

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0)

 International Journal of Scientific Research in Science and Technology

Available online at : www.ijsrst.com

Print ISSN: 2395-6011 | Online ISSN: 2395-602X doi : https://doi.org/10.32628/IJSRST25121414

135

Inventory Management System using Django Framework,

PostgreSQL and Server Rendered Approach
Sayan Biswas, Rohan Dey, Abhik Chakraborty, Arghyadeep Paul, Riddha Ghosh Dastidar, Amrut Ranjan Jena,

Madhusmita Mishra

Department of Computer Science and Engineering, Dr. Sudhir Chandra Sur Institute of Technology and Sports

Complex, Kolkata, West Bengal, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Published : 16 May 2025

 This document details the creation of a comprehensive, web-based

Inventory Management System (IMS) designed to address the vital need

for effective stock control across multiple branches. The IMS aims to

optimize inventory processes, decrease operational expenses, and improve

decision-making through real-time tracking and streamlined management.

Leveraging a robust technology stack that includes Django for the backend

and Bootstrap for a responsive frontend, the IMS offers a user-friendly,

scalable, and secure solution.

Keywords: Secure User Authentication, Role-Based Access Control,

Personalized Dashboard, Real-Time Inventory Tracking, Integrated Stock

Transfer Request System, Responsive Design, Robust Technology Stack

Publication Issue :

Volume 12, Issue 14

May-June-2025

Page Number :

135-154

I. INTRODUCTION

In the rapidly changing business landscape of today, effective inventory management is crucial for

organizations of all sizes. As the need to optimize operations, lower costs, and meet customer demands

grows, businesses are adopting innovative solutions to stay competitive. A powerful Inventory Management

System (IMS) tackles these challenges by offering a central platform for tracking, managing, and analyzing

inventory in real-time.

A well-designed IMS simplifies inventory processes by incorporating features such as automated stock

tracking, order management, supplier integration, and advanced data analytics. These capabilities enable

businesses to make informed decisions, minimize errors, and boost overall operational efficiency. The

incorporation of modern web technologies further ensures scalability, security, and ease of use, making the

system accessible across various devices and suitable for diverse industries.

Developing an IMS requires a careful approach that balances intuitive design, strong functionality, and

secure data handling. It must meet the specific needs of businesses, whether they are small businesses

seeking better inventory control or large organizations optimizing complex supply chains. By utilizing

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

136

frameworks like Django, responsive design principles, and scalable databases, the IMS becomes a versatile

tool for achieving inventory accuracy and operational excellence.

This document outlines the essential components, features, and technologies involved in the development of

the IMS. It serves as a comprehensive guide for creating a solution that aligns with the dynamic

requirements of businesses and supports their growth in an increasingly competitive market.

II. MOTIVATION

In the ever-evolving business environment, efficient inventory management is a fundamental element of

operational success for businesses of all scales. However, many businesses still rely on outdated, manual

processes that are susceptible to human error, delays, and inefficiencies. These limitations can result in

missed opportunities, increased expenses, and customer dissatisfaction, highlighting an urgent need for a

streamlined, modern solution.

The development of this Inventory Management System (IMS) is driven by a clear objective: to address

these challenges by providing a simple yet effective platform for inventory control. By offering features such

as real-time stock tracking, automated workflows, and role-based access, the IMS empowers businesses to

eliminate inefficiencies, enhance accuracy, and improve decision-making.

The project's emphasis on accessibility and adaptability is particularly noteworthy. Small and medium-sized

enterprises (SMEs) often face difficulties managing inventory due to limited resources or the high cost of

available tools. Our IMS is designed to bridge this gap, providing an affordable, user-friendly solution that

enables businesses to compete effectively with larger organizations. Ultimately, this project is motivated by

the desire to create a significant impact by simplifying processes, reducing operational obstacles, and

equipping businesses with the necessary tools to grow and succeed in an increasingly competitive global

market.

III. RELATED WORKS

Pasaribu, Johni S. "Development of a Web Based Inventory Information System." International Journal of

Engineering, Science and Information Technology 1.2 (2021): 24-31.

Madamidola, Olugbenga Ayomide, O. A. Daramola, and K. G. Akintola. "Web–based intelligent inventory

management system." International Journal of Trend in Scientific Research and Development 1.4 (2017):

164-73.

Baylosis, Jhon Lloyd A., et al. "Web-based Inventory Management System." International Journal 12.5

(2023).

Muyumba, Thomas, and Jackson Phiri. "A Web based Inventory Control System using Cloud Architecture

and Barcode Technology for Zambia Air Force." International Journal of Advanced Computer Science and

Applications 8.11 (2017).

Misahuaman, Gunther, Alfredo Daza, and Emily Zavaleta. "Web-based systems for inventory control in

organizations: A Systematic Review." 2021 IEEE/ACIS 22nd International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). IEEE, 2021.

