
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi : https://doi.org/10.32628/IJSRST

606

Exploring SAFe Framework Adoption for Autism-Centered
Remote Engineering with Secure CI/CD and Containerized

Microservices Deployment
Martina Ononiwu 1, Tony Isioma Azonuche2, Paul Okugo Imoh3, Joy Onma Enyejo4

1Department of Business Development and Information Technology, Runstead Services, Paris, France.
2Department of Project Management, Amberton University, Garland Texas, USA.

3School of Nursing, Anglia Ruskin University, Essex, United Kingdom.
4Department of Business Management Nasarawa State University, Keffi. Nasarawa State. Nigeria

Article Info

Publication Issue

Volume 10, Issue 6

November-December-2023

Page Number

606-626

Article History

Accepted: 20 Dec 2023

Published: 30 Dec 2023

ABSTRACT

This review paper investigates the adoption of the Scaled Agile Framework

(SAFe) in developing autism-centered remote engineering environments,

emphasizing the integration of secure continuous integration/continuous

delivery (CI/CD) pipelines and containerized microservices. As neurodiverse

teams gain visibility in distributed software development, it becomes

imperative to create adaptive frameworks that support inclusive engineering

workflows. SAFe provides a robust structure for aligning cross-functional teams

across agile release trains while maintaining regulatory and security standards

essential for remote development. This paper explores how the framework can

be tailored to accommodate the cognitive diversity of autistic professionals,

incorporating elements such as clear workflow visualization, asynchronous

communication support, and low-stimulation virtual workspaces. Additionally,

the paper evaluates best practices for embedding security into CI/CD pipelines

using DevSecOps principles, ensuring code integrity and compliance

throughout development cycles. The use of containerized microservices is

analyzed for its role in modular design, fault isolation, and scalable deployment

in autism-supportive remote systems. Drawing on case studies, architectural

patterns, and compliance frameworks, this review highlights how a

convergence of SAFe, secure DevOps, and containerization can foster resilient,

accessible, and neurodiverse-friendly remote engineering ecosystems.

Keywords: SAFe Framework; Autism-Centered Engineering; Remote Software

Development; Secure CI/CD Pipelines; Containerized Microservices;

Neurodiverse Agile Teams

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

607

1.Introdution

1.1 Background on Neurodiversity in Remote

Engineering

The growing visibility of neurodiversity in the tech

workforce has prompted a paradigm shift in how

remote engineering environments are structured,

particularly with the inclusion of autistic professionals.

Neurodiversity, which recognizes autism and related

conditions as natural variations in cognition rather

than deficits, has been reframed as a potential source

of innovation and competitive advantage in software

engineering (Austin & Pisano, 2017). Autistic

individuals often exhibit exceptional attention to

detail, strong pattern recognition, and sustained

focus—qualities that align well with complex tasks

such as code analysis, QA testing, and data security

within remote development settings. Despite these

strengths, structural and communication barriers

remain pervasive in conventional remote workflows.

Schuck et al. (2021) emphasize that autistic engineers

frequently encounter challenges related to ambiguity

in task instructions, lack of asynchronous

communication options, and sensory overstimulation

in virtual meetings. These obstacles often result in

underemployment or career stagnation, despite

technical competence. As a response, organizations

are rethinking their agile adoption strategies—

favoring inclusive design principles that integrate

clear role definition, visual task management, and

individualized collaboration protocols. In the context

of scaled agile frameworks such as SAFe,

neurodiversity-focused adaptations include structured

backlog grooming, reduced context-switching, and

predictability in sprint cadence. Such considerations

not only support accessibility but also enhance the

resilience and efficiency of remote software

engineering teams.

1.2 Importance of Agile at Scale in Inclusive

Development Environments

Agile at scale has become a cornerstone in managing

large, diverse, and distributed development teams,

particularly in inclusive environments where

cognitive diversity is prioritized. The adoption of

frameworks such as SAFe enables organizations to

harmonize iterative workflows, stakeholder

alignment, and continuous feedback while

accommodating the unique cognitive patterns of

neurodiverse professionals. Conboy et al. (2020) argue

that scaled agile frameworks offer the flexibility

needed to localize process elements, such as backlog

structuring and sprint planning, to better serve the

communication and processing preferences of

neurodivergent team members. This structural

adaptability is crucial in remote engineering contexts

where one-size-fits-all agile practices can

inadvertently marginalize neurodiverse talent. In

addition to operational alignment, psychological

inclusivity is significantly influenced by the

behavioral and personality diversity within teams.

Feldt et al. (2010) emphasize that software engineers

display a wide spectrum of cognitive styles and social

needs, and agile at scale must incorporate role clarity,

transparency, and self-paced participation to foster a

supportive team climate. SAFe’s emphasis on defined

roles, consistent cadence, and feedback loops not only

promotes delivery efficiency but also enhances the

participation of individuals with autism by reducing

ambiguity and emotional labor in collaborative tasks.

Thus, agile at scale is not merely a productivity tool

but a strategic framework for inclusive engineering

excellence.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

608

1.3 Motivation for Integrating SAFe, DevSecOps, and

Containerization

The integration of SAFe, DevSecOps, and

containerization into remote engineering workflows

is motivated by the need for secure, scalable, and

cognitively inclusive software development

environments. In large-scale systems, managing

dependencies, build pipelines, and quality assurance

becomes increasingly complex, particularly when

addressing the diverse cognitive styles present in

neurodiverse teams. Kamei, et al. (2012) highlight

how coordinated frameworks like SAFe can minimize

build time regressions and reduce quality defects

through synchronized planning and modular

alignment. These benefits are amplified when security

is embedded early in the pipeline via DevSecOps,

ensuring continuous compliance and reducing

vulnerability exposure—critical factors for both

distributed teams and regulated development

ecosystems. Containerization further complements

this approach by enabling isolation, consistency, and

rapid deployment of services, fostering a

microservices architecture that aligns well with the

incremental delivery models encouraged by SAFe.

According to Ali et al. (2020), containerization

streamlines configuration management and

deployment, thereby reducing cognitive overhead and

technical barriers for developers, especially those

requiring structured and predictable workflows.

When unified, SAFe provides governance and

cadence, DevSecOps ensures security integration, and

containerization offers scalability and modularity—

forming a triad that addresses the functional,

psychological, and operational needs of neurodiverse

remote engineering environments with precision and

adaptability.

1.4 Research Objectives and Scope of the Review

The primary objective of this review is to evaluate

how the integration of SAFe, DevSecOps practices,

and containerized microservices can support autism-

centered remote engineering. As organizations move

toward distributed and inclusive teams, there is a

growing need for adaptive frameworks that facilitate

collaboration, security, and scalability. This paper

focuses on identifying how SAFe can be leveraged to

provide structured governance and coordination

across neurodiverse and remote agile teams, enabling

effective communication, role clarity, and task

predictability. In parallel, the review explores the role

of DevSecOps in embedding security into every stage

of the continuous integration and continuous delivery

(CI/CD) pipeline, ensuring that software developed by

neurodiverse teams maintains compliance and

integrity. Containerization is examined for its

capacity to support modular, isolated, and repeatable

deployment environments that align with the

processing preferences and workflow needs of autistic

engineers.

