

International Journal of Scientific Research in Science and Technology

Available online at : www.ijsrst.com

Print ISSN: 2395-6011 | Online ISSN: 2395-602X

doi : https://doi.org/10.32628/IJSRST

Babasaheb T. Shinde^{1,2}, Hemant V. Chavan^{1*}

¹Department of Chemistry, A.S.P. College (Autonomous), Devrukh, Dist. Ratnagiri-415 804, Maharashtra. India ²Department of Chemistry, S.K.S.V. College, Lanja, Dist. Ratnagiri-, Maharashtra. India

ARTICLEINFO

Publication Issue :

March-April-2025

Page Number :

243-268

Volume 12, Issue 13

Article History:

ABSTRACT

This review compiles and critically analyses recent developments in the synthesis, characterisation, and photocatalytic applications of g-C₃N₄-Published : 30 April 2025 Fe2O3 nanocomposites. As a promising class of heterostructure materials, these composites integrate the visible-light activity of graphitic carbon nitride (g-C₃N₄) with the redox-active, magnetically separable iron oxide (Fe_2O_3) to improve photocatalytic degradation of organic pollutants. the present study emphasises the influence of various synthesis approaches, ranging from conventional chemical methods to eco-friendly strategies involving plant extracts, industrial waste, and laterite soil, on the materials' structural properties as well as their functional performance. Particular focus is placed on the formation of heterojunctions and their pivotal role in promoting efficient charge separation. Based on recent studies, supported by band structure analysis and spectroscopic evidence, the mechanistic pathways, such as Type II, Z-scheme and S-scheme, are thoroughly examined. Although these nanocomposites demonstrate >90% degradation efficiency for various dyes, long-term stability, environmental impact, and large-scale production remain. This article aims to provide a comprehensive understanding of the current state of research on g-C₃N₄-Fe₂O₃ nanocomposites and their potential for sustainable photocatalytic applications.

Keywords: Iron oxide nanoparticles, Graphitic carbon nitride, Photocatalysis, Nanocomposites, Wastewater treatment.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0)

Fig.1. Graphical Abstract

INTRODUCTION

1.1 Environmental Challenges and the Rise of Photocatalytic Solutions

In recent years, extensive research has highlighted the growing burden of water pollution caused by industrial dyes, pharmaceuticals, pesticides, and other persistent organic pollutants (POPs)[1]. Conventional wastewater treatment technologies, although widely used, are often insufficient to address these complex contaminants due to limitations in efficiency, selectivity, and sustainability[2].Photocatalysis has been extensively explored in the literature as a sustainable and green approach for degrading hazardous pollutants in wastewater[3]. Unlike physical or biological treatment methods, photocatalysis enables direct mineralization of pollutants using light energy, without generating harmful byproducts[4].

Iron oxide (Fe₂O₃) and graphitic carbon nitride (g-C₃N₄) have been extensively studied asphotocatalysts due to their distinct properties[5]. Fe₂O₃ offers narrow band gap energy (~2.1 eV), magnetic separability, chemical stability, and earth abundance, making it cost-effective and environmentally benign[6]. On the other hand, g-C₃N₄ is a visible-light-active, metal-free polymeric semiconductor with a moderate band gap (~2.7 eV), good thermal stability, and facile synthesis from inexpensive precursors like urea or melamine[7]. Numerous studies have reported that their individual photocatalytic performance is limited by the rapid recombination of photogenerated charge carriers. However, their integration into a heterojunction system can mitigate these limitations, which justifies the growing interest in these materials as components of nanocomposite photocatalysts[8].

Recent literature highlights the strategic use of various dopants and modifiers to enhance the photocatalytic performance of Fe_2O_3 -based systems. Carbonaceous materials such as graphene, reduced graphene oxide (rGO), and graphene oxide (GO) have been frequently employed to improve electrical conductivity and facilitate charge carrier mobility, thereby suppressing electron–hole recombination. Metal oxide dopants like TiO₂ and ZnO are valued for their oxidative strength and photostability, although their photocatalytic activity is typically confined to the UV region due to wide band gaps. To extend their response into the visible range, these oxides are often combined with Fe_2O_3 in heterostructured systems. Other modifiers, including SnO₂, carbon nanotubes (CNTs), Ag/AgCl, and biochar, contribute to enhanced surface area, improved charge separation, and localized surface plasmon resonance (LSPR) effects. Such modifications significantly improve light-harvesting capability, charge transfer efficiency, and overall degradation performance of Fe_2O_3

composites. Nevertheless, achieving optimal photocatalytic efficiency often requires rational design and synergistic integration within a multi-component nanocomposite framework, as outlined in **Table 1**.

Composite	Туре	Typical	Key Advantages in	Limitations	References
Material		Band Gap	Composites		
		(eV)			
g-C ₃ N ₄	Polymeric	~2.7	Visible light response,	Low surface area, fast	[9], [10]
	semiconductor		suitable band alignment	charge recombination	
			with Fe ₂ O ₃ , thermal		
			stability, metal-free		
Graphene	2D Carbon	~0	High conductivity, large	No band gap (not ideal	[11], [12]
	(semimetal)		surface area, fast	alone in photocatalysis),	
			electron transfer	requires hybridization	
GO	Oxidized	~2.2–3.5	Tunable band gap,	Poor conductivity,	[13], [14]
	Graphene		surface functional	unstable under light	
			groups aid dispersion		
rGO	Partially	~0.5–1.5	Better conductivity than	Residual oxygen can	[15], [16]
	reduced GO		GO, facilitates charge	limit performance,	
			transfer	structural defects	
TiO2	Metal oxide	~3.2	High stability, strong	UV-active only, wide	[17]
	semiconductor	(anatase)	oxidizing ability	band gap limits solar	
				efficiency	
ZnO	Metal oxide	~3.2	High exciton binding	Photocorrosion, UV-	[18]
	semiconductor		energy, easy synthesis	active	
SnO ₂	Metal oxide	~3.6	High mobility, good	Limited visible light	[19]
	semiconductor		optical transparency	absorption	
CNTs	Carbon-based	~0–1	High conductivity,	Poor light absorption	[20]
	nanostructure		strong mechanical	unless hybridized	
			properties		
Ag/AgCl	Plasmonic	~3.25	Plasmon-enhanced	Stability issues under	[21]
	composite	(AgCl)	visible absorption,	light, cost	
			strong oxidation		
Biochar	Carbon-rich	Variable	Low cost, high surface	Low conductivity,	[22], [23]
	porous material		area, eco-friendly	limited electronic	
				interaction	

 Table 1. Comparative analysis of Fe₂O₃ composite materials based on structural features, photocatalytic performance, and electronic properties

The formation of $Fe_2O_3/g-C_3N_4$ nanocomposites is motivated by the need to overcome each material's intrinsic drawbacks and exploit synergistic interactions for enhanced photocatalytic performance. Reviewed studies consistently report that coupling these semiconductors leads to improved charge carrier separation, broader light absorption, and higher reactive oxygen species (ROS) generation. The heterojunction interfacewhether

traditional, Z-scheme, or S-scheme is crucial in driving efficient charge dynamics. Moreover, the magnetic property of Fe_2O_3 facilitates catalyst recovery, while $g-C_3N_4$ enhances surface area and dye adsorption. Together, they create a platform that addresses key challenges in environmental photocatalysis, particularly in degrading resistant organic dyes under visible or solar light[24].

This review aims to provide a thorough overview of recent studies on the synthesis of iron oxide (Fe₂O₃) nanoparticles derived from low-cost, abundant, and sustainable sources, including industrial waste, laterite soil, and plant extracts as well as some biogenic methods with a specific emphasis on their combining with graphitic carbon nitride (g-C₃N₄) to generate multifunctional nanocomposites. It also discusses characterization techniques essential for a detailed understanding of the structural, morphological, compositional, optical, magnetic, and surface properties of Fe₂O₃ nanocomposites, which directly influence their performance in catalyticapplications. Particular focus is directed on comprehending the improved photocatalytic performance of Fe₂O₃/g-C₃N₄ nanocomposites under UV-visible and sunlight exposure, also clarified through heterojunction mechanisms like Type II, Z-scheme, and S-scheme. This review also highlights the environmental applications of Fe₂O₃-g-C₃N₄ nanocomposites, thus providing future guidance for the strategic development of sustainable, high-performance nanocomposite catalysts (Fig. 1).

Synthesis Methods of Iron Oxide (Fe₂O₃) Nanoparticles

The synthesis of Fe_2O_3 nanoparticles from sustainable sources involves a broad spectrum of techniques. These methods can be broadly categorized into chemical, green/biological, and physical approaches. Each synthesis pathway offers unique scalability, morphology control, environmental impact, and application specificity advantages (**Fig. 2**).

Fig.2 Various Synthetic Methods

2.1 Chemical Synthesis Methods

2.1.1 Co-precipitation Method:

The co-precipitation technique is one of the most efficient and widely used methods for synthesising iron oxide nanoparticles. It involves the simultaneous precipitation of Fe^{2+} and Fe^{3+} salts by adding a base such as NaOH or NH₄OH under controlled pH (typically around 9–11) and temperature conditions. The reaction leads to forming iron hydroxide precursors, which are then subjected to filtration, washing, and drying. Subsequent calcination at elevated temperatures enhances crystallinity, removes residual organics, and ensures phase purity, yielding well-defined Fe_2O_3 nanoparticles. This method is cost-effective, scalable, and suitable for chemical and green synthesis routes.