Chukwumuanya, Okechukwu Emmanuel, Uchendu Onwusoronye Onwurah, and Christopher Chukwutoo

Ihueze. "Development of a Web-Based Inventory Management System for Small Businesses."

INTERNATIONAL JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING 2.2 (2024): 53-67.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

137

IV. PROPOSED SYSTEM

This section describes the proposed system architecture Django Inventory management System (DIMS) as

depicted in figure 1.

Figure 1: Relational database diagram for Django Inventory management System (DIMS)

1. System Architecture and Module Description:

The system architecture of the web-based inventory management system mainly focuses on data flow,

security, and user interface.

1) Item Management View:

• Core Item Operations: The system uses CRUD (Create, Read, Update, Delete) operations for

inventory items.

• Item Listing(item_list):

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

138

This view is responsible for displaying the inventory items

1. Role-based access control: This is a critical security feature. It means that what a user can see

depends on their role within the system. Superusers and admins use role-based access as they

can view all items, while regular users can only see items in their branch.

2. Django’s ORM(Object-Relational Mapping): Django uses ORM to interact with the database.

Instead of writing raw SQL queries, developers use Python code to perform database

operations. This makes the code cleaner and easier to maintain.This IMS uses Django's ORM

(Object-Relational Mapping) with filtering based on branch relationships and distinct() to

prevent duplicate items.

• Item Creation(item_create):

1. In Django, decorators are used to add extra functionality to

functions.Thepermission_required decorator ensures that only users with the necessary

permissions can access the item creation functionality. It is protected by Django's

permission_required decorator.

2. Branch-specific logic for branch managers: This means that when a branch manager creates

an item, the system automatically associates that item with their branch. This simplifies the

process for the user and ensures data accuracy. It includes branch-specific logic for branch

managers and integrates a notification system.

3. Automatic creation of associated inventory records: When a new item is added to the

system, it's not enough to just record the item's details (name, description, etc.). The system

also needs to track the quantity of that item in each branch. This is done by creating

"inventory records" that link the item to specific branches and store the quantity on hand.

The system automates this process to ensure data consistency. It automatically creates

associated inventory records.

2) Inventory Management View:

This module deals with tracking and managing actual stock of items.

• Inventory Listing:

1. It has branch-specific visibility controls. Similar to item listing, this ensures that users only

see the inventory levels for their own branch.

2. It maintains a hierarchical access structure (superuser/admin vs. branch users). This refers to

the different levels of access within the system (e.g., superuser, admin, branch user).

Superusers or admins might have a complete view of inventory across all branches, while

branch users only see their own branch's inventory.

3. It directly maps to branch relationships.This ensures that inventory data is correctly tied to

the appropriate branch preventing confusion and errors.

• Inventory Updates:

1. It has permission-based access control which means only authorized users can change

inventory levels.

2. It has branch-specific validation means when updating inventory, the system checks if the

changes are valid for that particular branch (e.g., preventing negative stock levels).

3. It uses form-based quantity management where users use forms to enter and update

inventory quantities, providing a user-friendly interface.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

139

4. It automatically assigns branches for branch managers. It simplifies the process of updating

inventory for branch managers.

3) Reporting Management System:

This module handles requests for stock transfers or other inventory-related actions

• Request Creation:

1. It requires user authentication where only logged-in users can create requests, ensuring

accountability.

2. It automatically assigns the requester where the system automatically records who created

the request. and uses form-based validation which ensures that request information is

complete and accurate.

3. It has permission-based access control. It controls who is allowed to create requests.

• Request Processing:

1. It includes a status update workflow where it manages the different stages of a request (e.g.,

pending, approved, rejected, completed). and an approval process which defines who needs

to approve a request.

2. It has role-based access restrictions that determine who can process or approve requests. and

branch-specific request handling which ensures requests are handled within the context of

the relevant branch.

3. It emphasizes the importance of a well-defined process for handling requests to ensure

efficiency and transparency thus enhancing key workflow implementation.

4) Security Implementation Details:

This module focuses on the security measures built into the system.

• Authentication:

1. Login is required for all views. Users must log in to access any part of the system.

2. It uses permission-based access control which means it controls what actions users can

perform. and role-based visibility restrictions. means it controls what data users can see.

• Authorization:

1. It includes branch-level access control which means it isolates data between different

branches.

2. It has role-specific permissions that defines the actions each role is allowed to take.

3. It has a hierarchical permission structure that supports different levels of access (e.g., user,

manager, administrator).

• Data Access Controls:

1. It has object-level permissions such that it controls access to individual data records.

2. It has Branch-specific data filtering that ensures users only see data relevant to their branch.

3. It has superuser override capabilities that allows administrators to access all data if necessary.

5) Data Flow and Relationships:

This module describes how data is organized and connected within the system.

