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ABSTRACT

In this paper we define the classes T" (m, l, A, B) o using Janowski class, multiplier transformations and g-
calculus. The results investigated for these classes of functions include the co-efficient estimates, inclusion
relations distortion bounds. Extreme points and many more properties.
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1. Introduction

Let A denote the class of all analytic functions of the form

o0

f(z)=z+;akz @

defined in the unit disc U = {z:|z|<1}.

Let T denote the subclass of A and U, consisting of analytic functions whose non-zero

coefficients from the second onwards are negative. That is, an analytic function /' €T if it

has a Taylor expression of the form

f(z)=z+z:a 2 (a 20)

k k

k=2 (1.2)
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Which is analytic in the open disc U

The g-shifted factorial is defined for @ ¢ € Cas a product of n factors by

@a) I =
a’ n =
e (I—a)(1—aq)...(1—agq"),n €N.
(1.3)
And in terms of the basic analogue of the gamma function
y(cx +n 1— qn)
(q(l;q)n: q( F )( ,(n>0)’
() (1.4)
Where the g-gamma functions [2,3] is defined by
@) (1 —g)'™
(7"l (1.5)

Note that, if |q|<I, the shifted factorial (1,3) remains meaningful for n = 00 as a convergent

infinity product

X

(@:9),, = [1(1—oq™)
rrZO

Now recall the following g-analogue definitions given by Gasper and Rahman[2]. The

recurrence relation of q-gamma function is given by

L e+ 1) =[x, T, ), where[x], = % (1.6)

and called g-analogue of x
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Jacksons q-derivative and g-integral of a function f is defined as a subset of C are

respectively, given by (see Gasper and Rahman [2])

D f)=1O=TCD o o420, (1.7)
! z(1—¢g)
[ £, )= =0-9> 4" g™ (1.8)
In view of the relation.
lim M = (a),,
o (I=g) (1.9)

We observe that the g-shifted fractional (1,2) reduces to the familiar Pochhammer symbol

(), , where (), = a(a+1)..(a+n+1).

For —1<A<B<I let P (A,B)[4] denote the class of functions which are of the form

14+ Aw(z)

PE) = )

Where W is abounded analytic function satisfying the condition w(0)=0 and |w(z)|<l

For / € A,me N, =NU{0}, the operator [7] I(m,A,]) f(z) is defined by

o i 1””
I(m,)\,l)f(z):z—z[)‘(k lﬁ” ] a7

k=2

(1,10)

We say that a function / €7 isina class T, (m,1, 4, B) if
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qu[I m\l f z ]_1+Aw Z
Im M\ fz  1+Bwz

, mEN, , (1.11)

for —1<A<B< 1,1, A >0 and for all z eU.

Note that 7, 1,0.2a—1,1 =S, o introduced by  Chatterjea  [I]  and

T} 1,0,2a—1,1 =C; « studied by Srivastava [6]. In particular we get the classes studied

by Ravikumar [5]

2. Main Results

Theorem 2.1 A function /€T is in the class 7, m1,4,B if and only if

q
< (N k=1 +1+41)
2

[k Bl = A1 luk e B—a
Py I+1 4

formeNo, -1<A<B<1,,A>0,andz € U.

Proof: Since f €T, m,l, A,B , we have

zDp[l mAl f z ]7 14+ Aw z

- s mEN() ] 21
Im M\l f z l+Bw z
x (X k=1 +1+41) —1 +I41Y
Bz—) |—————| @B k —dz+ a, A2\ w
[Z ;[ 1+1 s : ; 1+1 ‘ } :
—1 4¥417 < (XA k=1 +1+1)"
=Z— a,z"—z—f— — et a,zk
Ez[ I+1 ' ;[ I+1  E

By schwarz’s lemma, we get

o (X k=1 +1+1)"
2[—

= [+1

A k- l+l+1

(X k=1 +1+1)"
- I+1

A—ka a, 7

a2k, B+1 — A+1|<B—4

k=
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Theorem 2.2. The class 7, q'\ m,l,A,B is closed under convex linear combination.

Proof. Let / z .g = ET\ m,l, A,B and let

fz =z—i:akzk,g z :z—i:bkzk
k=2 k=2

For n such that 0 <mn < 1 it suffices to show that the function defined by h (z) = (1-m) f(z) +

~

ng (z). z € ubelongs to 7, M., A,B . Now h z =Z—Z{ 1—n a, +7?bk}zk-

k=2

Applying Theorem2.1,to0 / z .g& 2 €T, m,, 4,B , We have

. [M [kq B+1 — A+1 M 1= a, +nb,]
2

£ [+1
N k—1 +1+1)
1—,,2 s [kq B+l — A+1a,
A k=1 +1+1)

<l-n€7 B—A4A+n B—4
= B—-A41-n4+n =B-4

This implies that # z €7, m,., A,B .

Theorem 2.3. Let fori=12,...k, f(z) = z ~ a ,i' T mJ,A,B and 0 <p <1 such
i - k € , I
k=2

k k
that Zﬁ; =1, then the function F(z) defined by ¥ z = ZrHif; z isalsoin T, m.LA,B .

i=l i=1

Proof. Foreachi e {1,2,3, ...... , k} we obtain

< (A k=1 +1+1)"

Z¥ [k B+1—A+l“ak,’< B— A
k=2 [+1 ! '
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Since Fz = i:ﬁ,. [z—i:ak!i.zk]
=2

i=l1

é,ﬁiz = 2[2 a2 ]

i=l \k=

[}

i=l \ k-2

z_jj[iak_,]zk.

m

x [A E—T 4 F3

P

k
k| B+1— A+l ][;;3,%

m

= =2 [+1 Hka] B+1— 4+l ]a/\».i]

:iﬁi[ix BT 4741

k
<> B B—4 < B-4

i=l

Therefore F z €T, m,l,A,B .

Theorem 2.4. Let /' z €T, m,l,4,B Define fi(z) = z and

B—4

m

fi z =z— 2.k 22,

Ak—=1+1+1
[+1

k B+1— 4+1
[,

For some 1< A<B<1,m eNo,,A>0and z € u. Then / €7, m,l,A,B if and only if f

can be expressed as

Sz =Sk z, where i, >0and 3, =1.
=1 ‘

k=1

Proof. If f z :Z/"kfk z , with Z“’k =1,p, >0, then
k=1 k=1

) [A k_l:LlH |k, B+1— 4+1|
e ; i B—4
k=2[)\ k—1 +1+1 [k B-}—l—A-l—l]

I1+1 2
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=) hpy=1B—A4 =1-p, B—-A4

k=2
<(B-A)
Hence f = GT,,A m,l, A, B

Conversely,let f z z .~ aZ' TA mi, A, B ,

:721" €y

k=2
A k=1 +1+1)
BT [kq B+1 — A+1“ak|
define 1, = Jk>2
fine 1y, B_4
And define Hrk:]—Zlfrk-From Theorem 2.1, and hence p1 > 0.
k=2 Z‘”’f\ Sl

k=2

Since pfi (z) = pk f(2) + axz®,
Zf"'kfll( z :Z—Za,}zk =fz.
k=2 k=2
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