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ABSTRACT : 

In this chapter, we obtain  the bounds on the number of edge and vertices edges, domatic number, 

domination number of the minimal dominating graph and vertex minimal dominating graph of a graph. 
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1. INTRODUCTION 

The graph considered here are finite,  undirected  without loops or multiple edges. Any undefined term 

in this paper may be found in Harary[2]. 

Let ),( EVG =  be a graph.  A set VD  is called a dominating set if every vertex Vv  is either an 

element of D  or is adjacent to an element of D . A dominating set D  is a minimal dominating set if no 

proper subset DD   is a dominating set. The domination number )(G  of G  is the minimum  

cardinality of a minimal dominating set in G . The upper domination number )(G  of G  is the 

maximum cardinality of a minimal dominating set in G . 

Domatic number )(Gd  of a graph G  to be the largest order of a partition of  )(GV  into dominating set 

of G . 

The minimal dominating graph )(GMD  of a graph G  is the intersection graph defined on the family of 

all minimal dominating sets of vertices of G .   

The vertex minimal dominating graph )(GDM v  of a graph G  is a graph with 

SVVGDMV v ==))(( , where S  is the collection of all minimal dominating sets of G  with two 

vertices Vvu ,  are adjacent if either they are adjacent in G  or Dv =  is a minimal dominating set of 

G  containing u . 

In Fig.1, a graph G, its minimal dominating graph )(GMD  and vertex minimal dominating graph 

)(GDM v  are shown. 

 

{2} 

{1,4} {1,3} 

MD(G) : 
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The following results are useful to prove our next results. 

 

REMARK 1. The degree of the vertices of vertex minimal dominating graph )(GDM v  is given by, 

(i) =)(deg )( iGDM D
v

cardinality of iD  in G  

(ii) j

G

jjGDM tvv
v

+= )deg()(deg )(  

where niDi 1,  denotes the minimal dominating sets of G  and pjt j 1,  denotes the number 

of minimal dominating sets containing jv  in G . 

REMARK 2. For any graph G,the set S= },......,,{ 21 nSSS  is independent set of )(GDM v  

                      Where niSi 1,  denotes the all minimal dominating sets of G.  

THEOREM  A [3]. For any graph G , 

PGMD =))((  

               if and only if every independent set of G  is a dominating set. 

THEOREM  B [3]. For any graph G , )(GMD  is complete if an only if G  contains an isolated vertex. 

THEOREM  C [4]. For any graph G ,  is tree if and only if PKG =  or 2K . 

THEOREM  D [5]. If 2)(  G , then 

)()( GDGS   

where )(GS  is the subdivision graph of G . 

THEOREM  E [4]. For any graph G , 

)()( GDMGD v  

Further, the equality holds if and only if PKG = . 

THEOREM  F[1]. 

                 (i) nKd n =)(  ;  1)( =nKd   

      (ii) for  any tree T with 2p  vertices, 2)( =Td  

 

RESULTS ON MINIMAL DOMINATING GRAPH 

THEOREM 1. For any graph G , 

2/)1()( − pppGd  

)(GDM v
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where p  denotes the number of vertices of )(GMD . Further the lower bound attained if an only if 

pKG =  or pK  or 1,1 −pK  and the upper bound is attained if and only if G  is )2( −p - regular. 

PROOF: The lower bound follows from the fact that every graph has at least )(Gd  number of minimal 

dominating sets of G  and the upper bound follows from the fact that every vertex is in at most )1( −p  

minimal dominating  sets of G . 

 Suppose the lower bound is attained.  Then every vertex is in exactly one minimal dominating 

set of G , and hence every minimal dominating set is independent.  Further, for any two minimal 

dominating sets D  and D  every vertex in D  is adjacent to every vertex in D .  This implies the 

necessity. 

 Conversely, suppose pKG = or pK or 1,1 −pK . Then by Theorem F, pKd p =)(  or 1)( =pKd  

or 2)( 1,1 =−pKd   which implies that  order of )(GMD  are  p  or  one  or  two  respectively. 

 Suppose the upper bound is attained.  Then each vertex is in exactly )1( −p  minimal 

dominating sets and hence G  is )2( −p - regular. 

 Converse is obvious.  This completes the proof. 

THEOREM 2. For any graph G , 

)1(0 − ppq  

where q   is the number of edges in )(GMD , further the lower bound attained if and only if PKG =  or 

PK  or 1,1 −PK  and the upper bound is attained if and only if G  is )2( −p - regular. 

PROOF: Suppose the lower bound attains.  Then )(GMD  is totally disconnected or 1K . Consequently 

PKG =  or PK  or 1,1 −PK . 

 Conversely, suppose PKG = , then each vertex of G  is a minimal dominating set of G .  Hence 

)(GMD  is totally disconnected. 