• Model Relationships:

1. Item to Inventory,(One-to-Many): One item can exist in multiple inventory records (e.g., in

different branches).

2. Branch to Inventory: One branch can have many inventory records (for different items).

3. User to Request: One user can create multiple requests.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

140

4. Branch to Request: One branch can be involved in many requests.

• Data Validation:

1. Form-based validation: Validates data entered by users in forms.

2. Model-level validation: Validates data at the database level.

3. Permission=based validation: Validates if users have permission to perform certain actions.

6) Notification System Integration:

The system include email notifications for various events:

• New item creation alerts notify relevant personnel when a new item is added.

• Branch-specific notifications ensure that branch users receive relevant alerts.

• User action notifications provide feedback and confirmation to users for their actions.

2. Database Design:

The database design of the web-based Inventory Management System (IMS) is structured to efficiently

manage and organize data related to inventory, users, branches, and requests. The design, as depicted in the

Object-Relationship Diagram (ORD), employs a relational database model, where data is stored in tables,

and relationships between these tables are established using foreign keys.

Key components and Tables:

• accounts_user: Stores user-specific details, including credentials (password, username), personal

information (first name, last name, email), status flags (is_staff, is_active, is_superuser), date joined,

role, and the branch the user is associated with.

• auth_group & auth_permission: Manages user groups and permissions, providing a mechanism for

controlling user access and actions within the system. These tables are part of Django's

authentication and authorization framework.

• inventory_item: This table stores the basic information about each item in the inventory, such as

name, description, and unit of measurement.

• inventory: This is a crucial table that links items to branches and tracks the quantity of each item

at each branch. It also includes a field for the last updated timestamp.

• branch: This table stores information about the different branches of the organization, such as

name and address.

• requests_request: This table stores information about requests for inventory, including the quantity

requested, status, creation and update timestamps, the branch involved, the item requested and the

user who made the request.

• django_session: Django uses this table to store session data, which allows the system to remember

user sessions.

• django_admin_log: This table keeps a log of actions performed in the Django admin interface,

providing an audit trail.

• django_content_type & django_migrations & sqlite_sequence & sqlite_master: These tables are

used internally by Django for its framework operations, content management, database migrations,

and SQLite database management.

Relationships between Tables:

The tables are interconnected through relationships, primarily one-to-many, using foreign keys. For

instance, a branch can have multiple inventory records, and an item can appear in multiple inventory

records across different branches. These relationships are crucial for maintaining data consistency and

enabling efficient data retrieval.The relational database schema is fundamentally defined by a set of

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

141

precisely articulated inter-table relationships, characterized predominantly by the one-to-many cardinality.

These relationships are rigorously enforced through the strategic application of foreign key constraints,

playing a pivotal role in upholding data consistency, ensuring referential integrity, and enabling efficient

retrieval of related data sets via relational database operations.

Specific relationships and their implications:

• One-to-Many Relationship between branch and inventory: A single branch can be associated with

multiple inventory entries, signifying that each branch can store and track multiple inventory items.

The inventory table uses a foreign key (branch_id) referencing the primary key (branch_id) of the

branch table.

• One-to-Many Relationship between inventory_item and inventory: A single inventory item can be

associated with multiple inventory records, indicating that an item can be stocked at multiple branches.

The inventory table incorporates a foreign key (item_id) referencing the primary key (item_id) of the

inventory_item table.

• One-to-Many Relationship between accounts_user and requests_request: A single user can create

multiple requests. The requests_request table includes a foreign key (user_id) referencing the primary

key of the accounts_user table.

• One-to-Many Relationship between branch and requests_request: A single branch can be involved in

multiple requests. The requests_request table uses a foreign key (branch_id) referencing the primary

key (branch_id) of the branch table.

• One-to-Many Relationship between inventory_item and requests_request: A single inventory item can

be the subject of multiple requests. The requests_request table incorporates a foreign key (item_id)

referencing the primary key (item_id) of the inventory_item table.

3. User Interface:

Dashboard page

The image displays the dashboard of the Inventory Management System, welcoming the user "sayan." It

presents a summary of key information, including "User Information" (username, email, role, join date) and

"Branch Information" (name and address). The dashboard also features statistical overviews of "Item

Statistics," "Inventory Statistics" (by branch), and "Request Statistics" (by status), providing a quick snapshot

of the system's current state.

Figure 2: Dashboard of Django Inventory management System (DIMS) welcoming the user “sayan”

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

142

Homepage

The image is the homepage of an Inventory Management System. It highlights key features like "Inventory

Management" for tracking stock across branches, "Request Processing" for streamlining approvals, and

"Insightful Reports" for data-driven decisions. The page also offers a "Go to Dashboard" button for quick

access and provides an "About Our System" and "Key Benefits" section detailing the system's purpose and

advantages.