2.1.2 Sol-Gel Method

The sol-gel process involves the hydrolysis and polycondensation of iron precursors such as iron alkoxides or salts to form a colloidal suspension, which gradually evolves into a three-dimensional gel network. This gel is then aged, dried to remove solvents, and calcined at elevated temperatures to produce Fe₂O₃ nanoparticles. The method allows excellent control over composition, particle size, and morphology. It yields highly uniform, porous, and thermally stable nanoparticles, making it suitable for catalytic and electronic applications.

2.1.3 Hydrothermal/Solvothermal Method:

This method involves the crystallization of iron precursors in sealed autoclaves at elevated temperatures (typically 120–200°C) using water (hydrothermal) or organic solvents (solvothermal) as reaction media. The high-pressure environment promotes the formation of highly crystalline Fe_2O_3 nanoparticles with controlled size, morphology, and phase. Various nanostructures like rods, sheets, spheres, and cubes can be synthesized by tuning parameters such as temperature, time, pH, and solvent type. This method is especially advantageous for producing uniform, monodispersed particles with enhanced surface properties.

2.1.4 Thermal Decomposition:

This technique involves the thermal analysis of iron-based organometallic precursors in organic solvents, typically in the presence of surfactants or stabilizing agents. These surfactants help control nanoparticle growth, prevent aggregation, and enable the formation of highly monodisperse Fe_2O_3 nanoparticles. The method yields uniform particles with excellent crystallinity and allows fine control over size and morphology, making it suitable for biomedical and electronic applications.

2.1.5 Microemulsion and Reverse Micelle Techniques:

These methods use thermodynamically stable, surfactant-stabilized nanoscale emulsions (microemulsions) as nanoreactors for the controlled synthesis of Fe_2O_3 nanoparticles. In reverse micelles, water droplets dispersed in an organic solvent act as confined reaction zones where nucleation and growth occur, offering precise control over particle size and distribution. The approach enables the synthesis of ultra-small, monodisperse nanoparticles with uniform morphology. Despite being limited by low yield and complex separation, these techniques are valuable for fundamental studies and applications requiring high uniformity.

2.2 Green Synthesis (Eco-friendly/Biogenic Routes)

2.2.1 Plant Extract Mediated Synthesis:

This green synthesis approach employs bioactive compounds such as flavonoids, polyphenols, alkaloids, and proteins in plant extracts as natural reducing and stabilizing agents. Iron salts are typically reacted with the extract at room or mildly elevated temperatures, leading to the formation of Fe_2O_3 nanoparticles under eco-friendly conditions. The method is cost-effective and sustainable, avoiding toxic chemicals, aligning with green chemistry principles. It also offers tunable morphology and functional properties depending on the phytochemical composition of the extract.

2.2.2 Bacteria, Fungi, and Algae Mediated Synthesis:

In this biogenic approach, microorganisms like bacteria, fungi, and algae facilitate the reduction of iron ions into Fe_2O_3 nanoparticles through enzymatic and metabolic pathways. These microbes secrete enzymes, proteins, and other biomolecules that act as natural reducing and capping agents. The synthesis can occur intracellularly or extracellularly, depending on the organism and conditions. Although this method is eco-friendly and yields stable nanoparticles, it demands sterile environments, careful culture maintenance, and longer reaction times.

2.2.3 Soil and Mineral Source Extraction:

This method uses naturally abundant, iron-rich sources such as laterite or red soil for the synthesis of Fe_2O_3 nanoparticles. The process typically involves acid leaching to extract iron ions, followed by controlled precipitation using a base and subsequent calcination to obtain crystalline nanoparticles. It offers a sustainable and low-cost route by converting natural or waste materials into valuable nanomaterials. The approach aligns well with circular economy principles and is suitable for large-scale, eco-friendly applications.

2.2.4 Biowaste-Derived Synthesis:

This eco-friendly approach involves using iron-containing biowaste materials such as rusty iron tools, iron slag, or plant ashes as precursors for synthesizing Fe_2O_3 nanoparticles. The iron is typically extracted through acid or base treatment, followed by precipitation and calcination steps. This method promotes waste valorisation, reduces environmental burden, and supports sustainable nanomaterial production. It also aligns with green chemistry and circular economy frameworks, offering a low-cost and scalable synthesis route.

2.3 Physical Methods

2.3.1 High-Energy Ball Milling

High-energy ball milling is a top-down approach that involves the mechanical grinding of iron-containing materials, such as iron powders or ores, in a high-energy ball mill. The repeated collisions of grinding media break the bulk material into smaller particles, facilitating the formation of nanostructures. This method enables precise particle size and morphology control, producing highly dispersed Fe₂O₃ nanoparticles. It is particularly advantageous for fabricating nanoparticles with uniform size distributions, although it may require post-milling treatment to remove surface defects and improve crystallinity.

The comprehensive overview of the synthetic methods for Fe2O3 nanoparticles is given in Table 2.

Method	Precursor	Conditions	Advantages	Limitations	Ref.
Co-precipitation	(Ferric nitrate	water as a solvent,	High surface area,	Requires	[25]
	and Oxalic acid	250-450°C	porous structure	calcination,	
Sol–gel	$Fe(NO_3)_3 \cdot 9H_2O$,	Hydrolysis in non-	High surface area;	Complex setup for	[26]
	Epoxypropane	aqueous solvent;	good pore structure;	supercritical fluid	
		supercritical CO ₂	environmentally	process; high cost	
		drying; calcination	friendly reagents.	of equipment.	
		<300°C.			
Hydrothermal	FeCl₃·6H₂O	Solvent variation	Morphology control	Agglomeration	[27]
		(water/ethanol),	(nanoplates,	risks; require	
		160–180°C, 6–24	nanorods); no	precise solvent	
		hours.	surfactants required.	control.	

 Table 2. Comparative Overview of Synthesis Techniques and Methods

Method	Precursor	Conditions	Advantages	Limitations	Ref.
Thermal	Iron acetate	Heated to 400°C in	Produces mesoporous	Requires post-	[28]
Decomposition	(Fe(CH ₃ COO) ₃	air; followed by	α -Fe ₂ O ₃ films directly	synthesis	
		annealing for	on substrates; scalable	annealing for pore	
		mesoporous	for large-area	formation and	
		structure.	applications.	crystallinity.	
Microemulsion	FeCl₃·6H₂O,	n-heptane as oil	Produces plate-like α -	Requires	[29]
	NaOH	phase, AOT as	Fe ₂ O ₃ nanoparticles	calcination;	
		surfactant, 1-	(~13.1 nm);	surfactant removal	
		butanol as co-	homogeneous	necessary; limited	
		surfactant;	dispersion; optical	scalability.	
		calcination at	band gap ~3.2 eV.		
		500°C.			
Plant Extract	FeCl ₃ ·6H ₂ O	Methanol extract	Rapid heating profile	Requires methanol	[30]
(Green)		mixed with FeCl ₃	for hyperthermia	extraction and	
		solution; heated at	applications; SAR	sodium acetate	
		80°C for 2 hours.	values ~62.75 W/g at	addition; limited	
			low NP	scalability for	
			concentration.	larger volumes.	
Bacterial/Fungal	FeSO ₄	Incubation with	Eco-friendly, low-	Requires precise	[31]
		Bacillus sp. GMS10	cost, and scalable;	bacterial culture	
		at 37°C for 24–36	produces α -Fe ₂ O ₃	conditions;	
		hours under aerobic	nanoparticles (~30	potential	
		conditions.	nm) with antibacterial	contamination	
			and anti-biofilm	risks.	
			properties.		
Laterite soil	Acid-treated	5M HCl + 650°C	Abundant source,	Purity and	[32]
extraction	laterite	calcine	waste valorization	reproducibility	
				issues	
Biowaste/rust	Scrap iron, rust	Rust dissolved in	Simple and scalable;	Requires acid	[33]
		HCl, followed by	converts waste rust	treatment;	
		precipitation with	into α -Fe ₂ O ₃	potential	
		NaOH; dried at	nanoparticles (~20–50	environmental	
		110°C.	nm).	concerns with acid	
				disposal.	
Ball Milling	Fe ₂ O ₃ powder	Milling at 300–600	Produces nanoscale	Requires high-	[34]
		rpm for 5–10 hours	Fe_2O_3 with lattice	energy equipment;	
		under inert	distortion; improves	risk of	
		atmosphere;	mechanical and	contamination	
		sintering at 600–	magnetic properties.	from milling	
		800°C.		media.	

A comprehensive table of data on synthetic methodologieshas been developed for the preparation of Fe_2O_3 nanoparticles, each method offering unique significance in terms of morphology, surface area, and functional applicability. Conventional chemical routes such as co-precipitation, sol–gel, and hydrothermal synthesis provide reasonable control over particle characteristics but often require high-temperature treatments or complex setups. Green and biogenic approaches, including plant extract and microbial-assisted synthesis, present environmentally friendly and scalable alternatives with added biological functionalities. Waste-derived methods utilizing laterite, rust, or industrial by-products offer sustainable, cost-effective routes aligned with circular economy goals. Ultimately, the choice of synthesis method should be guided by the desired application, scalability, cost, and environmental impact.

Characterisation Techniques and Their Importance

There are various characterization techniques in confirming the synthesis, structural integrity, and functional properties of Fe_2O_3 , $g-C_3N_4$, and their $g-C_3N_4$ -Fe $_2O_3$ nanocomposites. These techniques are essential for understanding the materials' phase, morphology, optical properties, surface characteristics, magnetic behaviour, and thermal stability, directly influencing their photocatalytic degradation performance. A detailed discussion of each technique will follow in the next section.