The scope of the review encompasses academic

literature, industrial practices, and technological

innovations that together inform how these

integrated approaches can foster resilient, inclusive,

and secure software development ecosystems. The

study aims to provide strategic insights and a

foundational blueprint for implementing a cohesive

and neurodiversity-aware remote engineering

infrastructure.

1.5 Structure of the Paper

This paper is organized into seven core sections.

Section 1 introduces the topic, detailing the

background of neurodiversity in remote engineering,

the relevance of scaled agile practices, and the

motivation for integrating SAFe, DevSecOps, and

containerization. Section 2 provides an in-depth

examination of the SAFe framework, outlining its

principles, organizational roles, and its adaptability

for inclusive, remote teams. Section 3 explores

autism-centered design considerations in engineering

environments, focusing on cognitive-sensitive virtual

workspaces, communication models, and

psychological safety. Section 4 investigates secure

CI/CD practices and their alignment with

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

609

neurodiverse team needs, including tools and security

strategies. Section 5 covers containerized microservice

architectures, highlighting deployment strategies,

orchestration tools, and accessibility in resource

management. Section 6 presents real-world

applications, case studies, and deployment patterns

illustrating the practical integration of these

frameworks in inclusive software teams. Finally,

Section 7 summarizes the findings, offers strategic

recommendations, outlines future research directions,

and proposes a roadmap for developing a standardized

inclusive engineering framework.

2. Overview of the SAFe Framework

2.1 Key Principles and Organizational Roles

The Scaled Agile Framework (SAFe) is governed by a

set of core principles and well-defined organizational

roles that support enterprise agility while ensuring

alignment across teams. Central to SAFe’s

implementation are Lean-Agile principles, which

emphasize economic prioritization, decentralized

decision-making, and system thinking. These

principles enable development teams to deliver value

continuously while accommodating variability and

complexity, particularly within distributed and

neurodiverse engineering environments (Mishra &

Mishra, 2011) as shown in figure 1. Organizational

roles within SAFe are designed to ensure

accountability, cross-functional collaboration, and

clear lines of responsibility. At the team level, roles

such as Scrum Master and Product Owner facilitate

sprint planning, backlog grooming, and iterative

delivery. At the program level, the Release Train

Engineer (RTE) coordinates agile release trains (ARTs),

ensuring synchronization across multiple teams

working toward shared objectives. Higher in the

hierarchy, roles like Solution Architect, Business

Owner, and Epic Owner provide strategic guidance

and prioritize features to align delivery with

organizational goals. Kalenda et al. (2018) underscore

that successful SAFe adoption depends heavily on

cultural readiness and clarity of roles. In inclusive

environments, clear role definition reduces ambiguity

and enhances the productivity of cognitively diverse

team members. When integrated with secure DevOps

practices and microservice deployment, SAFe’s role-

based governance fosters scalable, inclusive, and

resilient development processes.

Figure 1 visually maps the foundational elements of

the Scaled Agile Framework by organizing them into

two primary branches: Key Principles and

Organizational Roles. The Key Principles branch

outlines the theoretical backbone of SAFe, including

economic prioritization to guide value-based decision-

making, decentralized decision-making to empower

teams, and system thinking to optimize end-to-end

value streams. It also includes iterative development

and synchronization, which ensure that teams deliver

in small increments and remain aligned across

multiple agile release trains. The second branch,

Organizational Roles, is subdivided into team,

program, and portfolio levels. At the team level, roles

such as Scrum Master, Product Owner, and Agile

Team Members execute daily agile practices. At the

program level, roles like Release Train Engineer

(RTE), Product Manager, and System Architect

coordinate team efforts within an Agile Release Train

(ART). At the portfolio level, Epic Owners, Enterprise

Architects, and Lean Portfolio Managers align

strategic goals with execution. The diagram illustrates

how SAFe integrates agile principles with a well-

defined organizational structure, enabling large-scale

teams—including remote and neurodiverse

contributors—to collaborate efficiently, adaptively,

and inclusively within a synchronized framework.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

610

Figure 1: Visual Representation of SAFe Core

Principles and Organizational Roles for Scalable,

Inclusive Agile Implementation.

2.2 Agile Release Trains (ARTs) and Program

Increments (PIs)

Agile Release Trains (ARTs) and Program Increments

(PIs) form the operational backbone of the Scaled

Agile Framework (SAFe), enabling cross-functional

teams to deliver coordinated value at scale. ARTs are

long-lived, cross-disciplinary teams that align

multiple agile teams, stakeholders, and business

owners around a common mission and cadence. Each

ART operates within a fixed schedule, typically an 8–

12week timebox known as a Program Increment,

where features are planned, developed, integrated,

and evaluated collaboratively. This cadence-based

synchronization enhances transparency, ensures

frequent integration, and supports incremental value

delivery, especially in large distributed development

efforts (Putta et al., 2018). Program Increment

Planning, a cornerstone SAFe event, empowers teams

to align on shared goals, resolve cross-team

dependencies, and allocate capacity with precision.

ARTs enable scalable coordination without sacrificing

agility, making them ideal for remote and

neurodiverse environments where clarity, rhythm,

and predictability are essential for team cohesion.

Turetken et al. (2017) highlight that the structured

and predictable nature of ARTs enhances trust and

accountability across large organizations, while also

enabling integration with DevSecOps pipelines and

containerized services. These mechanisms ensure that

security, compliance, and inclusivity are upheld

across every stage of value delivery in modern

software ecosystems.

2.3 Customizing SAFe for Remote and Distributed

Teams

Customizing the Scaled Agile Framework (SAFe) for

remote and distributed teams requires adaptive

strategies that address asynchronous communication,

time zone discrepancies, and cognitive diversity. SAFe,

though originally developed for co-located enterprises,

provides structural scaffolding that can be tailored to

enable alignment, autonomy, and delivery continuity

across geographically dispersed agile release trains.

Paasivaara et al. (2018) demonstrate that successful

remote SAFe transformations involve modifying key

practices—such as Program Increment Planning,

System Demos, and Inspect & Adapt events—into

virtual, tool-assisted formats that preserve

engagement and visibility. Distributed teams often

struggle with weakened informal communication and

misaligned team rhythms, which can hinder backlog

refinement, dependency resolution, and sprint

execution. Dorairaj et al. (2012) argue that enhancing

psychological safety and role transparency is essential

to maintaining effective collaboration in remote agile

settings. Within SAFe, these needs are addressed

through clearly defined roles, standardized

communication protocols, and consistent cadences

that support distributed delivery models. Tools like

digital Kanban boards, virtual PI planning platforms,

and integrated DevSecOps toolchains further support

remote customization. By embedding operational

feedback loops and fostering cultural cohesion

through digital rituals, organizations can adapt SAFe’s

cadence-driven structure to ensure that remote

teams—particularly those composed of neurodiverse

individuals—can maintain autonomy while staying

aligned with enterprise objectives.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

611

2.4 Relevance of SAFe to Accessibility and Inclusivity

The relevance of the Scaled Agile Framework (SAFe)

to accessibility and inclusivity is rooted in its capacity

to accommodate diverse cognitive, physical, and social

needs through structured roles, workflows, and

feedback mechanisms. SAFe supports inclusive

development by enabling consistent ceremonies,

predictable rhythms, and modular role execution—

elements that align closely with the principles of user-

centered and inclusive design. Silva da Silva et al.