Figure 3: Homepage of Django Inventory management System (DIMS)

Register page

The image shows the registration page for an Inventory Management System (IMS). New users can create an

account by filling in fields for username (up to 15 characters, letters, digits, and -/_./+ only), email, password

(with specific complexity requirements), password confirmation, and branch. After filling the form, users

can click the "Register" button to create their account.

Figure 4: Registration page of Django Inventory management System (DIMS)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

143

Login Page

The image displays the login screen for an Inventory Management System (IMS). Users are prompted to

enter their username and password to access the system, which appears to offer features for managing items,

inventory, and requests, as indicated by the left sidebar navigation. The footer provides information about

the IMS, quick links, contact details, and copyright information.

Figure 5: Login screen of Django Inventory management System (DIMS)

Item page

The image presents the "Items" interface within the Inventory Management System. It displays a table

listing different inventory items, such as "Printer Paper," "Ballpoint Pens," and "Staplers." For each item, the

table provides details like the name, a brief description, and the unit in which it's measured (e.g., "box,"

"piece," "liter"). On the right side, "Actions" allow users to "View" more details, "Edit" the item's information,

or "Delete" it from the system. Additionally, a "+ Add New Item" button in the top right corner enables

users to introduce new products into the inventory.

Figure 6: “Items” interface within the Django Inventory management System (DIMS)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

144

Item detail page

The image shows the "Item Detail" page for "Printer Paper" within the Inventory Management System. It

displays the item's unit ("box") and description ("A4 size white printer paper"). The "Current Inventory"

section shows the quantity of Printer Paper available across different branches: James Inc. (5), Campbell

LLC (77), Smith PLC (41), and Phelps Inc. (0). Users can also "Edit" the item details or go "Back to List" of all

items.

Figure 7: “Item Detail” page within the Django Inventory management System (DIMS)

Inventory page

The image displays the "Inventory" section of the Inventory Management System. It shows a list of items

and their current quantities specifically at the "James Inc" branch. For each item, such as "Staples,"

"Markers," and "Printer Paper," the listed quantity represents the stock level at this particular branch. The

"Actions" column provides an "Update" button, likely allowing users to modify the inventory levels for each

item at James Inc.

Figure 8: “Inventory” section of the Django Inventory management System (DIMS)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

145

Request page

The image shows the "Requests" section of the Inventory Management System. It displays a list of requests

made by different users ("Requester") for various items and quantities. The "Status" column indicates

whether each request has been "Approved," "Rejected," or is still "Pending." Users can view the details of

each request through the "View" action, and there's an option to "+ New Request."

Figure 9: “Request” section of the Django Inventory management System (DIMS)

Request detail page

The image shows the "Request Detail" page for "Request #9" in the Inventory Management System. This

request was made by "pervashley" on December 30, 2024, for 10 units of "Printer Paper" to be fulfilled by

the "Phelps Inc" branch. The request's status is currently "Approved," and there are options to "Update

Status" or go "Back to List" of all requests.

Figure 10: “Request Detail” page for “request” in the Django Inventory management System (DIMS)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

146

Update page

The image shows a pop-up window titled "Update Request Status" overlaid on the "Request Detail" page for

Request #9. The pop-up presents a dropdown menu with three status options: "Pending," "Approved"

(currently selected with a checkmark), and "Rejected." Users can choose a different status for the request

and then click the "Update Status" button to save the changes, or "Close" the window without making any

modifications.

Figure 7: A pop-up window titled “Update Request Status” overlaid on the “Request Detail” page for request

in the Django Inventory management System (DIMS)

V. COMPARATIVE STUDY

1. Security and Access Control

Feature Traditional Systems Enterprise Systems DIMS

Role Based Access Basic user/admin roles

[6]

Complex role matrix

[7]

Branch-specific with hierarchical

control [5]

Permission

Granularity

Module-level only [9] Field-level [10] Field-level + Branch-level [8]

Authentication Basic authentication

[12]

SSO + Advanced auth

[13]

Django’s robust auth + Custom

roles [11]

Audit Trail Basic logging [15] Comprehensive audit

[16]

Built-in admin logs + Custom

tracking [14]

Branch Isolation Often mixed data [18] Configurable isolation

[19]

Complete data isolation [17]

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

147

Key Advantages:

• Branch-specific permission system prevents data leakage between locations

• Custom role implementation allows for flexible access control

• Built-in audit trail through Django admin provides accountability

• Hierarchical access control enables multi-level management

2. Architecture and Scalability

Aspect Traditional Systems Enterprise Systems DIMS

Framework Often PHP/Basic frameworks

[21]

Various frameworks

[22]

Django (High performance) [20]

Database

Design

Often denormalized [24] Highly normalized

[25]

Normalized with proper relations

[23]

Scalability Usually, vertical only [27] Full scalability [28] Horizontal + Vertical [26]

Modularity Monolithic [30] Microservices [31] Component based [29]