3.1 X-ray Diffraction (XRD)

The X-ray diffraction (XRD) analysis of the synthesized materials provides clear evidence of their crystallinity and phase identification. For Fe₂O₃, the presence of well-defined peaks at 24.2°, 33.1°, and 35.5° corresponding to the (110), (113), and (024) diffraction planes confirms the formation of hematite (α -Fe₂O₃), indicating a highly crystalline structure[35]. Similarly, the g-C₃N₄ material shows characteristic peaks at 12.15° and 27.4° corresponding to the (100) and (002) planes, confirming the successful synthesis of graphitic carbon nitride[36]. In the case of the g-C₃N₄-Fe₂O₃ composite, the XRD pattern exhibits a combination of peaks from both Fe₂O₃ (at 24.2°) and g-C₃N₄ (at 13.0° and 27.4°), indicating the successful formation of the composite material[37]. The observed overlapping peaks suggest that the two components have been effectively integrated, maintaining their individual crystal structures, and confirming the synthesis of a composite material with distinct phases of Fe₂O₃ and g-C₃N₄ a Table 3. Highlighted various Phases, Peak position and its diffraction planes.

Material	Phase Identified	Peak	Corresponding	Remarks
		Position	Diffraction Planes	
		(20)		
Fe ₂ O ₃	Hematite (α-	24.2°,	(110), (113), (024)	Well-defined peaks confirming
	Fe ₂ O ₃)	33.1°, 35.5°		crystallinity
g-C ₃ N ₄	Graphitic	13.0°, 27.4°	(100), (002)	Characteristic peaks for $g-C_3N_4$
	Carbon Nitride			structure
g-C ₃ N ₄ -Fe ₂ O ₃	Mixture of	13.0°,	(100), (110), (002),	Composite shows combined peaks of
Composite	Hematite and g-	24.2°, 27.4°	(113)	Fe_2O_3 and $g-C_3N_4$, indicating
	C_3N_4			successful synthesis

Table 3. XRD data of g-C₃N₄, Fe₂O₃ and g-C₃N₄-Fe₂O₃ nanocomposite

3.2 Fourier Transform Infrared Spectroscopy (FTIR)

The FT-IR spectra of Fe₂O₃, g-C₃N₄, and their composite (g-C₃N₄-Fe₂O₃) reveal characteristic functional group vibrations that confirm the formation of each material and their composite. For Fe₂O₃, prominent peaks at $^{3}430 \text{ cm}^{-1}$ and $^{-1}620 \text{ cm}^{-1}$ correspond to O-H stretching and bending vibrations, while a peak at $^{5}30 \text{ cm}^{-1}$ indicates Fe-O stretching, characteristic of hematite[38]. In g-C₃N₄, the key peaks at $^{3}115 \text{ cm}^{-1}$ and $^{-1}600 \text{ cm}^{-1}$ are attributed to N-H stretching and C=N stretching, respectively, while the peaks at $^{1}200 \text{ cm}^{-1}$ and $^{8}00 \text{ cm}^{-1}$ correspond to C-N stretching and C=C bending, confirming the presence of the triazine ring structure[39]. In the g-C₃N₄/Fe₂O₃ composite, the FT-IR spectrum shows a combination of peaks from both Fe₂O₃ and g-C₃N₄, including O-H and C-N stretching vibrations, alongside the Fe-O stretching vibration, indicating successful incorporation of both components into a composite material. These FT-IR results validate the successful synthesis of the g-C₃N₄/Fe₂O₃ nanocomposite with distinct phases[40]. Table 4. Listed various peaks and vibration modes of FT-IR peaks of g-C₃N₄, Fe₂O₃, and g-C₃N₄-Fe₂O₃ nanocomposite

Material	FT-IR	Peaks	Vibration Mode	Remarks
	(cm ⁻¹)			
Fe ₂ O ₃	3430,	1620,	O-H stretching, O-H bending, Fe-O	Characteristic peaks for the Fe_2O_3
	530		stretching	structure
g-C ₃ N ₄	3115,	1600,	N-H stretching, C=N stretching, C-	Characteristic peaks for graphitic
	1200, 80	00	N stretching, C–C bending	carbon nitride
g-C ₃ N ₄ -Fe ₂ O ₃	3430,	1620,	O-H stretching, O-H bending, C=N	Peaks from both Fe_2O_3 and $g-C_3N_4$
Composite	1600,	530,	stretching, Fe-O stretching, C-N	indicate successful composite
	1200		stretching	formation

Table 4.FT-IR data of g-C₃N₄, Fe₂O₃ and g-C₃N₄-Fe₂O₃ nanocomposite

3.3 Uv-Vis Diffuse Reflectance Spectroscopy (DRS)

UV-Vis Diffuse Reflectance Spectroscopy (DRS) is a crucial technique to evaluate semiconductor photocatalysts' optical properties and bandgap energies. Fe_2O_3 shows strong absorption in the visible region with an absorption edge around 520–580 nm and a bandgap of approximately 2.0–2.2 eV. However, its photocatalytic performance is limited by rapid electron–hole recombination. In contrast, g-C₃N₄ exhibits a slightly higher bandgap (~2.6–2.8 eV) and absorbs up to 460 nm, offering good stability but restricted activity due to low surface area and fast charge recombination[41]. The formation of a g–C₃N₄-Fe₂O₃nanocomposite leads to a redshift in the absorption edge (~540–580 nm) and a reduced bandgap (~1.9–2.2 ev), indicating improved visible-light absorption. This enhancement is attributed to forming Z-scheme or S-scheme heterojunctions, which promote efficient charge carrier separation and suppress recombination, making the composite a promising material for photocatalytic applications[42].Table 5highlights various peaks, band gap, and nature of transition of UV-Vis DRS peaks of g-C₃N₄, Fe₂O₃, and g-C₃N₄-Fe₂O₃ nanocomposite.

Material	Absorption Edge	Bandgap	Nature of	Critical Remarks
	(nm)	(eV)	Transition	
Fe ₂ O ₃	~520–580	2.0–2.2	Indirect (d–d)	- Strong visible-light absorption
				capability.

Table 5. UV-Vis DRS peaks of g-C₃N₄, Fe₂O₃, and g-C₃N₄-Fe₂O₃ nanocomposite

Material	Absorption Edge	Bandgap	Nature of	Critical Remarks
	(nm)	(eV)	Transition	
				- Suffers from rapid electron-hole
				recombination.
				- Limited photocatalytic efficiency when
				used alone.
g-C ₃ N ₄	~440-460	2.6–2.8	Direct (n– π^*)	- Good thermal and chemical stability.
				- Absorbs visible light up to \sim 460 nm.
				- Low surface area and fast recombination
				restrict activity.
g-C ₃ N ₄ -	~540–580	1.9–2.2	Mixed (Z-/S-	- Redshift in absorption edge enhances
Fe ₂ O ₃			scheme)	light utilization.
				- Heterojunction formation improves
				charge separation.
				- Suitable for Z-/S-scheme photocatalytic
				applications.

3.4 X-ray Photoelectron Spectroscopy (XPS)

XPS spectraprovide essential insights into the elemental composition, chemical states, and interfacial interactions within nanocomposites (**Table 6.**). In the case of Fe₂O₃, characteristic Fe 2p peaks at ~710.8 eV (Fe $2p_3/_2$) and ~724.5 eV (Fe $2p_1/_2$), along with a satellite peak near 719 eV, confirm the Fe³⁺ oxidation state typical of α -Fe₂O₃[43]. For g-C₃N₄, the presence of C 1s peaks at ~284.6 eV (C–C) and ~288.2 eV (N–C=N), and N 1s peaks around 398.6 eV and 400.1 eV, indicates the dominance of sp²-hybridized C–N frameworks and bridging nitrogen atoms within triazine or heptazine units. Upon composite formation (g–C₃N₄–Fe₂O₃), notable shifts in the binding energies of N 1s and C 1s spectra and the consistent presence of Fe³⁺ peaks suggest strong electronic interaction at the heterojunction interface[44]. These shifts indicate chemical bonding, likely through Fe–N or Fe–O–C linkages, which enhance charge transfer and contribute to the improved photocatalytic performance of the composite system[45].

Material	Key Binding Energies	Observed Elements & States	Critical Remarks
	(eV)		
Fe ₂ O ₃	Fe 2p ₃ / ₂ : ~710.8 eV	Fe ³⁺ oxidation state	- Fe ³⁺ state confirms hematite phase.
	Fe $2p_1/_2$: ~724.5 eV	confirmed	- Strong satellite peak indicates good
	Satellite: ~719 eV	Presence of satellite peak	crystallinity.
		supports α -Fe ₂ O ₃	- No significant Fe ²⁺ detected.
g-C ₃ N ₄	C 1s: ~284.6 eV (C–C),	sp ² C–N frameworks and	- Peak positions confirm
	~288.2 eV (N–C=N)	bridging nitrogen species	triazine/heptazine units.
	N 1s: ~398.6 eV (C-		- High N/C ratio indicates polymeric
	N=C), ~400.1 eV (N-		structure.
	$(C)_{3})$		- Minor C–C peak may arise from
			adventitious carbon.

Table 6. XPS peaks and binding energy of g-C₃N₄, Fe₂O₃, and g-C₃N₄-Fe₂O₃ nanocomposite

Material	Key Binding Energies	Observed Elements & States	Critical Remarks
	(eV)		
g-C ₃ N ₄ -	Fe 2p similar to Fe_2O_3	Coexistence of Fe ³⁺ , C–N,	- Binding energy shifts suggest
Fe ₂ O ₃	N 1s: slight shift to lower	and N–Fe interactions	chemical interaction at interface.
	BE		- Presence of Fe–N bonding confirms
	C 1s: shift in N–C=N		strong coupling.
			- Synergistic electronic structure
			favors charge transfer.

