

there exist a minimal dominating set containing odd number of vertices and hence, )(GDM v  has vertex of odd 

degree, a contradiction to Theorem 3.B. Hence, (i) holds. Similarly, we prove (ii). Suppose condition (ii) is not 

satisfied, then there exist a vertex v  of odd degree and it is in even number of minimal dominating sets and hence, 

)(GDM v  has vertex v  of odd degree, a contradiction to Theorem 3.B. 

Conversely, suppose the given conditions are satisfied. Then every vertex in )(GDM v  has even degree and hence 

by the Theorem 3.B, )(GDM v  is eulerian.  

 This completes the proof. 

THEOREM 3.10. Let G  be a )3( −p - regular graph and 2)(0 =G . If every minimal dominating set of G  is 

independent, then )(GDM v  is hamiltonian. 

PROOF: Since for each vertex Vv  there exist two minimal dominating sets containing v  and every minimal 

dominating set has exactly two vertices, )(GDM v  is cycle and hence, it is hamiltonian. 

This completes the proof. 

They gave sufficient conditions on G  for which the vertex minimal dominating graph of G  is nonplanar. 

THEOREM 3.11. Let B  be a block in G  satisfying the following conditions: 

(i) B  has three minimal dominating sets 21, DD  and 3D  such that each vertex 
3

1=

=
i

DiSv  is not adjacent 

to any vertex of BG − ; 

(ii) There exists a minimal dominating set for BG −  containing at least three vertices. 

Then )(GDM v  is non planar. 

PROOF: Let D  be a minimal dominating set for BG −  containing atleast three vertices.  Then for each 

31,  iDi . 1DD   is a minimal dominating set for G .  Thus, there exists three minimal dominating sets for 

G  each of which contains the vertices of D .  This implies that )(GDM v  contains 3,3K  as an induced subgraph 

and hence, by Theorem 3.C, it is nonplanar. 

This completes the proof. 

THEOREM 3.12. Let B  be a block graph in G  satisfying the following conditions: 

(1) B  has two minimal dominating sets 1D  and 2D  such that each vertex in 21 DD   is not adjacent to 

any vertex of BG − . 

(2) There exists a minimal dominating set for BG −  containing atleast three vertices. 

Then  )(GDM v  is nonouterplanar. 
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THEOREM 3.13. If 2)( = G  then, 

   )())(( GDMGCDS v    )9(  

where )(G  is the upper domination number of G .  Further, the equality holds if and only if 2KG = . 

PROOF: Let Vvu , .  If there exists a minimal dominating set },{ vu  in G , then in )(GCD , u  and v  are 

adjacent and in )(GDM v  there exists a path of length two between u  and v . This implies the proof of this 

theorem. 

Now, we prove the second part. 

Suppose the equality holds. Then pKG = . If 3p , then there exists a minimal dominating set in G  with at 

least three vertices, a contradiction. Hence, 2KG = . Converse easy to prove.  

This completes the proof. 
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