API Support Limited API support [33] Full API support [34] Built-in REST capability [32]

Notable Strengths:

• Django’s ORM provides efficient database operations

• Properly normalized database prevents data redundancy

• Component-based architecture allows for easy expansion

• Built-in scalability through Django’s architecture

3. Inventory Management Features

Feature Traditional Systems Enterprise Systems DIMS

Real-time

Tracking

Basic tracking [32] Advanced tracking [33] Yes (Per branch)

[31]

Stock Alerts Fixed thresholds [35] AI-based predictions

[36]

Customizable

thresholds [34]

Multi-location Limited support [38] Full support [39] Native support

[37]

Request

Workflow

Basic requests [41] Complex workflows [42] Full workflow

system [40]

Batch

Operations

Limited support [44] Full support [45] Supported [43]

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

148

Unique Benefits:

• Branch-specific inventory tracking provides accurate local stock levels

• Integrated request system streamlines stock transfers

• Custom workflow supports complex business processes

• Real-time updates across all branches

4. User Experience and Interface

Aspect Traditional Systems Enterprise Systems DIMS

UI Framework Basic HTML/CSS [47] Advanced UI frameworks [48] Modern Django templates [46]

Response Time Variable [50] Highly optimized [51]

Optimized queries [49]

Mobile Support Limited [53] Full mobile support [54] Responsive design [52]

Offline Capability Usually none [56] Full offline support [57] Configurable [55]

Advantages:

• Clean, modern interface through Django templates

• Optimized database queries ensure fast response times

• Mobile-friendly design supports field operations

• Intuitive workflow reduces training needs

5. Integration and Extensibility

Feature Traditional Systems Enterprise Systems DIMS

Email Notifications Basic notifications [59] Advanced notifications

[60]

Built-in system [58]

API Integration Limited APIs [62] Full API suite [63] Django REST framework

[61]

Custom Extensions Limited extensibility

[65]

Full extensibility [66] Plug-and-play [64]

Third-party

Support

Limited support [68] Extensive support [69] Wide ecosystem [67]

Key Capabilities:

• Easy integration with external systems through APIs

• Flexible notification system for various events

• Extensible architecture for custom modules

• Strong third-party package support

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

149

6. Cost and Implementation Comparison

Aspect Traditional Systems Enterprise Systems DIMS

Initial Cost Low [71] Very High [72] Medium [70]

Maintenance Cost Medium [74] High Low [73]

Customization Cost High Very High Medium

Training Required Low High Medium

Cost Benefits:

• Lower long-term maintenance costs due to clean architecture

• Reduced customization costs through modular design

• Moderate training requirements due to intuitive interface

• Scalable licensing model

Technical Superiority

Key Technical Advantages

1. Database Design

• Properly normalized tables ensure data integrity and reduce redundancy.

• Efficient relationships are established between tables for logical data connections.

• Optimal index usage is implemented by selecting appropriate indexing techniques (e.g., B-trees,

hash tables) to significantly enhance query performance and data retrieval speed [1, 2].

• Transaction support ensures data consistency during database operations.

2. Code Organization

• Clear separation of concerns is maintained, isolating different functionalities for better

maintainability [3, 4].

• A modular architecture, potentially incorporating component-based or micro-frontend principles,

enhances scalability and simplifies development workflows [3, 4].

• Reusable components are utilized to improve developer productivity and ensure consistency across

the application [3].

• Clean code practices are followed for readability and ease of maintenance.

3. Security Implementation

• Multiple security layers are implemented as part of a balanced architecture, recognizing the

interplay between security, performance, and usability [4].

• A custom permission system regulates user access to specific features and data.

• Secure data access controls are enforced, protecting sensitive information and building user trust

within the scalable system [4].

• Audit capabilities allow for tracking and reviewing system activities.

4. Performance Optimization

• Efficient queries are achieved through careful design and the application of optimized indexing

strategies, minimizing execution time [1, 2].

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

150

• Effective caching support, potentially leveraging client-side, server-side, or CDN strategies,

improves application responsiveness and reduces load times [3, 4].

• A scalable architecture is designed using modern methodologies (like component-based

approaches, SSR, or others) to handle increasing loads efficiently while maintaining reliability [3,

4].

• The system is ready for load balancing, a key strategy for distributing traffic and ensuring high

availability in scalable web architectures [4].

VI. CONCLUSION & FUTURE SCOPE

The proposed Inventory Management System (IMS) provides a comprehensive solution for modern

inventory challenges by incorporating advanced features like FIFO-based stock sorting, ERP system

integration, and BPMN for process optimization. The system's automated and centralized design minimizes

human error, improves operational efficiency,and enhances decision-making capabilities.

By adopting the IMS, businesses can achieve better control over their inventory, reduce costs, and ensure

customer satisfaction through efficient resource management. The real-time monitoring capabilities and

scalability of the system make it a practical choice for businesses

of all sizes.