3.5 Field Emission Scanning Electron Microscopy (FE-SEM)

SEM provides high-resolution images of surface morphology and the distribution of Fe_2O_3 and $g-C_3N_4$ within composites (**Table 7**). It is essential for visualizing particle size, shape, and the homogeneity of the composite. The FE-SEM analysis reveals that Fe_2O_3 nanoparticles show agglomerated spherical morphology (~30–80 nm), while $g-C_3N_4$ displays layered, sheet-like structures. In the $g-C_3N_4$ -Fe₂O₃ composite, Fe_2O_3 particles are uniformly dispersed over the $g-C_3N_4$ sheets, improving interfacial contact and reducing agglomeration. This morphology enhances surface area and facilitates better charge separation, supporting superior photocatalytic activity[46].

Material	Observed Morphology	Particle Size / Shape	Critical Remarks
Fe ₂ O ₃	Agglomerated, irregular	~30–80 nm	- Shows uniform nanoscale grain
	spherical particles		formation.
			- Some degree of aggregation observed.
			- Porous texture beneficial for surface
			reactions.
g-C ₃ N ₄	Layered, flaky sheet-like	Nanosheets or stacks	- Exhibits lamellar structure with
	structure		wrinkled morphology.
			- High surface area but prone to stacking.
			- May limit photocatalytic efficiency due
			to low conductivity.
g-C ₃ N ₄ -	Fe ₂ O ₃ particles dispersed	Fe ₂ O ₃ embedded in g-	- Uniform dispersion of Fe ₂ O ₃ enhances
Fe ₂ O ₃	over g-C ₃ N ₄ sheets	C ₃ N ₄ matrix	active sites.
			- Improved interfacial contact supports
			charge transfer.
			- Reduced agglomeration and enhanced
			surface roughness aid catalysis.

Table 7. SEM images and Morphology of g-C₃N₄, Fe₂O₃, and g-C₃N₄-Fe₂O₃ nanocomposite

3.6 High resolution-Transmission Electron Microscopy (HR-TEM)

HR-TEM used to analyse morphology and lattice spacing of material **(Table 8)** images show that Fe_2O_3 nanoparticles exhibit well-defined spherical morphology with sizes ranging from ~30 to 60 nm and distinct lattice fringes corresponding to the (104) plane. g-C₃N₄ appears as crumpled nanosheets with a thickness of ~3– 5 nm, showing limited crystallinity at the edges. In the g-C₃N₄–Fe₂O₃ composite, Fe₂O₃ particles are uniformly

dispersed on the $g-C_3N_4$ sheets, with particle sizes around 20–40 nm and similar lattice spacing[47]. This uniform dispersion improves the composite's charge separation and photocatalytic efficiency by facilitating enhanced interfacial contact between the two phases[48].

Material	Morphology / Structure	Particle Size / Lattice Spacing	Critical Remarks
Fe ₂ O ₃	Well-defined spherical	~30–60 nm, lattice spacing	- High crystallinity with distinct
	particles	~0.29 nm (101)	lattice fringes.
			- Uniform nanoparticle size with
			good stability.
g-C ₃ N ₄	Crumpled nanosheets,	Nanosheet thickness ~3–5 nm	- Shows irregular sheet formation.
	amorphous at edges		- Limited crystallinity and higher
			porosity.
g-C ₃ N ₄ -	Fe ₂ O ₃ particles dispersed	Fe_2O_3 particles ~20–40 nm,	- Fe ₂ O ₃ uniformly dispersed over g-
Fe ₂ O ₃	on g-C ₃ N ₄ sheets	lattice spacing \sim 0.29 nm (101)	C_3N_4 .
			- Enhanced interfacial contact
			facilitates efficient charge transfer.

Table 8. HR-TEM images and lattice space of g-C₃N₄, Fe₂O₃, and g-C₃N₄-Fe₂O₃ nanocomposite

3.7 Photoluminescence Spectroscopy (PL)

Photoluminescence (PL) Spectroscopy is another important tool used to study the significant differences in charge carrier dynamics across the materials (**Table 9**). Fe₂O₃ exhibits a broad emission band around 650–750 nm, indicative of high charge recombination rates, which hinder its photocatalytic performance. $g-C_3N_4$ shows a moderate PL intensity with emission peaks around 450–500 nm, suggesting a lower rate of charge recombination and better charge carrier retention, making it a promising photocatalyst. The $g-C_3N_4$ -Fe₂O₃ composite demonstrates a redshifted emission peak (~550–600 nm) and a reduction in PL intensity, indicating enhanced charge separation and minimisedelectron-hole recombination, thus improving its photocatalytic efficiency[49].

Material	PL Emission	PL Intensity /	Critical Remarks
	Peaks (nm)	Features	
Fe ₂ O ₃	Broad emission	High intensity,	- Strong PL emission suggests significant electron-hole
	~650–750 nm	indicating charge	recombination.
		recombination	- Not ideal for photocatalytic applications without
			modification.
g-C ₃ N ₄	Emission peaks	Moderate	- Lower PL intensity implies reduced charge recombination.
	~450–500 nm	intensity, smaller	- Shows good photocatalytic potential due to better charge
		peak width	carrier separation.
g-C ₃ N ₄ -	Emission peaks	Reduced PL	- Reduced PL intensity indicates effective charge separation.
Fe ₂ O ₃	~550–600 nm,	intensity,	- Improved photocatalytic activity due to reduced electron-
	redshifted	enhanced	hole recombination.
		separation	

Table 9. PL spectra of g-C₃N₄, Fe₂O₃, and g-C₃N₄-Fe₂O₃ nanocomposite

3.8 Nitrogen Adsorption-Desorption Isotherms (BET Surface Area Analysis)

Nitrogen Adsorption-Desorption Isotherms (BET Surface Area Analysis) provide key insights into the materials' surface area and pore structure **(Table 10)**. Fe₂O₃ exhibits a moderate BET surface area (~45–65 m²/g) with mesoporous characteristics, which are suitable for catalysis but could be optimized for higher efficiency. g-C₃N₄ shows a higher surface area (~60–90 m²/g) and microporous structure, making it an excellent candidate for photocatalytic applications due to its ability to retain charge carriers[50]. The g–C₃N₄–Fe₂O₃ composite shows a significant increase in both surface area (~90–120 m²/g) and pore volume, which enhances its catalytic and photocatalytic performance, as the improved porosity allows for better diffusion of reactants and more active sites for reaction[51].

Material	BET Surface	Pore	Pore Size	Critical Remarks
	Area (m²/g)	Volume	Distribution	
		(cm ³ /g)		
Fe ₂ O ₃	~45–65 m²/g	~0.1–0.2	Mesoporous (~2–50	- Moderate surface area with mesoporous
		cm³/g	nm)	structure.
				- Pore volume indicates potential for catalytic
				applications, but could be optimized for
				better efficiency.
g-C ₃ N ₄	~60–90 m²/g	~0.2–0.3	Microporous (~1–2	- Relatively high surface area suitable for
		cm³/g	nm)	photocatalytic applications.
				- Micropores provide a good framework for
				charge carrier retention.
g-C ₃ N ₄ -	~90–120	~0.3–0.4	Mixed (micro- and	- Increased surface area and pore volume
Fe ₂ O ₃	m²/g	cm³/g	mesoporous)	after composite formation.
				- Enhanced catalytic and photocatalytic
				properties due to improved porosity.

Table 10. BET surface and pore analysis of g-C3N4, Fe2O3, and g-C3N4-Fe2O3 nanocomposite

3.9 Thermogravimetric Analysis (TGA)

Thermogravimetric Analysis (TGA) reveals essential information about the materials' thermal stability and decomposition behaviour **(Table 11).**Fe₂O₃ demonstrates excellent thermal stability with only a minor weight loss (~5–10%) occurring between 200–300°C due to the removal of adsorbed water, remaining stable up to 700°C[52]. g-C₃N₄, on the other hand, undergoes a significant weight loss (~20–30%) between 300–500°C, indicating decomposition of the organic framework, with stability up to 500°C. The g–C₃N₄–Fe₂O₃ composite shows a two-step weight loss, the first corresponding to water and surface group removal (200–300°C), and the second associated with the thermal decomposition of g-C₃N₄ (500–600°C). The composite's thermal stability is improved compared to pure g-C₃N₄, highlighting the interaction between the components[53].

Material	Initial Weight	Total Weight	Thermal	Critical Remarks
Fe ₂ O ₃	200–300°C	~5–10%	Stable up to	- Fe_2O_3 shows excellent thermal stability.

Table 11. TGA of g-C₃N₄, Fe₂O₃, and g-C₃N₄-Fe₂O₃ nanocomposite

Material	Initial Weight	Total Weight	Thermal	Critical Remarks
	Loss (°C)	Loss (%)	Stability (°C)	
			700°C	- Minor weight loss at lower temperatures due
				to surface adsorbed water.
g-C ₃ N ₄	300–500°C	~20–30%	Stable up to	- Noticeable weight loss due to decomposition
			500°C	of organic material.
				- Thermal degradation occurs within a specific
				range, indicating moderate stability.
g-C ₃ N ₄ -	200-300°C and	~10–20%	Stable up to	- Composite shows a two-step weight loss.
Fe ₂ O ₃	500–600°C		600°C	- First loss is attributed to water removal and
				surface groups, second to decomposition of g-
				$C_3N_4.$

3.10 Vibrating Sample Magnetometry (VSM)

Vibrating Sample Magnetometry (VSM) measurements reveal distinct magnetic behaviours in the materials (Table 12).Fe₂O₃ shows weak paramagnetic behaviour, with a saturation magnetisation of ~15–30 emu/g, making it suitable for magnetic separation in photocatalytic applications. $g-C_3N_4$ is non-magnetic, contributing no magnetic properties to the composite but offering a stable platform for Fe₂O₃ integration. The $g-C_3N_4-Fe_2O_3$ composite exhibits superparamagnetic behaviour, with a higher saturation magnetisation (~25–45 emu/g), indicating that the composite's magnetic response is significantly enhanced, which is beneficial for efficient separation and recycling after photocatalytic reactions[54].