 Suppose if 1,1 −= pKG , then clearly, G  has only two minimal dominating sets with no element 

in common.  Hence )(GMD  is disconnected. 

 Suppose PKG = .  Then )(GV  is the minimal dominating set of G .  Hence 1)( KGMD = . 

 Suppose the upper bound is attained.  Then each vertex of G  is in exactly )1( −p - minimal 

dominating sets and hence G  is )2( −p - regular. 

 Conversely, suppose G  is )2( −p - regular.  Then clearly each vertex of G  is in exactly )1( −p

- minimal dominating sets of G and in G  we have p  number vertices, which implies )(GMD  has 

)1( −pp  edges. 

                 This completes the proof. 

THEOREM 3. For any graph G , 

1))(()( +=+ pGMDG   

if  and only if every independent set of G  is a dominating set or pKG = . 

PROOF: Suppose every independent set of G  is dominating set.  Then each Vv }{  is a minimal 

dominating set of G , this prove that pKGMD =)( .  Hence  1))(()( +=+ pGMDG    holds.Suppose 
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pKG = .  Then )(GV  is a minimal dominating set of G .  This implies 1)( KGMD = .  Hence  

1))(()( +=+ pGMDG    holds. 

 Conversely,suppose 1))(()( +=+ pGMDG   holds.  On the contrary suppose pKG  .  Then 

there exist at least two non_adjecent vertices u and v   in G .Clearly each vertex )(GVw  other than u 

and v  form a minimal dominating set of  G .Also  the  set },{ vu  form minimal dominating set of 

G .Consequently  this gives 1)( =G  and 1))(( −= pGMD ,which is a contradiction. Therefore  

pKG = . 

 Suppose pKG    then there exist at least one non-trivial componet 
1G in G .In G  we have two 

minimal dominating sets of order  p-1 ,consequently this gives 1)( −= pG  and 1))(( =GMD , which 

is a contradiction .Therefore pKG = . 

                                        This completes the proof. 

THEOREM 4. For any graph G , 

))(())(( GMDVGMDd =  

if and only if G  contains an isolated vertex. 

PROOF: Suppose  ))(())(( GMDVGMDd =  holds.  Then by Theorem F, )(GMD  is complete. And also 

by the Theorem B, )(GMD is complete if and only if  G  contains an isolated vertex. 

 Conversely, suppose G  contains an isolated vertex.  Then  by Theorem B, )(GMD  is complete 

and also by  Theorem F,we have ))(())(( GMDVGMDd = .                        This completes the proof. 

THEOREM 5. For any graph G , 

1))(( =GMD  

                            if and only if G  contains an isolated vertex. 

PROOF: Suppose 1))(( =GMD .  Then, )(GMD  is  complete.  And also by Theorem B, )(GMD  

complete if and only if  G contains an isolated vertex.Hence G  contains isolated vertex. 

 Conversely, suppose G  contains an isolated vertex, then by Theorem B, )(GMD  is complete 

which implice 1))(( =GMD . 

             This completes the proof. 

 

 

RESULTS ON VERTEX MINIMAL DOMINATING GRAPH 

 

THEOREM 6. For any graph G , )(GDM v  is bipartite if and only if pKG =  or 1,1 −PK . 

PROOF: Suppose )(GDM v  is bipartite, then we have to prove that pKG =  or 1,1 −PK .  On the contrary 

if pKG  , then there exists a component 1G  of G  which is not trivial.  Then, clearly )(GDM v  

contains a cycle of length five, which is a contradiction.  Hence pKG = . Suppose if 1,1 − PKG , 

then there exist a cycle in G .  Since G  is subgraph of )(GDM v , this implies that )(GDM v  contains a 

cycle of odd length (length three), which is again a contradiction.  Hence 1,1 −= PKG . 
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 Conversely, suppose pKG = , then clearly by Theorem C, )(GDM v  is tree this implies that 

)(GDM v  is bipartite. 

 Suppose 1,1 −= PKG , then there exist exactly two minimal dominating sets D  and D . D  

contains a vertex u  of degree 1−p  and D  contains the uGV −)(  vertices of degree one.  Clearly by 

definition, )(GDM v  we get the bipartite graph.   

                    This completes the proof. 