VII. FUTURE SCOPE

The proposed IMS lays the foundation for further advancements and improvements in inventory

management systems. Some potential future developments include:

• Artificial Intelligence (AI) Integration: Incorporating AI algorithms to predict demand trends and

optimize stock levels based on historical data.

• IoT Integration: Utilizing IoT devices, such as smart sensors, for real-time tracking of stock conditions

like temperature or humidity.

• Mobile Accessibility: Developing a mobile application to provide users with on-the go access to

inventory data and management tools.

• Advanced Analytics: Providing predictive analytics and detailed reporting to support strategic decision-

making.

The IMS will continue to evolve with advancements in technology, enabling businesses to maintain a

competitive edge in an ever-changing market environment.

VIII. REFERENCES

[1]. Holubinka, Vitalii & Khudyi, Andrii. (2024). Enhancing Database Query Performance: Analysis of

Indexing Techniques. Vìsnik Nacìonalʹnogo unìversitetu Lʹvìvsʹka polìtehnìka Serìâ Ìnformacìjnì

sistemi ta merežì. 15. 65-73. 10.23939/sisn2024.15.065.

[2]. Saidu, Charles & Yusuf, Musa & Nemariyi, Florence & George, Ayenopwa. (2024). Indexing

techniques and structured queries for relational databases management systems. Journal of the

Nigerian Society of Physical Sciences. 2155. 10.46481/jnsps.2024.2155.

[3]. Ramakrishnan, Gokul. (2025). Scaling Modern Frontend Development: Strategies and Methodologies.

International Journal of Computer Applications. 186. 27-34. 10.5120/ijca2025924446.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

151

[4]. Ekpobimi, Harrison & Kandekere, Regina & Fasanmade, Adebamigbe. (2024). Conceptualizing

Scalable Web Architectures Balancing Performance, Security, and Usability. International Journal of

Engineering Research and. 20. 41-47.

[5]. Kumar, Manoj, and Rainu Nandal. "Role of Python in Rapid Web Application Development Using

Django." Available at SSRN 4751833 (2024).

[6]. Ravindran, Arun. Django Design Patterns and Best Practices: Industry-standard web development

techniques and solutions using Python. Packt Publishing Ltd, 2018.

[7]. Benantar, Messaoud. Access control systems: security, identity management and trust models.

Springer Science & Business Media, 2005.

[8]. Chen, Songtao, et al. "Django web development framework: Powering the modern web." American

Journal of Trade and Policy 7.3 (2020): 99-106.

[9]. Park, Jaehong, and Ravi Sandhu. "Towards usage control models: beyond traditional access control."

Proceedings of the seventh ACM symposium on Access control models and technologies. 2002

[10]. Kern, Axel, Andreas Schaad, and Jonathan Moffett. "An administration concept for the enterprise

role-based access control model." Proceedings of the eighth ACM symposium on Access control

models and technologies. 2003.

[11]. Melé, Antonio. Django 5 By Example: Build powerful and reliable Python web applications from

scratch. Packt Publishing Ltd, 2024

[12]. Stapleton, Jeffrey James. Security without obscurity: A guide to confidentiality, authentication, and

integrity. CRC press, 2014

[13]. Theofanos, Mary, Simson Garfinkel, and Yee-Yin Choong. "Secure and usable enterprise

authentication: Lessons from the field." IEEE Security & Privacy 14.5 (2016): 14-21.

[14]. Senkiv, D. A. "AUDIT AS A MEANS OF ENSURING INFORMATION SECURITY OF WEB

APPLICATIONS AND USED COMPUTER SYSTEMS." American Scientific Journal 40-2 (2020): 54-

57.

[15]. Kreutz, Heiko, and Hamid Jahankhani. "Impact of Artificial Intelligence on Enterprise Information

Security Management in the Context of ISO 27001 and 27002: A Tertiary Systematic Review and

Comparative Analysis." Cybersecurity and Artificial Intelligence: Transformational Strategies and

Disruptive Innovation (2024): 1-34

[16]. Carcary, Marian. "The research audit trail: Methodological guidance for application in practice."

Electronic Journal of Business Research Methods 18.2 (2020): pp166-177.

[17]. Wang, Zhi Hu, et al. "A study and performance evaluation of the multi-tenant data tier design

patterns for service oriented computing." 2008 IEEE International Conference on e-Business

Engineering. IEEE, 2008.

[18]. Bonnet, Pierre. Enterprise data governance: Reference and master data management semantic

modeling. John Wiley & Sons, 2013.

[19]. Wang, Zhi Hu, et al. "A study and performance evaluation of the multi-tenant data tier design

patterns for service oriented computing." 2008 IEEE International Conference on e-Business

Engineering. IEEE, 2008.