Material	Magnetic Properties	Saturation	Critical Remarks	
		Magnetization		
		(emu/g)		
Fe ₂ O ₃	Paramagnetic behavior	~15–30 emu/g	- Exhibits weak magnetism, typical for Fe ₂ O ₃ .	
			- Potential for magnetic separation in	
			photocatalytic applications.	
g-C ₃ N ₄	Non-magnetic	0 emu/g	- g-C ₃ N ₄ is inherently non-magnetic, providing	
			a stable platform for composite formation.	
			- No contribution to magnetic properties.	
g-C ₃ N ₄ -	Superparamagnetic	~25–45 emu/g	- g-C ₃ N ₄ -Fe ₂ O ₃ composite exhibits	
Fe ₂ O ₃	behaviour		superparamagnetic properties.	
			- Enhanced magnetic response facilitates easy	
			separation after catalytic processes.	

Table 12. Magnetic measurement of g-C₃N₄, Fe₂O₃, and g-C₃N₄-Fe₂O₃ nanocomposite

Mechanism of Photocatalytic Activity in g-C₃N₄-Fe₂O₃ Nanocomposites

The graphitic carbon nitride $(g-C_3N_4)$ has garnered particular attention due to its unique combination of visible-light activity, suitable band structure, and chemical versatility, making it a highly promising candidate for forming efficient Fe₂O₃-based heterojunction photocatalysts.In photocatalytic degradation,mechanisms play a very significant role in improving the efficiency of composite materials. There are various types of

mechanisms studied in the literature for composite materials, viz. Type-II, Z-scheme, and S-scheme are discussed, along with their identification techniques and advantages.

No.	Composite	Mechanism	Target Pollutant	Photocatalytic Performance	Reference
	Material	Туре	/ Activity		
1	Fe ₂ O ₃ /g-C ₃ N ₄	Z-scheme	Rhodamine B	Rate constant 2.5 times higher than g-	[55]
			(RhB)	C ₃ N ₄ alone under visible light	
2	Fe ₂ O ₃ /g-C ₃ N ₄	Z-scheme	H ₂ generation	13-fold enhancement in H_2 evolution	[56]
				rate under visible light with Pt as co-	
				catalyst	
3	$Fe_2O_3/g-C_3N_4$	Type-II	Phenol	Achieved 94% degradation in visible	[57]
				light conditions	
4	$g-C_3N_4/\alpha$ -	S-scheme	H ₂ production	Hydrogen evolution rate of 191.41	[58]
	Fe ₂ O ₃ /Co ₃ S ₄			μ mol, ~30 times higher than Co ₃ S ₄	
				alone	

Table 13: Photocatalytic Performance and Mechanisms of Fe₂O₃/g-C₃N₄ Composites

4.1 Type-II Heterojunction Mechanism

In the TypeII heterojunction mechanism of the $g-C_3N_4-Fe_2O_3$ composite,mainlyphotogenerated electrons(e⁻) in the conduction band (CB) of $g-C_3N_4$ transfer to the CB of Fe_2O_3 , while holes(h⁺) from the valence band (VB) of Fe_2O_3 migrate to the VB of $g-C_3N_4$. This spatial separation promotes effective charge transfer and reduces recombination, enhancing hydroxyl radical (•OH) generation crucial for photo-Fenton activity (**Fig.3**). Unlike the Z-scheme, which retains strong redox potentials by recombining less energetic charge carriers, and the S-scheme that selectively directs high-energy charges while filtering low-energy ones, the Type II system sacrifices some redox power for better charge separation and stability[44].

Fig.3Type II Photocatalytic Mechanism

 $g-C_3N_4$ and Fe_2O_3 form a Type-II heterojunction in which the band alignment enables directional charge separation:

- \circ Electrons from the g-C₃N₄ conduction band (CB, ~-1.1 eV) transfer to the Fe₂O₃ CB (+0.3 eV).
- Holes from the Fe_2O_3 valence band (VB, +2.6 eV) move to the g-C₃N₄ VB (+1.6 eV).

Redox limitations arise due to the energy positions of the bands:

- \circ ~ Electrons in the Fe_2O_3 CB (+0.3 eV) are insufficient to reduce O_2 to ${}^{\bullet}O_2{}^-$ (–0.33 eV).
- \circ ~ Holes in the g-C_3N_4 VB (+1.6 eV) cannot oxidize OH^ to •OH (+1.99 eV).

This limited redox potential hinders the formation of reactive oxygen species (ROS), essential for effective photocatalytic degradation.

Identification of the Type-II mechanism is supported by:

- UV-DRS and UPS measurements that confirm band alignment.
- Moderate photocurrent and high photoluminescence (PL), indicating charge recombination.
- \circ Weak ESR signals for •OH and •O2⁻, indicating low ROS production.

4.2 Z-Scheme Heterojunction Mechanism

The Z-scheme mechanism allows recombination of low-energy carriers, preserving high-energy electrons and holes with strong redox ability. This mechanism is preferred in $Fe_2O_3-g-C_3N_4$ systems (**Fig.4**) [59].

Fig.4. Z Scheme Photocatalytic Mechanism

Mechanism Details:

- e^- in Fe₂O₃ CB (+0.3 eV) recombines with h⁺ in g-C₃N₄ VB (+1.6 eV)
- High-energy e^- in g-C₃N₄ CB (-1.1 eV) reduce $O_2 \rightarrow \cdot O_2^-$
- High-energy h⁺ in Fe₂O₃ VB (+2.6 eV) oxidize H₂O/OH⁻ \rightarrow •OH
- Enhanced production of $ROS \rightarrow dye$ degradation

Advantages:

- Retains full redox potential
- Effective for the degradation of various dye pollutants Identified by:
- Band edge analysis via XPS/UPS
- Strong signals of $\cdot O_2^-$ and $\cdot OH$ via ESR spectroscopy
- Efficient charge carrier dynamics (low PL, high photocurrent)

4.3 S-Scheme Heterojunction Mechanism

The S-scheme (step-scheme) is a new-generation heterojunction model that retains the high redox ability like Z-scheme but incorporates built-in electric field (IEF) and band bending to enhance charge carrier separation further (**Fig.5**) [60].

Mechanism Details:

- Upon contact, band bending and IEF form at the interface
- Low-energy carriers recombine at the interface
- High-energy e^- from CB of $g-C_3N_4$ and h^+ from VB of Fe_2O_3 are spatially separated
- Facilitates formation of $\cdot O_2^-$ and $\cdot OH$ radicals, key for dye degradation

Advantages:

- Strong internal field promotes ultrafast carrier migration
- Effective under visible light due to narrow bandgap and synergistic behavior Identified by:
- Mott–Schottky plots (to determine flat band positions)
- Time-resolved PL spectroscopy
- XPS depth profiling (evidence of Fermi level alignment)
- Transient photocurrent, lower charge transfer resistance in EIS

Table 14 summarizes the comparison of charge transfer mechanisms and photocatalytic efficiencies among Type II, Z-scheme, and S-scheme heterojunctions.

Feature	Type II	Z-Scheme	S-Scheme		
Charge Flow	$CB (g\text{-}C_3N_4) \rightarrow CB$	$CB (Fe_2O_3) \rightarrow VB (g-C_3N_4)$	Similar to Z-scheme but with a		
Direction	(Fe ₂ O ₃), VB (Fe ₂ O ₃) \rightarrow	(recombination)	built-in electric field aiding		
	$VB (g-C_3N_4)$		separation		
Redox Potential	Reduced (lower redox	Retained (strong	Retained with added driving		
Retention	ability)	oxidation/reduction	force via internal field		
		retained)			

Table 14. of Mechanisms, ROS, and Dyes Degraded.

Feature	Type II	Z-Scheme	S-Scheme	
Main	Efficient charge separation	High redox potential	Strong charge separation + high	
Advantage		maintained	redox ability	
Suitable for	Mild reactions (e.g., dye	Reactions needing strong	High-efficiency photocatalysis	
	degradation via Fenton)	redox power	with enhanced selectivity	

5Fe₂O₃–g-C₃N₄ Nanocomposites for Sustainable Environmental Application

Iron oxide graphitic carbon nitride nanocomposites have emerged as auspicious materials for various environmental remediation applications, particularly for degrading organic pollutants from wastewater. The synergistic integration of iron oxide (Fe_2O_3), known for its strong redox properties, with graphitic carbon nitride (g- C_3N_4), valued for its high surface area, visible light response, and chemical stability, results in enhanced photocatalytic performance. These nanocomposites efficiently degrade persistent contaminants such as dyes, pharmaceutical residues, and pesticides under visible or solar irradiation, often achieving rapid degradation rates due to improved charge carrier separation and extended light absorption capacity[61]. Additionally, they are used for hydrogen production via water splitting and CO_2 reduction, contributing to clean energy solutions. Notably, the nanocomposites achieve substantial dye degradation in markedly shorter reaction timesunder UV-visible or sunlight. This confirms the enhanced interfacial charge transfer and wider light absorption achieved through composite formation (Table 15).Their reusability, cost-effectiveness, and ability to function under solar irradiation make them attractive for sustainable environmental remediation.