(2015) emphasize that agile methods integrated with

user-centered design can significantly enhance

usability and accessibility outcomes by prioritizing

empathy, iterative refinement, and the active

involvement of diverse stakeholders, including

neurodiverse contributors. Furthermore, the layered

structure of SAFe facilitates clear task segmentation,

responsibility allocation, and interface consistency,

which are particularly beneficial for developers with

sensory processing differences or social

communication preferences. Beckwith et al. (2005)

argue that the design of software development

environments must be sensitive to individual

interaction styles, advocating for flexible

customization and minimal cognitive overload. SAFe's

emphasis on visual artifacts such as program boards,

Kanban systems, and story maps contributes to this

goal by providing clarity and reducing ambiguity. In

inclusive teams, especially those involving autistic

professionals, the integration of SAFe ensures that

workflows are not only efficient but also

psychologically safe and equitably accessible, thus

advancing both technical productivity and human-

centered development values.

3. Autism-Centered Remote Engineering

3.1 Understanding the Unique Needs of Autistic

Engineers

Understanding the unique needs of autistic engineers

is essential to building inclusive, functional, and high-

performing remote development environments.

Autistic individuals often bring exceptional strengths

to software engineering, such as heightened attention

to detail, pattern recognition, and deep focus on

technical tasks as shown in figure 2. However, these

capabilities can be undermined if workplace

structures do not align with their cognitive and

sensory preferences. Hedley et al. (2018) found that

many autistic professionals experience elevated stress

and reduced performance when navigating ambiguous

communication, shifting priorities, or environments

with excessive sensory stimulation—factors

commonly present in traditional engineering

workflows. Effective inclusion requires targeted

accommodations such as low-stimulation digital

workspaces, asynchronous communication channels,

and task clarity through visual planning tools. Lorenz

et al. (2016) emphasize the importance of structural

predictability and autonomy in job satisfaction and

retention for autistic employees, noting that rigid

hierarchies or frequent social demands can lead to

burnout or disengagement. In remote and distributed

settings, challenges related to real-time coordination

and virtual socialization are magnified, making it vital

to tailor team practices to reduce anxiety and

cognitive overload. Incorporating flexible role design,

consistent routines, and individualized support

mechanisms helps align engineering tasks with the

cognitive strengths of autistic developers, ensuring

both productivity and well-being in neurodiverse

agile environments.

Figure 2 captures a group of engineers teaching an

autistic child how to operate a model wind turbine in

a structured, supportive environment, effectively

illustrating the principles of 3.1 Understanding the

Unique Needs of Autistic Engineers. The engineers,

wearing “Engineering for Autism” shirts, are

positioned attentively around the child, offering clear

visual guidance and non-intrusive support—key

strategies in facilitating learning for autistic

individuals. The child is engaged in a step-by-step

mechanical assembly task involving gears, rotors, and

wiring, which aligns well with the cognitive strengths

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

612

often observed in autistic engineers, such as fine

motor precision, pattern recognition, and preference

for structured, hands-on tasks. The workspace is

clearly delineated with tape boundaries, reducing

spatial ambiguity and enhancing focus. Verbal

instruction appears minimal, replaced by

demonstration and physical modeling—techniques

that accommodate communication differences and

sensory processing preferences. The collaborative yet

low-pressure environment fosters psychological safety,

allowing the child to explore engineering concepts

without overstimulation or rushed expectations. This

scene highlights how tailored instructional design,

visual clarity, and task predictability are essential for

developing technical skills in autistic learners, and

how inclusive engineering mentorship can unlock

potential through empathetic and adaptive teaching

approaches.

Figure 2: Picture of Engineers Demonstrate Wind

Turbine Assembly to an Autistic Student in a

Structured, Inclusive Learning Environment (UT

Dallas, 2017).

3.2 Designing Cognitive-Sensitive Virtual Workspaces

Designing cognitive-sensitive virtual workspaces is

fundamental to fostering productivity and

psychological comfort for autistic engineers in remote

development settings. These environments must be

optimized not only for task execution but also for

reducing cognitive overload, sensory triggers, and

social ambiguity. Key design principles include

minimalist interface layouts, customizable notification

settings, and asynchronous collaboration tools that

respect varied communication preferences. Parsons

and Cobb (2011) emphasize that virtual environments,

when tailored to the cognitive profile of autistic users,

can serve as empowering tools that enhance

engagement and autonomy without overstimulation.

To be effective, virtual workspaces should also

support visualization of workflows, modular task

decomposition, and structured documentation. For

example, integrating Kanban boards, story maps, and

progress tracking dashboards can enable engineers to

process information visually and maintain focus across

iterative cycles. Brownlow, et al. (2023) highlight that

accessible digital environments with low sensory

noise and predictable interaction patterns help reduce

anxiety and improve task persistence among

neurodiverse individuals. These features are

particularly critical in distributed agile frameworks

like SAFe, where team members must engage in

shared planning, reviews, and retrospectives across

time zones and cultural contexts. By aligning digital

workspace design with neurocognitive needs,

organizations can build inclusive engineering cultures

where autistic professionals are not merely

accommodated, but are empowered to excel through

equitable access to tools, information, and interaction.

3.3 Communication Patterns and Team Collaboration

Models

Effective communication patterns and collaborative

models are essential to fostering inclusive,

neurodiverse agile teams, especially in remote

engineering environments. For autistic engineers,

conventional real-time and socially nuanced

interactions may present cognitive friction, which can

hinder collaboration and engagement. Williams et al.

(2021) emphasize the importance of adopting

communication protocols that reduce ambiguity,

eliminate sensory stressors, and support asynchronous

information exchange. Techniques such as structured

written updates, turn-based virtual stand-ups, and

visual conversation aids (e.g., shared digital

whiteboards) help create predictable and accessible

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

613

communication pathways. Agile communication

models that prioritize transparency and asynchronous

feedback are particularly well-suited for remote,

cognitively diverse teams. Vallon, et al. (2018) found

that frequent, low-overhead communication

channels—such as chat tools with thread support,

task-linked comments, and documentation-rich

workflows—enhance shared understanding without

overwhelming neurodivergent contributors. In SAFe-

driven projects, integrating these practices into

Program Increment (PI) planning, daily scrums, and

retrospectives ensures that all team members can

participate meaningfully, regardless of their preferred

interaction style. Tailoring collaboration models to

account for diverse processing and engagement

preferences supports both psychological safety and

technical efficiency. Rather than enforcing

uniformity in communication, inclusive agile

environments encourage a multiplicity of interaction

formats, enabling autistic engineers to contribute

from a position of cognitive strength and autonomy.