[20]. Baumgartner, Peter J., and Yann Malet. High Performance Django. Lincoln Loop, 2014.

[21]. Oliveira, Rui André, et al. "An approach for benchmarking the security of web service frameworks."

Future Generation Computer Systems 110 (2020): 833-848.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

152

[22]. Vincent, Paul, et al. "Magic quadrant for enterprise low-code application platforms." Gartner report

120 (2019).

[23]. Gilbert, John. Cloud Native Development Patterns and Best Practices: Practical architectural patterns

for building modern, distributed cloud-native systems. Packt Publishing Ltd, 2018

[24]. Eessaar, Erki. "The Database Normalization Theory and the Theory of Normalized Systems: Finding a

Common Ground." Baltic Journal of Modern Computing 4.1 (2016).

[25]. Jani, Yash. "Optimizing database performance for large-scale enterprise applications." International

Journal of Science and Research (IJSR) 11.10 (2022): 1394-1396.

[26]. Dhall, Chander, and Chander Dhall. Scalability Patterns. Berkeley, CA: Apress, 2018.

[27]. Arlitt, Martin, Diwakar Krishnamurthy, and Jerry Rolia. "Characterizing the scalability of a large

web-based shopping system." ACM Transactions on Internet Technology (TOIT) 1.1 (2001): 44-69.

[28]. Dutta, Sourav, et al. "Smartscale: Automatic application scaling in enterprise clouds." 2012 IEEE Fifth

International Conference on Cloud Computing. IEEE, 2012.

[29]. Parsons, David, et al. "An architectural pattern for designing component-based application

frameworks." Software: Practice and Experience 36.2 (2006): 157-190.

[30]. De Lauretis, Lorenzo. "From monolithic architecture to microservices architecture." 2019 IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, 2019.

[31]. Coulson, Nathan Cruz, Stelios Sotiriadis, and Nik Bessis. "Adaptive microservice scaling for elastic

applications." IEEE Internet of Things Journal 7.5 (2020): 4195-4202.

[32]. Medvedev, M. A., and M. A. Medvedeva. "Development Web Applications with Django Framework:

textbook." (2024).

[33]. Jones, Mark, et al. "Implementing an API for distributed adaptive computing systems." Seventh

Annual IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No. PR00375).

IEEE, 1999.

[34]. Weir, Luis. Enterprise API Management: Design and deliver valuable business APIs. Packt Publishing

Ltd, 2019.

[35]. Benson-Emenike, Mercy Eberechi, Chidi Ukamaka Betrand, and Chinwe Gilean Onukwugha.

"Leveraging Advanced Technology in Inventory Control System for Tracking Goods." Journal of

Research in Engineering and Computer Sciences 1.5 (2023): 91-99.

[36]. Zou, Hanzheng. "Build an Inventory Tracking System." (2007).

[37]. PETRI, RICCARDO GIULIANO. "Proof of Concept and Implementation of an Enterprise Grade Cloud

Inventory Management System." (2022).

[38]. Tampke, Dale R. "Developing, implementing, and assessing an early alert system." Journal of College

Student Retention: Research, Theory & Practice 14.4 (2013): 523-532.

[39]. Harshali, Bobde, et al. "Log Alert System Server Log Recognition and Alert System." International

Journal of Trend in Scientific Research and Development 8.6 (2024): 69-78.

[40]. Albayrak Ünal, Özge, Burak Erkayman, and Bilal Usanmaz. "Applications of artificial intelligence in

inventory management: A systematic review of the literature." Archives of Computational Methods in

Engineering 30.4 (2023): 2605-2625.

[41]. Kirill, Ivanov. "Data management in multi-branch testing system." (2016).

[42]. Kipkemei, Adam. Spatial Database Consistency in Web Application Frameworks: Case Study Django.

MS thesis. University of Twente, 2010.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

153

[43]. Kryvinska, Natalia, Christine Strauss, and Peter Zinterhof. "Mobility in a multi-location enterprise

network, case study: global voice calls placing." 2009 Wireless Telecommunications Symposium. IEEE,

2009.

[44]. Miller, John A., et al. "WebWork: METEOR 2's web-based workflow management system." Journal of

Intelligent Information Systems 10 (1998): 185-215.

[45]. Too, Ser Ing. Library online request for purchasing reading material system/Too Ser Ing. Diss.

Universiti Malaya, 2002.

[46]. Al-Rossais, Nourah Abdulmohsen. "Developing an Enterprise Workflow Solution." King Saud

University College of Computer and Information Sciences Department of Computer Science, Saudi

Arabia (2007).

[47]. Svenselius, Wilhelm. "Batch processing in RESTful web services." (2015).

[48]. Antani, Snehal. Batch processing with websphere compute grid: Delivering business value to the

enterprise. Tech. rep. IBM. http://www. redbooks. ibm. com/abstracts/redp4566. html, 2010.