Pollutant	Material	Light	Photocatalytic	Reaction	Performance of	Reference
(Dye)		Source	Efficiency	Time	Composite vs.	
					Individual	
Methyl	Fe ₂ O ₃	Sunlight	~60%	90 min	-	[62]
Orange (MO)						
	$g-C_3N_4$	Sunlight	~65%	120 min	-	
	$Fe_2O_3/g-C_3N_4$	Sunlight	96.5%	60 min	Significant	
					enhancement	
Methylene	Fe ₂ O ₃	Visible	~53%	120 min	-	[63]
Blue (MB)		light				
	$g-C_3N_4$	Visible	~38%	120 min	-	
		light				
	$Fe_2O_3/g-C_3N_4$	Visible	89%	120 min	Strong	
		light			enhancement	
Rhodamine B	Fe ₂ O ₃	Sun light	~58%	150 min	-	[64]
(RhB)						
	$g-C_3N_4$	Sun light	~64%	150 min	-	
	Fe ₂ O ₃ /g-C ₃ N ₄	Sun light	93%	150 min	Excellent	
					improvement	
Methyl	Fe ₂ O ₃	Visible	39.33%	60 min	-	[32]
Orange (MO)		light				

Table 15. Photocatal	vtic degradation	of organic dyes	susing Fe ₂ O ₂	g-C ₂ N ₄ , and the	eir composites
	ythe degradation	i oi oigaine uye.	s using $r c_2 c_3$,	g Usi 14, and the	chi composites

Pollutant	Material	Light	Photocatalytic	Reaction	Performance	of	Reference
(Dye)		Source	Efficiency	Time	Composite	vs.	
					Individual		
	g-C ₃ N ₄	Visible	45.33%	60 min	-		
		light					
	Fe ₂ O ₃ /g-C ₃ N ₄	Visible	97.66%	60 min	Superior activity		
		light					
Orange II	α-Fe ₂ O ₃	Visible	~40%	150 min	-		[65]
		light					
	$g-C_3N_4/\alpha$ -	Visible	~60%	150 min	-		
	Fe ₂ O ₃	light					
	g-C ₃ N ₄ /α-	Visible	79%	150 min	Significant		
	Fe ₂ O ₃ /Fe ₃ O ₄	light			enhancement		
Crystal Violet	Fe ₂ O ₃	Sun	72%	150 min	-		[66]
(CV)		Light					
	g-C ₃ N ₄	Sun	85%	150 min	-		
		Light					
	g-C ₃ N ₄ /Fe ₂ O ₃	Sun	95%	1500 min	Significant		
		Light			enhancement		

5.1 Factors Influencing Photocatalytic Performance

Several key parameters, including the Fe_2O_3 :g- C_3N_4 ratio, surface area, doping, and morphology, influence the efficiency of Fe_2O_3/g - C_3N_4 nanocomposites. Optimal ratios improve interface contact and charge transfer, while porous structures enhance dye adsorption. Metal or non-metal doping suppresses recombination and extends visible-light absorption. Environmental factors such as pH, light source, and dye type also impact performance. Tailoring these factors can significantly boost photocatalytic outcomes, though long-term stability still needs improvement. These key factors, which are critical for enhancing real-world efficacy, are summarized in Table 16.

	Table 16. Influencing factors of dye degradation performance
Factor	Influence on Performance
Composite Ratio	Affects interface contact, electron transfer, and light absorption. Too much Fe ₂ O ₃ may
$(Fe_2O_3/g-C_3N_4)$	shield light; too little reduces.
Morphology and	Higher surface area = more active sites. Porous/hollow structures improve dye adsorption
Surface Area	and light scattering.
Doping with	Enhances conductivity, suppresses recombination, and tunes bandgap.
Metal/Non-	
metals	
Co-catalysts	Noble metals (Ag, Pt) or graphene can act as electron sinks, enhancing charge separation.
pH of Solution	Affects surface charge, dye ionization, and ROS generation. Optimal pH is often dye-
	specific.
Light Source	$g-C_3N_4$ is visible-light active; Fe_2O_3 absorbs in both regions. The composite shows good

Factor	Influence on Performance
(UV/Visible)	performance under sunlight.
Reusability and	Reusability isessential for practical use. Magnetic Fe ₂ O ₃ allows easy separation; stability
Stability	ensures long-term use.

5.2 Comparative Analysis with Other Photocatalysts

 $Fe_2O_3/g-C_3N_4$ composites outperform many conventional photocatalysts like TiO_2 and ZnO due to their broader light absorption and efficient charge separation via Z-/S-scheme mechanisms. While TiO_2 and ZnO are UV-active, the composite works efficiently under visible and solar light, often achieving >90% dye degradation. Its magnetic recoverability adds practical value. Moreover, green synthesis routes make it cost-effective and sustainable, although real wastewater conditions and reusability under field conditions need further evaluation.

Photocatalys	Light	Charge	Photodegradatio	Reusability	Cost &	Limitations
t	Absorptio	Separation	n Efficiency		Sustainabilit	
	n	Efficiency	(e.g., Methyl		у	
			Orange)			
TiO ₂ (P25)	UV-active	Moderate	~60–70% in 120	Moderate	Cheap,	Limited visible
	only (λ <		min (UV)	(5 cycles)	abundant	light use
	380 nm)					
ZnO	UV-active	Fast	~65–75% in 120	Moderate	Simple	Photo
		recombination	min (UV)		synthesis	corrosion
						under light
g-C ₃ N ₄	Visible-	Low (fast	~50–60% in 120	Good	Green,	Needs
	light	recombination)	min (visible)		metal-free	heterojunction
	active $(\lambda$					s to improve
	~450 nm)					
Fe ₂ O ₃ alone	Visible (λ	Poor	~40–55% in 120	Limited	Earth-	Low surface
	~550 nm)	(recombination	min		abundant	area, slow
)				kinetics
Fe ₂ O ₃ /g-	Wide	High (via Z-/S-	>90% in 90-120	High (easy	Eco-friendly	Slightly lower
C ₃ N ₄	range (UV	scheme)	min (visible or	recovery	(green	activity under
	+ visible)		sunlight)	via	synthesis	weak indoor
				magnetism	possible)	light
)		

Conclusion and Future Outlook

Iron oxide (Fe_2O_3) -graphitic carbon nitride $(g-C_3N_4)$ nanocomposites represent a compelling class of visiblelight-responsive photocatalysts that synergistically merge the magnetic, redox-active nature of Fe_2O_3 with the narrow bandgap and high stability of $g-C_3N_4$. Their integration forms effective Z-scheme or S-scheme heterojunctions, enhancing charge carrier separation and extended light absorption, attributes vital for efficiently degrading toxic organic dyes and pollutants.

This review has illustrated that the synthetic approaches, characterization techniques, mechanisms, and environmental applications of Fe_2O_3 -g- C_3N_4 nanocomposites are closely aligned with green chemistry

principles for sustainable nanomaterial production. These materials have demonstrated more than 90% degradation of various dyes such as methyl orange, methylene blue, rhodamine B, Orange II, crystal violet, and congo red under UV-visibleand sunlight, facilitated by advanced charge-transfer mechanisms and surface reactivity. However, a critical scientific analysis reveals notable limitations and research gaps: Incomplete mechanistic validation is often based solely on photoluminescence or UV-DRS without the support of TRPL, ESR, XPS, or scavenger-trapping experiments. Poor reproducibility of green-synthesized composites due to non-uniform precursor sources. Over multiple cycles, there is limited data on long-term photocatalyst stability, iron leaching, and reusability. Scarcity of real-effluent degradation studies, which are crucial for practical wastewater treatment. Inadequate monitoring of toxic degradation intermediates poses risks despite high decolorization efficiency.

To bridge these gaps, future research must focus on:

- Mechanistic studies using multi-spectral characterizations (e.g., TRPL, EIS, ESR, XPS) to gain deeper insights into charge transfer and active site dynamics.
- Standardized synthesis protocols for reproducible and scalable nanocomposite development, critical for real-world applications.
- Testing in real industrial wastewater and multi-component pollutant systems (dyes, antibiotics, heavy metals) to assess practical performance.
- $\circ~$ Integration of ternary or doped systems (e.g., Fe_2O_3/g-C_3N_4/Ag) to boost photocatalytic and biological efficiency.
- Device-level implementation, such as coated membranes, 3D sponges, and magnetically retrievable platforms, to facilitate field applications.
- Expanding composite applications into energy storage devices and electrochemical sensing enhances multifunctionality.

Based on the comprehensive analysis of existing literature, future studies should prioritize scalable green synthesis methods, advanced mechanistic investigations through in-depth characterization, and expansion of application domains beyond dye degradation to include real wastewater treatment, hydrogen production, CO_2 reduction, and a stronger emphasis on energy storage devices aligning with global sustainability goals.

Acknowledgments

Mr. B.T. Shinde would like to extend our sincere appreciation to the Research Centre, Department of Chemistry, A.S.P. College (Autonomous), Devrukh, and S.K.S.V. College, Lanja, Ratnagiri, Maharashtra, India, for their valuable assistance and provision of essential resources for the successful execution of this research work.

Author Contributions:

Babasaheb T. Shinde: Conceptualization, literature review, writingoriginal draft preparation, and data analysis.Dr. Hemant V. Chavan: Supervision, guidance throughout the research and writing process, critical revision of the manuscript, and final approval of the version to be submitted.

Conflicts of Interest:

The authors declare that there is no conflict of interest regarding the publication of this article.