3.4 Psychological Safety and Workflow Transparency

Psychological safety and workflow transparency are

pivotal in fostering high-performing, inclusive

software engineering teams, particularly when

supporting autistic professionals in distributed

environments. Psychological safety refers to the

shared belief that individuals can express themselves

without fear of embarrassment, rejection, or

punishment. Edmondson and Lei (2014) argue that

psychologically safe environments promote learning,

innovation, and engagement—conditions essential for

neurodiverse professionals who may be more

vulnerable to anxiety in unpredictable social or

technical interactions. Within agile teams, this

construct is reinforced through trust-based rituals like

retrospectives, blameless postmortems, and clear

escalation pathways. In parallel, workflow

transparency plays a critical role in mitigating

uncertainty and enhancing predictability, especially

for individuals with cognitive profiles that favor

structure and routine. Stol et al. (2016) emphasize that

clarity in task status, role expectations, and feedback

loops directly impacts team cohesion and output.

Practices such as visible Kanban boards, shared

documentation repositories, and iteration goals ensure

that all team members can navigate the development

lifecycle confidently and independently. In SAFe

environments, Program Increment boards, Feature-

Story mapping, and sprint backlogs provide layered

visibility, empowering autistic engineers with the

information they need to plan, focus, and contribute

effectively. Together, psychological safety and

transparency establish a foundation for equitable

participation and long-term success in remote,

neurodiverse agile settings.

4. Secure CI/CD for Inclusive Software Pipelines

4.1 CI/CD Concepts and Implementation Challenges

Continuous Integration (CI) and Continuous

Delivery/Deployment (CD) are core practices in

modern DevOps workflows, designed to automate

code integration, testing, and deployment in a

seamless pipeline. CI ensures that code changes from

multiple contributors are merged and validated

continuously using automated builds and tests, while

CD extends this process by automatically releasing

validated code to staging or production environments.

The objective is to reduce integration risks, accelerate

feedback loops, and enable frequent, reliable software

releases. Shahin et al. (2017) identify CI/CD as

enablers of agility and responsiveness, particularly

critical for distributed teams operating under scaled

frameworks like SAFe. However, implementing

CI/CD pipelines presents several technical and

organizational challenges. Rodríguez et al. (2016)

highlight integration complexity, tool interoperability,

environment consistency, and lack of test automation

as frequent obstacles. Additionally, in neurodiverse

and remote teams, challenges also include aligning

deployment schedules with cognitive work rhythms

and minimizing context switching during high-

frequency delivery cycles. The lack of standardized

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

614

CI/CD practices across multiple agile teams can lead

to fragmented workflows, bottlenecks, and decreased

confidence in releases. To address these challenges,

organizations must prioritize modular pipeline

architecture, clear governance policies, and inclusive

DevOps practices that support transparency and

consistency across geographically and cognitively

diverse development environments.

4.2 Integrating DevSecOps into Agile Practices

Integrating DevSecOps into agile practices involves

embedding security considerations at every stage of

the development pipeline to ensure secure, compliant,

and resilient software delivery. Rather than treating

security as a final checkpoint, DevSecOps promotes a

“shift-left” approach, integrating threat modeling,

code analysis, vulnerability scanning, and compliance

verification into continuous integration and

deployment processes. Alshuqayran et al. (2021) assert

that this integration enables teams to detect security

flaws earlier, automate remediation tasks, and

cultivate a security-aware engineering culture—all

without sacrificing the speed and flexibility of agile

workflows as represented in figure 3. In SAFe-based

environments, the challenge lies in scaling security

integration across multiple Agile Release Trains

(ARTs) while maintaining development velocity.

DevSecOps addresses this by encouraging cross-

functional collaboration among developers, operations

engineers, and security experts, enabling seamless

alignment between product goals and risk mitigation

strategies. Bass et al. (2015) emphasize that automated

security gates, Infrastructure as Code (IaC), and secure

artifact repositories are essential components of

effective DevSecOps adoption. Additionally, the

implementation of threat intelligence dashboards and

audit trails enhances visibility and traceability, which

is particularly vital in regulated domains and

distributed teams. For neurodiverse teams, this

approach provides structured security feedback loops

and reduces the cognitive burden associated with

manual security verification, thereby enhancing both

software quality and developer experience within

agile, inclusive development ecosystems.

Figure 3 : Picture of Visualizing DevSecOps

Integration for a Unified Agile Approach to Secure

Scalable and Continuous Software Delivery (Naidu, N.

2023).

Figure 3 depicts a professional standing on a rooftop

overlooking a city skyline, surrounded by a

holographic interface composed of interconnected

nodes and digital icons—an ideal visual metaphor for

4.2 Integrating DevSecOps into Agile Practices. This

symbolic representation emphasizes the fusion of

development, security, and operations within a

unified, automated workflow. The interconnected

networks and icons illustrate the shift-left philosophy

of DevSecOps, where security protocols—such as

automated code scanning, threat modeling, and policy

enforcement—are embedded early in the CI/CD

pipeline rather than appended at the end. The

professional's central position suggests active

orchestration and oversight, echoing the role of agile

teams in managing continuous delivery environments

with integrated security checkpoints. The

visualization also reflects agile's iterative cycles, as

data and security layers continuously flow through

the system in response to user stories and feature

updates. This architecture supports real-time

vulnerability detection, compliance automation, and

feedback loops essential for regulated, remote, and

neurodiverse development teams. The urban skyline

in the background alludes to enterprise scalability,

demonstrating how DevSecOps elevates traditional

agile practices into a secure, resilient, and adaptable

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

615

framework that meets the demands of modern,

distributed software ecosystems.

4.3 Security Considerations in Remote Code Delivery

Security in remote code delivery is a critical concern

in distributed agile environments, especially when

development spans multiple teams, locations, and

cognitive profiles. Remote software pipelines expose

organizations to a broader threat surface, including

unsecured communication channels, compromised

developer endpoints, misconfigured CI/CD tools, and

inadequate access controls. Gade, (2022) highlight the

growing importance of end-to-end security in cloud-

native code delivery, emphasizing encrypted

transmission protocols, secure software artifact

repositories, and policy-driven deployment pipelines

as essential safeguards in remote setups. One of the

primary challenges lies in securing source code across

diverse and often loosely monitored endpoints.

Sillaber et al. (2020) highlight the limitations of

traditional perimeter-based defenses and advocate for

continuous vulnerability scanning, identity-based

access control, and zero-trust architectures. In

neurodiverse teams working remotely, secure delivery

mechanisms must be intuitive, minimally disruptive,

and fully integrated into development workflows.

Automating these processes—such as through secure

Git hooks, container scanning, and role-based

permissions—minimizes the cognitive load and

supports seamless collaboration without

compromising system integrity. In SAFe and

DevSecOps environments, embedding these

considerations into the architectural and governance

layers ensures that security becomes a shared

responsibility. By hardening the remote code delivery

lifecycle, organizations can safeguard intellectual

property, maintain regulatory compliance, and foster

a safe, inclusive development experience.