[49]. Baloch, Mumtaz, and Shiraz Gul. "Operationalizing Batch Processing in Cloud Environments:

Practical Approaches and Use Cases." (2020).

[50]. Holovaty, Adrian, et al. "The django template system." The Definitive Guide to Django: Web

Development Done Right (2008): 31-58.

[51]. Tsalgatidou, Aphrodite, and Thomi Pilioura. "An overview of standards and related technology in web

services." Distributed and parallel databases 12 (2002): 135-162.

[52]. Shenoy, Aravind, and Anirudh Prabhu. CSS Framework Alternatives: Explore Five Lightweight

Alternatives to Bootstrap and Foundation with Project Examples. Apress, 2018.

[53]. Khan, Majid, and M. N. A. Khan. "Exploring query optimization techniques in relational databases."

International Journal of Database Theory and Application 6.3 (2013): 11-20.

[54]. Denaro, Giovanni, Andrea Polini, and Wolfgang Emmerich. "Early performance testing of distributed

software applications." Proceedings of the 4th International Workshop on Software and Performance.

2004.

[55]. Zou, Tao, and Sijun Bai. "[Retracted] Enterprise Performance Optimization Management Decision-

Making and Coordination Mechanism Based on Multiobjective Optimization." Mathematical

Problems in Engineering 2021.1 (2021): 5510362.

[56]. Kim, Hyeok, Dominik Moritz, and Jessica Hullman. "Design patterns and trade-offs in responsive

visualization for communication." Computer Graphics Forum. Vol. 40. No. 3. 2021.

[57]. Yang, Shuiqing, Yan Wang, and June Wei. "Integration and consistency between web and mobile

services." Industrial Management & Data Systems 114.8 (2014): 1246-1269.

[58]. Schill, Alexander, and Sascha Kummel. "Design and implementation of a support platform for

distributed mobile computing." Distributed Systems Engineering 2.3 (1995): 128.

[59]. Vanhala, Janne. Implementing an Offline First Web Application. MS thesis. 2017.

[60]. Alkazemi, Basem Y., Mohammed K. Nour, and Abdulqader Qada Meelud. "Towards a framework to

assess legacy systems." 2013 IEEE International Conference on Systems, Man, and Cybernetics. IEEE,

2013.

[61]. Wu, Huaigu, Louenas Hamdi, and Nolwen Mahe. "Tango: a flexible mobility-enabled architecture for

online and offline mobile enterprise applications." 2010 Eleventh International Conference on Mobile

Data Management. IEEE, 2010.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

154

[62]. Carzaniga, Antonio, David S. Rosenblum, and Alexander L. Wolf. Design of a scalable event

notification service: Interface and architecture. Technical Report CU-CS-863-98, Department of

Computer Science, University of Colorado, 1998.

[63]. Chiu, Chi-Huang, et al. "Next generation notification system integrating instant messengers and web

service." 2007 International Conference on Convergence Information Technology (ICCIT 2007). IEEE,

2007.

[64]. Torredimare, Andrea. Extension of an enterprise web application for top-management reporting: a

modular approach to Web Application development. Diss. Politecnico di Torino, 2024.

[65]. Kumar, Manoj, and Rainu Nandal. "Role of Python in Rapid Web Application Development Using

Django." Available at SSRN 4751833 (2024).

[66]. Gholami, Mahdi Fahmideh, et al. "Challenges in migrating legacy software systems to the cloud—an

empirical study." Information Systems 67 (2017): 100-113.

[67]. Jones, Mark, et al. "Implementing an API for distributed adaptive computing systems." Seventh

Annual IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No. PR00375).

IEEE, 1999.

[68]. Sohaila, Sayeed. "Plug-In based Software Architecture for the Development of Sustainable Software

Ecosystem: Do’s and Don’ts."

[69]. Muller, Gilles, et al. "Constructing component-based extension interfaces in legacy systems code."

Proceedings of the 11th workshop on ACM SIGOPS European workshop. 2004.

[70]. Atkinson, Colin, Ralph Gerbig, and Mathias Fritzsche. "A multi-level approach to modeling language

extension in the enterprise systems domain." Information Systems 54 (2015): 289-307.

[71]. Bommarito, Ethan, and Michael Bommarito. "An empirical analysis of the python package index

(pypi)." arXiv preprint arXiv:1907.11073 (2019).

[72]. Ghazawneh, Ahmad, and Ola Henfridsson. "Balancing platform control and external contribution in

third-party development: the boundary resources model." Information systems journal 23.2 (2013):

173-192.

[73]. Sandoe, Kent. Enterprise integration. John Wiley & Sons, 2001.

[74]. Ferrin, Bruce G., and Richard E. Plank. "Total cost of ownership models: An exploratory study."

Journal of Supply chain management 38.2 (2002): 18-29