REFERENCES

[1]. F. Yang and P. Boulet, "DFT Investigation of a Direct Z-Scheme Photocatalyst for Overall Water Splitting : Janus Ga 2 SSe / Bi 2 O 3 Van Der Waals Heterojunction," 2025.

- [2]. H. W. Ahmad, H. A. Bibi, M. Chandrasekaran, S. Ahmad, and G. L. Kyriakopoulos, "Sustainable Wastewater Treatment Strategies in Effective Abatement of Emerging Pollutants," 2024.
- [3]. S. B. Babar et al., "An efficient fabrication of ZnO–carbon nanocomposites with enhanced photocatalytic activity and superior photostability," J. Mater. Sci. Mater. Electron., vol. 30, no. 2, pp. 1133–1147, 2019, doi: 10.1007/s10854-018-0382-5.
- [4]. M. A. Hassaan, M. A. El, and N. Marwa, Principles of Photocatalysts and Their Different Applications : A Review, vol. 381, no. 6. Springer International Publishing, 2023. doi: 10.1007/s41061-023-00444-7.
- [5]. S. P. Keerthana et al., "A strategy to enhance the photocatalytic efficiency of α-Fe2O3," Chemosphere, vol. 270, p. 129498, 2021, doi: 10.1016/j.chemosphere.2020.129498.
- [6]. Y. L. Pang, S. Lim, and H. C. Ong, "Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applicationsAuthor's Accepted Manuscript applications," Ceram. Int., vol. 15, no. August, pp. 01670–3, 2015, doi: 10.1016/j.ceramint.2015.08.144.
- [7]. N. Farooq, M. Imran, A. Mahmood, M. Ahmad, A. Shanableh, and S. Anjum, "Fe 2 O 3 / g-C 3 N 4 / CNTs based nanocomposites incorporated with neodymium and samarium nanoparticles for efficient photocatalytic vitiation of organic pollutants," vol. 259, pp. 71–81, 2022, doi: 10.5004/dwt.2022.28444.
- [8]. S. S. Yi, J. M. Yan, and Q. Jiang, "Carbon quantum dot sensitized integrated Fe2O3@g-C3N4 core-shell nanoarray photoanode towards highly efficient water oxidation," J. Mater. Chem. A, vol. 6, no. 21, pp. 9839–9845, 2018, doi: 10.1039/c8ta01908h.
- [9]. W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, and S. P. Chai, "Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability?," Chemical Reviews, vol. 116, no. 12. pp. 7159–7329, 2016. doi: 10.1021/acs.chemrev.6b00075.
- [10]. Y. Wang, X. Wang, and M. Antonietti, "Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry," Angew. Chemie - Int. Ed., vol. 51, no. 1, pp. 68–89, 2012, doi: 10.1002/anie.201101182.
- [11]. K. S. Novoselov et al, "Electric Field Effect in Atomically Thin Carbon Films," vol. 306, no. 5696, pp. 666– 669, 2016.
- [12]. A. K. G. A. K. S. NOVOSELOV, "The rise of graphene," Nat. Mater, vol. 6, pp. 183–191, 2007, doi: 10.1007/978-3-319-70329-9.
- [13]. S. Pei and H. M. Cheng, "The reduction of graphene oxide," Carbon N. Y., vol. 50, no. 9, pp. 3210–3228, 2012, doi: 10.1016/j.carbon.2011.11.010.
- [14]. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chem. Soc. Rev., vol. 39, no. 1, pp. 228–240, 2010, doi: 10.1039/b917103g.
- [15]. G. Eda and M. Chhowalla, "Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics," Adv. Mater., vol. 22, no. 22, pp. 2392–2415, 2010, doi: 10.1002/adma.200903689.
- [16]. D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, "Dispersion behaviour of graphene oxide and reduced graphene oxide," J. Colloid Interface Sci., vol. 430, pp. 108–112, 2014, doi: 10.1016/j.jcis.2014.05.033.
- [17]. X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu, "Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications," Nanoscale, vol. 5, no. 9, pp. 3601–3614, 2013, doi: 10.1039/c3nr00476g.
- [18]. Y. Song, P. C. D. Mendes, and S. M. Kozlov, "Tunable properties and composition of ZnO films supported on metal surfaces," J. Mater. Chem. A, vol. 11, no. 25, pp. 13665–13676, 2023, doi: 10.1039/d3ta01940c.

- [19]. L. Yang et al., "Fabrication of semiconductor ZnO nanostructures for versatile SERS application," Nanomaterials, vol. 7, no. 11, 2017, doi: 10.3390/nano7110398.
- [20]. X. Zhang, W. Lu, G. Zhou, and Q. Li, "Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics," Adv. Mater., vol. 32, no. 5, pp. 1–21, 2020, doi: 10.1002/adma.201902028.
- [21]. P. Udomkun, T. Boonupara, S. M. Smith, and P. Kajitvichyanukul, "Green Ag/AgCl as an Effective Plasmonic Photocatalyst for Degradation and Mineralization of Methylthioninium Chloride," Separations, vol. 9, no. 8, pp. 1–17, 2022, doi: 10.3390/separations9080191.
- [22]. F. R. Oliveira, A. K. Patel, D. P. Jaisi, S. Adhikari, H. Lu, and S. K. Khanal, "Environmental application of biochar: Current status and perspectives," Bioresour. Technol., vol. 246, pp. 110–122, 2017, doi: 10.1016/j.biortech.2017.08.122.
- [23]. A. Sánchez, "Editorial: Innovative uses of biochar in environmental applications," Front. Chem. Eng., vol. 6, no. September, pp. 1–2, 2024, doi: 10.3389/fceng.2024.1474937.
- [24]. L. Zhou, L. Wang, J. Zhang, J. Lei, and Y. Liu, "Well-Dispersed Fe2O3Nanoparticles on g-C3N4for Efficient and Stable Photo-Fenton Photocatalysis under Visible-Light Irradiation," Eur. J. Inorg. Chem., vol. 2016, no. 34, pp. 5387–5392, 2016, doi: 10.1002/ejic.201600959.
- [25]. P. Dhull, R. K. Lohchab, M. Kumari, K. Singh, and A. K. Bhankhar, "A Facile Method for Synthesis of α-Fe 2 O 3 Nanoparticles and Assessment of Their Characterization," Nat. Environ. Pollut. Technol., vol. 23, pp. 321–330, 2024.
- [26]. S. Sundar and G. Venkatachalam, "Nanostructures for the Selective and Sensitive Determination of Uric Acid and Dopamine," Catalysts, vol. 8, no. 11, p. 512, 2018, doi: 10.3390/catal8110512.
- [27]. J. Ma, J. Lian, X. Duan, X. Liu, and W. Zheng, "r -Fe 2 O 3: Hydrothermal Synthesis , Magnetic and Electrochemical Properties," pp. 10671–10676, 2010.
- [28]. M. Diab and T. Mokari, "Thermal Decomposition Approach for the Formation of α Fe 2 O 3 Mesoporous Photoanodes and an α - Fe 2 O 3 /CoO Hybrid Structure for Enhanced Water Oxidation," pubs.acs.org/IC Therm., vol. 53, p. 2304–2309, 2014.
- [29]. P. C. Implementation, "Synthesis and Characterization of α -Fe 2 O 3 Nanoparticles by Microemulsion Method Gamze BOZKURT 1* 1," J. Sci. Technol., vol. 13, no. 2, pp. 890–897, 2020, doi: 10.18185/erzifbed.742160.
- [30]. V. C. Karade et al., "Heliyon A green approach for the synthesis of α -Fe 2 O 3 nanoparticles from Gardenia resinifera plant and it 's In vitro hyperthermia application," Heliyon, vol. 5, no. February, p. e02044, 2019, doi: 10.1016/j.heliyon.2019.e02044.
- [31]. H. J. Fatih, M. Ashengroph, and A. Sharifi, "potent antibacterial, anti-biofilm and anti-virulence agent against pathogenic bacteria," BMC Microbiol., vol. 24, no. 535, pp. 1–13, 2024.
- [32]. B. T. Shinde, S. B. Babar, U. V. Shembade, A. V. Moholkar, and H. V. Chavan, "Efficient chemical synthesis of g-C3N4-Fe2O3 nanocomposites as a photocatalyst for superior photocatalytic degradation," Res. Chem. Intermed., vol. 51, no. 3, pp. 1511–1535, 2025, doi: 10.1007/s11164-025-05514-7.
- [33]. Q. Tao, J. Bi, X. Huang, R. Wei, T. Wang, and Y. Zhou, "Chemosphere Fabrication, application, optimization and working mechanism of Fe 2 O 3 and its composites for contaminants elimination from wastewater," Chemosphere, vol. 263, p. 127889, 2021, doi: 10.1016/j.chemosphere.2020.127889.
- [34]. B. Chen, S. Hatamie, P. Garu, P. Heravi, J. Chen, and B. Liu, "Synthesis of iron-oxide magnetic nanoparticles coated with dextran of varied molecular mass using a facile ball-milling method," Micro Nano Lett., vol. 15, no. 10, pp. 645–650, 2020, doi: 10.1049/mnl.2019.0811.