4.4 Tools and Automation Supporting Neurodiverse

Developers

The integration of tools and automation specifically

designed to support neurodiverse developers is a vital

component of inclusive software engineering

practices. These tools can reduce cognitive overload,

increase predictability, and provide structure—all of

which are essential for autistic individuals and others

with neurodivergent cognitive profiles. Al-Azawei et

al. (2016) highlight the importance of Universal

Design for Learning (UDL) principles in digital tool

development, advocating for multimodal access,

customizable interfaces, and scaffolded learning

mechanisms as shown in figure 4. When applied to

software engineering environments, these principles

translate into toolsets that allow developers to tailor

interaction patterns, toggle between visual and textual

feedback, and automate routine tasks. For

neurodiverse developers, automation frameworks

such as intelligent code linters, integrated test runners,

and build pipeline monitors offer substantial benefits

by providing real-time feedback and reducing context

switching. Scott et al. (2018) emphasize that

successful employment and performance among

autistic professionals are linked to clarity in

expectations, consistency in task flow, and minimal

interruptions—conditions well supported by

programmable automation and adaptive IDEs. In

SAFe and DevSecOps ecosystems, toolchains can be

configured to support individualized dashboards,

scriptable task sequencing, and simplified status

notifications, enabling neurodiverse developers to

engage with complex workflows at their own pace

while contributing meaningfully to agile delivery

objectives.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

616

Figure 4: Diagram Illustration of Inclusive DevOps

Ecosystem with Tools and Automation Tailored to

Support Neurodiverse Software Developers.

Figure 4 presents a structured overview of how

inclusive DevOps environments can be optimized to

accommodate neurodiverse team members through

tailored tooling and automation. At its core, the

diagram is organized into three primary branches:

Development Tools, CI/CD Automation, and

Collaboration & Accessibility. The Development

Tools branch highlights the importance of accessible

integrated development environments (IDEs) such as

Visual Studio with customizable themes and visual

debugging features that reduce sensory overload. It

also includes AI-assisted code completion tools like

GitHub Copilot, which help streamline cognitive

effort during programming. The CI/CD Automation

branch focuses on reducing task ambiguity by

integrating real-time feedback mechanisms,

customizable notification systems, and pre-scripted

task runners that promote workflow consistency.

These tools reduce context switching and provide

predictable, structured environments for autistic

developers. The final branch, Collaboration &

Accessibility, includes asynchronous communication

platforms like Confluence and Loom, visual task

boards such as Jira and Trello, and adaptive

communication interfaces including text-to-speech

and captioning tools. Together, these interconnected

systems form a comprehensive ecosystem that

supports autonomy, reduces cognitive load, and

enhances engagement, making it possible for

neurodiverse developers to fully participate and thrive

within agile and DevSecOps frameworks.

5. Containerized Microservices Deployment

5.1 Overview of Containerization and Microservices

Containerization and microservices are foundational

technologies in modern software architecture,

enabling scalable, modular, and agile application

development. Containerization refers to the

packaging of application code along with its

dependencies into isolated units that can run

uniformly across diverse environments. This approach

provides portability, reproducibility, and

environment consistency, which are critical for

DevSecOps pipelines and distributed teams. Pahl et al.

(2020) argue that containerization underpins the shift

toward cloud-native systems by reducing

infrastructure complexity and enabling seamless

deployment workflows in hybrid and multicloud

settings. Microservices architecture complements

containerization by decomposing monolithic systems

into loosely coupled, independently deployable

services that communicate over lightweight protocols.

This architectural style promotes agility, fault

isolation, and service-specific scalability. Dragoni et al.

(2017) highlight how microservices facilitate

continuous delivery, allow teams to adopt polyglot

development stacks, and support faster iteration

cycles—all of which are aligned with SAFe principles

for value stream agility. In distributed and

neurodiverse teams, microservices reduce cognitive

overload by enabling developers to focus on discrete

components without needing to understand the entire

system context. Together, containerization and

microservices empower teams to implement robust

CI/CD pipelines, automate security enforcement, and

optimize resource usage. These capabilities are

essential for remote, inclusive agile environments

seeking to align modular development practices with

accessibility, operational resilience, and rapid

innovation.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

617

5.2 Benefits for Modular, Isolated, and Scalable

Systems

The adoption of microservices and containerization

offers significant benefits for developing modular,

isolated, and scalable systems, particularly in agile,

remote, and neurodiverse engineering environments.

By decomposing applications into independently

deployable services, microservices promote

modularity, allowing development teams to manage

discrete components without the complexity of entire

codebases. Taibi et al. (2019) identify that

architectural patterns supporting microservices, such

as service choreography, bounded contexts, and

single-responsibility deployment units, enhance

maintainability and facilitate parallel development,

which is critical in distributed and cognitively diverse

teams. Isolation is further reinforced through

containerization, which encapsulates services with

their dependencies in lightweight, runtime-agnostic

environments. This ensures that microservices operate

independently of each other and of the underlying

infrastructure, reducing system-wide fault

propagation. Balalaie et al. (2016) emphasize that such

isolation not only supports safer and more predictable

deployments but also enhances continuous

integration and delivery, enabling DevOps

acceleration and reducing regression risks. From a

scalability perspective, containerized microservices

can be scaled horizontally based on real-time demand,

optimizing resource usage and improving

responsiveness. In inclusive agile teams, this modular

architecture enables focused task allocation, reduces

cognitive load, and enhances clarity in workflows—

key advantages for neurodiverse contributors. The

resulting architecture supports rapid innovation,

improved resilience, and operational efficiency across

secure, remote development environments

5.3 Orchestration Tools (e.g., Kubernetes) in Secure

Environments

Container orchestration tools, particularly Kubernetes,

play a central role in managing secure, scalable, and

resilient microservice-based environments.

Kubernetes automates the deployment, scaling, and

lifecycle management of containerized applications,

ensuring consistency and high availability across

distributed systems. In security-sensitive

environments, Kubernetes offers critical features such

as role-based access control (RBAC), network policies,

secrets management, and pod security standards. Jiao,

et al. (2021) highlight that these features are

instrumental in mitigating risks like container

breakout, privilege escalation, and untrusted

workload execution in cloud-native systems. As

containerized environments scale, the complexity of

securing dynamic workloads increases. Fernández et

al. (2019) emphasize the importance of enforcing

security at the orchestration layer by integrating

runtime threat detection, image scanning pipelines,

and policy engines like Open Policy Agent (OPA).

Kubernetes supports these capabilities through

extensible admission controllers, secure service

meshes, and audit logging mechanisms that ensure

traceability and governance across distributed

deployments. For remote and neurodiverse

engineering teams, Kubernetes facilitates workload

modularity and environmental predictability. Its

declarative configuration model enables developers to

focus on application logic while relying on the

orchestration layer for consistency and reliability.

Furthermore, Kubernetes’ automation capabilities

reduce manual intervention, thereby minimizing

context-switching and cognitive overhead—key

factors in maintaining productivity and psychological

safety in inclusive agile ecosystems.

5.4 Accessibility and Resource Optimization in

Container Workloads

Containerization provides a technical foundation for

achieving accessibility and resource optimization in

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

618

modern distributed systems, particularly within agile

frameworks that prioritize inclusivity and operational

efficiency. Containers enable lightweight execution

environments with consistent configurations, which

facilitate onboarding, reduce environmental

inconsistencies, and support neurodiverse developers

who benefit from predictable and customizable

workflows. Peinl et al. (2020) demonstrate that tools

like Docker and Kubernetes can be configured to

allocate CPU, memory, and network resources

granularly, ensuring that workloads run efficiently

while avoiding system saturation or performance

degradation as represented in figure 5. Accessibility in

container workloads is also enhanced by the

abstraction of infrastructure complexities. Developers

can interact with standardized interfaces and

declarative configuration files, reducing the cognitive

load associated with setup and debugging. Morabito

(2017) highlights that container technologies perform

favorably even on resource-constrained edge devices,

proving their effectiveness for optimizing compute

usage without sacrificing responsiveness or scalability.