THEOREM 7. For any graph, 

   








=
 pj

jGDM

ni

iGDMv vDGDM
vv

1

)(

1

)( )(degmin,)(degminmin))((  

PROOF: We consider the following cases: 

Case 1. Let u  be the vertex of )(GDM v  which corresponds to the minimal dominating set of G .  If it 

has the minimum degree among the other all vertices of )(GDM v , then by deleting the vertices of 

)(GDM v  which are adjacent to u , results in a disconnected graph.  Thus, 

 
ni

iGDMv DGDM
v



=
1

)( )(degmin))((  

Case 2. Let w  be the vertex of )(GDM v  which corresponds to the vertex of G .  If it has the minimum 

degree among all the other vertices of )(GDM v .  Then by deleting vertices of )(GDM v  which are 

adjacent to w  results in a disconnected graph.  Thus, 

 
pj

jGDMv vGDM
v



=
1

)( )(degmin))((  

 By combining the above two cases we get,                                    

   








=
 pj

jGDM

ni

iGDMv vDGDM
vv

1

)(

1

)( )(degmin,)(degminmin))((  

                              This completes the proof. 
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THEOREM 8. For any graph G , 

                                                                                                                                                

   








=
 pj

jGDM

ni

iGDMv vDGDM
vv

1

)(

1

)( )(degmin,)(degminmin))((  

PROOF: We consider the following cases: 

Case 1. Let u  be the vertex of )(GDM v  which corresponds to the minimal dominating set of G .  If it 

has the minimum degree among the other all vertices of )(GDM v , then by deleting the edges in 

)(GDM v  which are incident with u  the resulting graph will be disconnected.  Thus, 

 
ni

iGDMv DGDM
v



=
1

)( )(degmin))((  

Case 2. Let w  be the vertex of )(GDM v  which correspond to the vertex of G .  If it has the minimum 

degree among the all other vertices of )(GDM v , then by deleting the edges in )(GDM v  which are 

incident with w .  The resulting graph will be disconnected.  Thus, 

 
pj

jGDMv vGDM
v



=
1

)( )(degmin))((  

 By combining the above two cases we get, 

   








=
 pj

jGDM

ni

iGDMv vDGDM
vv

1

)(

1

)( )(degmin,)(degminmin))((  

                 This completes the proof. 

 

THEOREM 9. For any graph G , 

pGDM v =))((  

                            if and only if PKG = . 

PROOF: Suppose pGDM v =))((  holds.  On the contrary, if 
PKG  , then  there exist at least two 

non-adjacent vertices u  and v  in G .  Clearly each vertex )(GVw  other than u  and v  form a 

minimal dominating set of G .  Also the set },{ vu  form a minimal dominating set of G .  Consequently 

this gives 1))(( −= PGDM v , which is a contradiction.  Hence 
PKG = . 

 Conversely, suppose PKG = , then each )(}{ GVv   is a minimal dominating set of G .  By the 

definition of )(GDM v  each vertex is adjacent to exactly one minimal dominating set, which follows 

that pGDM v =))(( . 

                     This completes the proof. 

 

THEOREM 10. For any graph G , 

2))(( =GDMd v  

                                if and only if PKG =  or 2K . 

PROOF: Suppose 2))(( =GDMd v .  Then by Theorem F, )(GDM v  is a tree and also by Theorem C, we 

have PKG =  or 2K . 
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Conversely, suppose PKG =  or 
2K .  Then   Theorem C, )(GDM v  is a tree ,also by Theorem F,

2))(( =GDMd v . 

This completes the proof. 

THEOREM 11.  If 2)( = G , then 

)()( GDMGS v  

Further, the equality holds if and only if 2KG = . 

PROOF: Since by the Theorem D, )()( GDGS  .  Also, from   Theorem E, )()( GDMGD v .  Then 

)()( GDMGS v  holds. 

 Now, we have to prove second part. 

 Suppose the equality holds.  On the contrary, if PKG = , for 3p  then there exist a minimal 

dominating set in G  with at least three vertices, a contradiction.  Hence 2KG = . 

 Conversely, suppose 2KG = , then  there exist a minimal dominating set D  containing two 

vertices, say u  and v  of G .  By definition of )(GDM v ,  u  and v  are adjacent to D  in )(GDM v .  

Clearly which gives the path 3P .  Also we know that 2KG =  and 3)( PGS = , therefore we have 

)()( GDMGS v=  

                        This completes the proof. 

 

THEOREM 12. For any graph G , 











 +

=

otherwise)(

colors.withcoloredareset

dominatingminimalanyofverticesIf1)(

))((

G

χ(G)

G

GDM v





  

PROOF: Let G  be a graph with KG =)( , and D be the set of all minimal dominating sets of G . By 

Remark 2, D is independent .  In the coloring of )(GDM v , either we can make use of the colors which 

are used to color G , that is )())(( GKGDM v  == . 

Or, we should have to use one more new color. In particular , if the vertices of any minimal dominating 

set x  of G have colored with K  colors.  Then  we required one more new color to color x  in )(GDM v .  

Hence in this case we required 1+K  colors to color )(GDM v .  Therefore, 

    1))(( += KGDM v  

   1)())(( += GGDM v   

This completes the proof.  
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