- [35]. S. Babar et al., "Evolution of Waste Iron Rust into Magnetically Separable g-C3N4-Fe2O3 Photocatalyst: An Efficient and Economical Waste Management Approach," ACS Appl. Nano Mater., vol. 1, no. 9, pp. 4682–4694, Sep. 2018, doi: 10.1021/acsanm.8b00936.
- [36]. S. B. Shinde, O. S. Nille, A. H. Gore, N. B. Birajdar, G. B. Kolekar, and P. V Anbhule, "Valorization of Waste Tungsten Filament into mpg - C 3 N 4 – WO 3 Photocatalyst: A Sustainable e - Waste Management and Wastewater Treatment," Langmuir, vol. 38, no. 44, p. 13543–13557, 2022, doi: 10.1021/acs.langmuir.2c02171.
- [37]. B. Palanivel et al., "Green synthesis of Fe2O3 deposited g-C3N4: Addition of rGO promoted Z-scheme ternary heterojunction for efficient photocatalytic degradation and H2 evolution reaction," Mater. Res. Bull., vol. 162, no. January, p. 112177, 2023, doi: 10.1016/j.materresbull.2023.112177.
- [38]. S. Vasantharaj, N. Sripriya, M. Shanmugavel, E. Manikandan, A. Gnanamani, and P. Senthilkumar, "Surface active gold nanoparticles biosynthesis by new approach for bionanocatalytic activity," J. Photochem. Photobiol. B Biol., vol. 179, pp. 119–125, 2018, doi: 10.1016/j.jphotobiol.2018.01.007.
- [39]. L. Luo, A. Zhang, M. J. Janik, C. Song, and X. Guo, "Mesoporous graphitic carbon nitride functionalized iron oxides for promoting phenol oxidation activity," RSC Adv., vol. 6, no. 94, pp. 91960–91967, 2016, doi: 10.1039/c6ra19455a.
- [40]. M. Ashraf et al., "Heliyon Fabrication and characterization of novel, cost-effective graphitic carbon nitride / Fe coated textile nanocomposites for effective degradation of dyes and biohazards," Heliyon, vol. 9, no. 10, p. e20822, 2023, doi: 10.1016/j.heliyon.2023.e20822.
- [41]. K. C. Christoforidis et al., "Synthesis and photocatalytic application of visible-light active \cdot -Fe 2 O 3 / g-C 3 N 4 hybrid nanocomposites".
- [42]. S. Al, S. Thangavel, Y. Kim, and R. Selvaraj, "Enhanced photocatalytic activity of a -Fe 2 O 3 / g-C 3 N 4 composite materials for degradation of toluene in aqueous solution under visible light irradiation," vol. 254, pp. 94–103, 2022, doi: 10.5004/dwt.2022.28350.
- [43]. D. Mhamane, H. K. Kim, V. Aravindan, K. C. Roh, M. Srinivasan, and K. B. Kim, "Rusted iron wire waste into high performance anode (α-Fe2O3) for Li-ion batteries: An efficient waste management approach," Green Chem., vol. 18, no. 5, pp. 1395–1404, Mar. 2016, doi: 10.1039/c5gc01747e.
- [44]. F. Ge, X. Li, M. Wu, H. Ding, and X. Li, "RSC Advances PAPER A type II heterojunction a -Fe 2 O 3 / g-C 3 N 4 for the," RSC Adv., vol. 12, pp. 8300–8309, 2022, doi: 10.1039/D1RA09282K.
- [45]. X. Hu, J. C. Yu, J. Gong, Q. Li, and G. Li, "α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties," Adv. Mater., vol. 19, no. 17, pp. 2324–2329, Sep. 2007, doi: 10.1002/adma.200602176.
- [46]. V. Gaikwad, U. Kumar, F. Pahlevani, A. Piadasa, and V. Sahajwalla, "Thermal Transformation of Waste Toner Powder into a Value-Added Ferrous Resource," ACS Sustain. Chem. Eng., vol. 5, no. 12, pp. 11543–11550, 2017, doi: 10.1021/acssuschemeng.7b02875.
- [47]. N. Farooq et al., "A comparative study of cerium- and ytterbium-based GO/g-C3N4/Fe2O3 composites for electrochemical and photocatalytic applications," Appl. Sci., vol. 11, no. 19, 2021, doi: 10.3390/app11199000.
- [48]. N. X. D. Linh et al., "Facile Fabrication of α-Fe2O3/g-C3N4 Z Scheme Heterojunction for Novel Degradation of Residual Tetracycline," Top. Catal., vol. 66, no. 1–4, pp. 139–148, Jan. 2023, doi: 10.1007/s11244-022-01751-x.

- [49]. A. Kheradmand, A. Wainwright, L. Wang, and Y. Jiang, "Anchoring Iron Oxides on Carbon Nitride Nanotubes for Improved Photocatalytic Hydrogen Production," Energy & Fuels, vol. 35, no. 1, pp. 868– 876, 2021, doi: 10.1021/acs.energyfuels.0c03901.
- [50]. D. R. Paul, S. Gautam, P. Panchal, S. P. Nehra, P. Choudhary, and A. Sharma, "ZnO-Modi fi ed g C 3 N 4: A Potential Photocatalyst for Environmental Application," 2020, doi: 10.1021/acsomega.9b02688.
- [51]. R. Khurram, Z. U. Nisa, A. Javed, Z. Wang, and M. A. Hussien, "Synthesis and Characterization of an α -Fe 2 O 3 -Decorated g-C 3 N 4 Heterostructure for the Photocatalytic Removal of MO," 2022.
- [52]. E. C. Spencer, N. L. Ross, R. E. Olsen, B. Huang, I. Alexander, and B. F. Woodfield, "Thermodynamic Properties of α -Fe 2 O 3 and Fe 3 O 4 Nanoparticles," pp. 1–19, 2008.
- [53]. S. Babar et al., "An innovative transformation of waste toner powder into magnetic g-C3N4-Fe2O3 photocatalyst: Sustainable e-waste management," J. Environ. Chem. Eng., vol. 7, no. 2, Apr. 2019, doi: 10.1016/j.jece.2019.103041.
- [54]. G. I. Tovar, S. Briceño, J. Suarez, S. Flores, and G. González, "Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and its evaluation on corn germination," Environ. Nanotechnology, Monit. Manag., vol. 14, no. June, p. 100350, 2020, doi: 10.1016/j.enmm.2020.100350.
- [55]. J. Hu, Shaozheng and Jin, Ruirui and Lu, Guang and Liu, Dan and Gui, "RSC Advances," RSC Adv, vol. 4, no. 47, pp. 24863–24869, 2014, doi: 10.1039/c4ra03290j.
- [56]. Q. Xu, B. Zhu, C. Jiang, B. Cheng, and J. Yu, "Constructing 2D/2D Fe2O3/g-C3N4 Direct Z-Scheme Photocatalysts with Enhanced H2 Generation Performance," Sol. RRL, vol. 2, no. 3, pp. 1–10, 2018, doi: 10.1002/solr.201800006.
- [57]. Y. Zhang, J. Wan, C. Zhang, and X. Cao, "MoS2 and Fe2O3 co-modify g-C3N4 to improve the performance of photocatalytic hydrogen production," Sci. Rep., vol. 12, no. 1, pp. 1–12, 2022, doi: 10.1038/s41598-022-07126-2.
- [58]. T. Yan, H. Liu, and Z. Jin, "G-C3N4/α-Fe2O3Supported Zero-Dimensional Co3S4Nanoparticles Form S-Scheme Heterojunction Photocatalyst for Efficient Hydrogen Production," Energy and Fuels, vol. 35, no. 1, pp. 856–867, 2021, doi: 10.1021/acs.energyfuels.0c03351.
- [59]. Y. pei Li et al., "Z-scheme electronic transfer of quantum-sized A-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production," Int. J. Hydrogen Energy, vol. 42, no. 47, pp. 28327– 28336, 2017, doi: 10.1016/j.ijhydene.2017.09.137.
- [60]. H. Lv et al., "Multishelled hollow CaTiO3 cubes decorated with Co0.2Cd0.8S nanoparticles for efficient photocatalytic H2 evolution via S-scheme charge transfer," Sep. Purif. Technol., vol. 345, p. 127429, Oct. 2024, doi: 10.1016/J.SEPPUR.2024.127429.
- [61]. M. A. Ahmed and A. A. Mohamed, "Recent progress in semiconductor/graphene photocatalysts: synthesis, photocatalytic applications, and challenges," RSC Adv., vol. 13, no. 1, pp. 421–439, 2022, doi: 10.1039/d2ra07225d.
- [62]. S. Babar et al., "Evolution of Waste Iron Rust into Magnetically Separable g-C3N4-Fe2O3 Photocatalyst: An Efficient and Economical Waste Management Approach," ACS Appl. Nano Mater., vol. 1, no. 9, pp. 4682–4694, 2018, doi: 10.1021/acsanm.8b00936.
- [63]. A. Ali et al., "g-C3N4/Fe3O4 composites synthesized via solid-state reaction and photocatalytic activity evaluation of methyl blue degradation under visible light irradiation," Front. Mater., vol. 10, no. May, pp. 1–11, 2023, doi: 10.3389/fmats.2023.1180646.
- [64]. S. Kumaravel et al., "Rational construction of MOF derived α-Fe2O3/g-C3N4 composite for effective photocatalytic degradation of organic pollutants and electrocatalytic oxygen evolution reaction,"

Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 310, no. November 2023, p. 123972, 2024, doi: 10.1016/j.saa.2024.123972.

- [65]. Z. Wang et al., "Novel magnetic g-C3N4/α-Fe2O3/Fe3O4 composite for the very effective visible-lightfenton degradation of Orange II," RSC Adv., vol. 8, no. 10, pp. 5180–5188, 2018, doi: 10.1039/c7ra13291c.
- [66]. T. Wang et al., "Facile one-step hydrothermal synthesis of α-Fe2O3/g-C3N4 composites for the synergistic adsorption and photodegradation of dyes," RSC Adv., vol. 9, pp. 29109–29119, 2019, doi: 10.1039/c9ra05100g.