In inclusive remote engineering teams, workload

accessibility extends beyond technical parity to

include considerations like visualized logs, simplified

deployment commands, and real-time monitoring

dashboards tailored to diverse cognitive styles (Atalor,

et al., 2023). Through these optimizations, container-

based environments not only reduce operational

overhead but also promote autonomy and efficiency,

making them ideal for neurodiverse agile teams

striving to deliver high-performance, resilient

applications.

Figure 5: Picture of Visualizing Containerization in

DevOps as a Scalable and Accessible Solution for

Optimized Workload Management (Mohan, S. 2023).

Figure 5 illustrates a metaphorical depiction of

containerization in DevOps workflows, using a cargo

ship and shipping containers to represent how

applications and their dependencies are packaged and

managed. This visual effectively conveys the concept

central to 5.4 Accessibility and Resource Optimization

in Container Workloads, where containers act as

modular, isolated units that allow software to run

consistently across diverse environments. Just as each

container on the ship is independently loaded,

transported, and unloaded, software containers

encapsulate code, libraries, and runtime in a

standardized format—enabling resource-efficient

scheduling and deployment across cloud or on-prem

infrastructures. The structured layout of containers on

the ship symbolizes workload modularity and

efficient orchestration, reducing overhead by

eliminating environmental inconsistencies. For

neurodiverse developers, this predictability enhances

accessibility by minimizing configuration complexity

and allowing for simplified, repeatable deployment

processes. The port environment shown in the

image—with organized stacking and lifting tools—

mirrors how Kubernetes or Docker Swarm manage

resource allocation, ensuring optimized CPU and

memory usage without requiring developers to

manually intervene. This level of automation and

environmental parity reduces cognitive load, supports

parallel development, and ensures system

performance is consistent—key advantages for

maintaining inclusive, scalable, and resilient DevOps

pipelines.

6. Case Studies and Practical Applications

6.1 Examples of SAFe Adoption in Inclusive Remote

Teams

Adopting the Scaled Agile Framework (SAFe) in

inclusive remote teams has become a strategic

imperative for organizations aiming to align delivery

with both agility and accessibility. Inclusive SAFe

implementations emphasize psychological safety,

clearly defined roles, and distributed ceremonies that

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

619

accommodate a diversity of cognitive and

communication styles. Babb et al. (2014) highlight

that learning barriers in agile teams—particularly in

remote and neurodiverse settings—can be mitigated

through structured feedback loops, paired mentorship,

and deliberate facilitation practices that promote

equal participation. One practical example involves a

multinational software firm that restructured its ARTs

to include asynchronous planning sessions using

shared digital backlogs and retrospectives tailored for

time zone flexibility and neurodiverse engagement

(Atalor, 2019). These adjustments enhanced

participation by reducing the reliance on real-time

verbal interactions, a key consideration for autistic

engineers. Another organization successfully

incorporated accessibility checklists into sprint

reviews, ensuring that delivered solutions considered

diverse user needs from inception to deployment. In

both cases, SAFe provided the governance structure

and cadence necessary to support technical alignment

across remote teams, while also enabling adaptations

that prioritized inclusivity (Imoh, 2023). By

integrating communication tooling, visual progress

tracking, and modular workflows, these teams

demonstrated that SAFe can be scaled not only across

geographies but also across neurocognitive variations,

without compromising velocity or quality.

6.2 Application of Secure CI/CD in Neurodiverse

Software Projects

The application of secure Continuous Integration and

Continuous Delivery (CI/CD) pipelines in

neurodiverse software projects is a critical enabler of

both productivity and psychological safety. Secure

CI/CD ensures that software artifacts are

automatically built, tested, and deployed with

embedded security controls, reducing manual

intervention and minimizing the cognitive load on

neurodiverse developers. Rahman et al. (2019) argue

that incorporating security into CI/CD pipelines—

from static code analysis to automated vulnerability

scans—provides early feedback loops that align with

agile principles and reinforce trust in the

development process as shown in figure 6. In

neurodiverse teams, these pipelines are further

customized to support diverse working styles. For

instance, structured commit messages, automated

merge checks, and asynchronous deployment

feedback mechanisms allow autistic developers to

contribute consistently without the stress of real-time

performance evaluations. Secure CI/CD pipelines also

integrate secret management, identity-based

permissions, and container scanning, ensuring that

team members focus on engineering tasks without

being overwhelmed by shifting security requirements

(Atalor, 2022). An example of best practice includes

neurodiverse teams implementing GitLab CI/CD with

integrated SAST/DAST tools and Slack-based

notifications, allowing developers to receive updates

in their preferred formats (Imoh, & Idoko, 2022). This

transparency and automation improve predictability

and autonomy while maintaining codebase integrity.

Secure CI/CD in such contexts supports not only

robust software delivery but also inclusive

engineering cultures where all cognitive profiles are

supported through systematic and secure workflows.

Figure 6 : Diagram Illustration of Secure CI/CD

Framework Optimized for Neurodiverse Software

Teams with Integrated Accessibility and Automation

Layers.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

620

Figure 6 presents a structured overview of how

continuous integration and delivery pipelines can be

both secure and cognitively inclusive. The central

node represents a neurodiverse-friendly secure CI/CD

pipeline, branching into three core areas: Core

Security Integrations, Cognitive Accessibility

Enhancements, and Tools and Ecosystem. The Core

Security Integrations branch highlights key practices

such as Static Application Security Testing (SAST) for

early vulnerability detection, Dynamic Application

Security Testing (DAST) for runtime protection, and

secrets management to automate the secure handling

of sensitive credentials. The Cognitive Accessibility

Enhancements branch focuses on reducing cognitive

load for neurodiverse developers by implementing

asynchronous feedback mechanisms (e.g., visual status

boards and Slack updates), automating routine tasks

with reusable scripts, and allowing users to customize

alert thresholds to avoid overstimulation. The Tools

and Ecosystem branch showcases platforms like

GitLab CI/CD, Jenkins with OWASP plugins, and

GitHub Actions with Dependabot integration—all of

which support modular, secure, and automated

workflows. These tools are chosen for their ability to

enforce policy, support cognitive diversity, and

simplify user experience without compromising

security. Together, the diagram illustrates how

DevSecOps principles can be operationalized in a way

that supports both technical rigor and inclusive

development practices in neurodiverse software teams.

6.3 Deployment Patterns Using Containerized

Architectures

Deployment patterns based on containerized

architectures have transformed how teams manage

scalability, maintainability, and accessibility in

modern software systems. Containers enable

developers to package code with all its dependencies,

allowing applications to run reliably across different

computing environments. Merkel (2014) explains that

container-based deployments promote environment

parity, faster rollouts, and predictable behavior,

which are essential for continuous delivery in

distributed and neurodiverse development teams. One

common deployment pattern is the blue-green

deployment, which maintains two production

environments: one for active users and the other for

new releases (Atalor, et al., 2023). This pattern

reduces downtime and rollback complexity, offering

neurodiverse engineers the confidence of stable

release transitions. Another popular model is canary

deployment, where new features are gradually

introduced to a subset of users. This staged approach

minimizes risk and supports data-driven decision-

making, helping teams evaluate performance without

high-stakes pressure—a feature especially conducive

to inclusive environments. Sidecar and adapter

patterns also support modularity and separation of

concerns, aligning well with cognitive preferences for

structured and independent component management

(Ihimoyan, et al., 2022). These containerized

approaches are typically orchestrated using platforms

like Kubernetes, which manage pod lifecycles, ensure

secure networking, and support autoscaling.

Containerized deployment patterns streamline

DevSecOps practices, offering fault isolation, rapid

iteration, and simplified rollback mechanisms—all

essential for resilient and accessible remote software

development ecosystems.

6.4 Lessons Learned and Pitfalls to Avoid

Implementing SAFe, secure CI/CD, and containerized

microservices within inclusive remote teams offers

substantial benefits, but it also presents significant

challenges that must be carefully managed. One of the

most common pitfalls involves overengineering

processes without aligning them with the cognitive

and communication preferences of team members.

Zahedi, et al. (2016) note that software teams

frequently struggle with misaligned collaboration

structures, inadequate feedback loops, and unrealistic

delivery expectations—issues that are magnified in

distributed and neurodiverse settings. A key lesson

learned is the importance of incremental adoption.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

621

Large-scale agile transformations often fail when

organizations attempt to implement all SAFe layers

simultaneously without tailoring them to team

readiness. Instead, beginning with core essentials—

such as PI Planning and Scrum of Scrums—helps

teams adapt gradually while retaining autonomy

(Koskinen, et al., 2019). Another pitfall involves

insufficient automation in CI/CD pipelines. Manual

testing, vague deployment workflows, or inconsistent

tooling can introduce regressions, reduce

transparency, and elevate anxiety among autistic

developers who depend on predictability and routine.

Over-reliance on synchronous communication is

another frequent mistake. Lessons from inclusive

environments show that asynchronous tooling,

written documentation, and visual workflows

significantly improve participation and reduce

burnout. Ultimately, successful implementation

hinges on customizing frameworks to team dynamics

while preserving agility, security, and accessibility

through iterative learning and continuous process

refinement.

7. Conclusion and Future Directions

7.1 Summary of Findings

This review has demonstrated that the integration of

the SAFe, secure CI/CD pipelines, and containerized

microservices can significantly enhance inclusive

remote engineering environments, particularly for

neurodiverse teams. SAFe offers structured

governance and role clarity across Agile Release

Trains, which is essential for distributed teams that

rely on predictability and modular collaboration.

When tailored to cognitive accessibility, SAFe

ceremonies—such as Program Increment planning

and retrospectives—become tools for psychological

safety and equitable participation. Secure CI/CD

pipelines embedded with automated security checks

and feedback loops reduce manual complexity and

support asynchronous development workflows. These

pipelines are especially beneficial for autistic

developers who require clear task flows and minimal

real-time interruptions. Tools like GitLab CI/CD and

Jenkins, when combined with role-based access

control and automated vulnerability scanning, ensure

code integrity while maintaining developer autonomy.

Containerization and microservices further improve

modularity, fault isolation, and scalable deployment.

Through patterns such as blue-green deployments,

sidecar services, and Kubernetes orchestration,

development teams can manage service components

independently, reducing cognitive overhead and

promoting focused contribution. Overall, the findings

support a holistic approach that unifies agile

scalability, security automation, and inclusive design

principles to create resilient, neurodiverse-friendly

software delivery ecosystems.

7.2 Strategic Recommendations for Practitioners

To successfully implement SAFe, secure CI/CD, and

containerized microservices in neurodiverse remote

engineering environments, practitioners must adopt a

strategy that prioritizes cognitive accessibility, process

modularity, and automation. Teams should begin by

customizing SAFe roles and ceremonies to

accommodate asynchronous communication and clear

task delineation. For example, replacing live sprint

reviews with recorded walkthroughs and written

retrospectives can empower autistic engineers to

engage without social or sensory pressure. Security

should be integrated early and continuously in the

development lifecycle. CI/CD pipelines must include

automated tools for static code analysis, secrets

detection, and container vulnerability scanning.

Establishing policy-as-code practices using tools like

OPA (Open Policy Agent) enables secure, automated

enforcement without burdening developers with

manual checks. Access controls should be role-

specific and tied to identity providers to minimize risk

in distributed teams. In deploying containerized

services, practitioners should use orchestration

platforms like Kubernetes with strict namespace

isolation, resource quotas, and declarative

infrastructure definitions to maintain predictable and

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

622

reproducible environments. Logging and monitoring

systems must support visual dashboards with

accessible UX, ensuring real-time observability for all

team members. Ultimately, these practices must be

embedded within a culture of inclusion and iterative

feedback, enabling continuous adaptation while

ensuring that neurodiverse engineers are supported,

secure, and productive in every phase of software

delivery.

7.3 Future Research Opportunities in Neurodiverse

DevOps

Future research in neurodiverse DevOps should focus

on empirically evaluating the effectiveness of

inclusive agile frameworks like SAFe when adapted

for cognitively diverse teams across remote, large-

scale environments. There is a critical need to develop

standardized metrics that measure psychological

safety, engagement, and productivity among

neurodivergent developers within CI/CD workflows

and container orchestration ecosystems. Studies could

examine how specific DevSecOps tools and

automation pipelines impact cognitive load, task

switching, and long-term retention for autistic

engineers. Another promising area involves designing

adaptive user interfaces within DevOps platforms that

dynamically respond to the behavioral and cognitive

needs of neurodiverse contributors. For example,

research could explore AI-driven assistants that adjust

notification levels, provide contextual code

explanations, or personalize onboarding tutorials

based on a user’s interaction history. Additionally,

longitudinal investigations into the role of

asynchronous communication tools—such as

documentation-first workflows, visual Kanban boards,

and collaborative IDEs—could provide insight into

how remote DevOps cultures can balance team

alignment with individual autonomy. Simulation-

based testing of different deployment patterns (e.g.,

canary vs. rolling updates) under neurodiverse team

compositions may also help determine optimal

strategies for balancing stability, performance, and

accessibility. Ultimately, future research should focus

on validating, refining, and scaling inclusive DevOps

practices that promote equity, security, and efficiency

in diverse software engineering ecosystems.

7.4 Toward a Standardized Inclusive Engineering

Framework

Moving toward a standardized inclusive engineering

framework requires integrating neurodiversity-

conscious principles into every layer of the software

development lifecycle. This framework should unify

the structural rigor of SAFe with the adaptive

automation of DevSecOps and the modular flexibility

of containerized microservices, ensuring that

workflows support diverse cognitive and

communication needs. Central to this approach is

codifying accessibility guidelines into agile

ceremonies, toolchains, and deployment strategies—

such as using asynchronous PI planning formats,

visual sprint retrospectives, and accessible dashboards

for continuous integration. The framework must

define role-specific responsibilities with clarity,

provide adaptive tooling interfaces, and incorporate

sensory-sensitive design options in virtual

collaboration spaces. For instance, developers should

be able to configure their CI/CD notification systems

for minimal cognitive disruption or select from

multiple feedback modalities (text, visuals, audio).

Container orchestration policies should emphasize

reproducibility and isolation to minimize deployment

friction, which is especially beneficial for engineers

requiring predictable environments. Standardization

should also include psychological safety metrics,

inclusive onboarding protocols, and knowledge-

sharing systems that accommodate varying processing

styles. By aligning operational reliability with

cognitive inclusivity, this engineering framework can

establish a sustainable model for remote, diverse

teams—enabling equitable participation, continuous

delivery, and resilient software innovation at scale.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

623

References

1) Al-Azawei, A., Serenelli, F., & Lundqvist, K.

(2016). Universal Design for Learning (UDL): A

content analysis of peer-reviewed journal papers

from 2012 to 2015. Journal of the Scholarship of

Teaching and Learning, 16(3), 39–56.

https://doi.org/10.14434/josotl.v16i3.19295

2) Alshuqayran, N., Ali, N., & Evans, R. (2021).

Security practices in DevOps: A systematic

literature review. Information and Software

Technology, 131, 106449.

https://doi.org/10.1016/j.infsof.2020.106449

3) Atalor, S. I. (2019). Federated Learning

Architectures for Predicting Adverse Drug

Events in Oncology Without Compromising

Patient Privacy ICONIC RESEARCH AND

ENGINEERING JOURNALS JUN 2019 | IRE

Journals | Volume 2 Issue 12 | ISSN: 2456-8880

4) Atalor, S. I. (2022). Data-Driven

Cheminformatics Models for Predicting

Bioactivity of Natural Compounds in Oncology.

International Journal of Scientific Research and

Modern Technology, 1(1), 65–76.

https://doi.org/10.38124/ijsrmt.v1i1.496

5) Atalor, S. I., Ijiga, O. M., & Enyejo, J. O. (2023).

Harnessing Quantum Molecular Simulation for

Accelerated Cancer Drug Screening.

International Journal of Scientific Research and

Modern Technology, 2(1), 1–18.

https://doi.org/10.38124/ijsrmt.v2i1.502

6) Atalor, S. I., Raphael, F. O. & Enyejo, J. O.

(2023). Wearable Biosensor Integration for

Remote Chemotherapy Monitoring in

Decentralized Cancer Care Models.

International Journal of Scientific Research in

Science and Technology Volume 10, Issue 3

(www.ijsrst.com) doi :

https://doi.org/10.32628/IJSRST23113269

7) Austin, R. D., & Pisano, G. P. (2017).

Neurodiversity as a competitive advantage.

Harvard Business Review, 95(3), 96–103.

https://scholar.google.com/scholar_lookup?title=

Neurodiversity%20as%20a%20competitive%20a

dvantage&author=Austin&publication_year=201

7

8) Babb, J., Hoda, R., & Nørbjerg, J. (2014). Barriers

to learning in agile software teams: Lessons from

the trenches. Journal of Systems and Software,

99, 140–158.

https://doi.org/10.1016/j.jss.2014.09.035

9) Balalaie, A., Heydarnoori, A., & Jamshidi, P.

(2016). Microservices architecture enables

devops: Migration to a cloud-native

architecture. IEEE Software, 33(3), 42–52.

https://doi.org/10.1109/MS.2016.64

10) Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A

software architect’s perspective. IEEE Software,

32(2), 31–34. https://doi.org/10.1109/MS.2015.50

11) Beckwith, L., Burnett, M., Wiedenbeck, S.,

Grigoreanu, V., & Rector, K. (2005). Gender

HCI: What about the software? Computer,

38(10), 97–101.

https://doi.org/10.1109/MC.2005.362

12) Brownlow, C., Martin, N., Thompson, D. M.,

Dowe, A., Abawi, D., Harrison, J., & March, S.

(2023). Navigating university: The design and

evaluation of a holistic support programme for

autistic students in higher education. Education

Sciences, 13(5), 521.

13) Conboy, K., Coyle, S., Wang, X., & Pikkarainen,

M. (2020). Navigating the challenges of agile at

scale: Insights from multiple enterprise IT

projects. Information Systems Journal, 30(1),

193–221. https://doi.org/10.1111/isj.12265

14) Dorairaj, S., Noble, J., & Malik, P. (2012).

Understanding team dynamics in distributed

agile software development. Information and

Software Technology, 56(6), 527–540.

https://doi.org/10.1016/j.infsof.2012.01.006

15) Dragoni, N., Giallorenzo, S., Lafuente, A. L.,

Mazzara, M., Montesi, F., Mustafin, R., & Safina,

L. (2017). Microservices: Yesterday, today, and

tomorrow. Present and Ulterior Software

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

624

Engineering, Future of Software Engineering,

195–216. https://doi.org/10.1007/978-3-319-

67425-4_12

16) Edmondson, A. C., & Lei, Z. (2014).

Psychological safety: The history, renaissance,

and future of an interpersonal construct. Annual

Review of Organizational Psychology and

Organizational Behavior, 1(1), 23–43.

https://doi.org/10.1146/annurev-orgpsych-

031413-091305

17) Feldt, R., Angelis, L., Torkar, R., & Samuelsson,

M. (2010). Links between the personalities,

views and attitudes of software engineers.

Information and Software Technology, 52(6),

611–624.

https://doi.org/10.1016/j.infsof.2010.01.001

18) Fernández, H., Ortiz, R., & García, J. (2019).

Securing container orchestration in

microservice-based cloud applications. Future

Generation Computer Systems, 97, 244–256.

https://doi.org/10.1016/j.future.2019.02.012

19) Gade, K. R. (2022). Cloud-Native Architecture:

Security Challenges and Best Practices in Cloud-

Native Environments. Journal of Computing and

Information Technology, 2(1).

20) Hedley, D., Cai, R., Uljarević, M., Wilmot, M.,

Spoor, J. R., Richdale, A., & Dissanayake, C.

(2018). Transition to work: Perspectives from

the autism spectrum. Autism, 22(5), 528–541.

https://doi.org/10.1177/1362361316687697

21) Ihimoyan, M. K., Enyejo, J. O. & Ali, E. O.

(2022). Monetary Policy and Inflation Dynamics

in Nigeria, Evaluating the Role of Interest Rates

and Fiscal Coordination for Economic Stability.

International Journal of Scientific Research in

Science and Technology. Online ISSN: 2395-

602X. Volume 9, Issue 6. doi :

https://doi.org/10.32628/IJSRST2215454

22) Imoh, P. O. (2023). Impact of Gut Microbiota

Modulation on Autism Related Behavioral

Outcomes via Metabolomic and Microbiome-

Targeted Therapies International Journal of

Scientific Research and Modern Technology

(IJSRMT) Volume 2, Issue 8, 2023 DOI:

https://doi.org/10.38124/ijsrmt.v2i8.494

23) Imoh, P. O., & Idoko, I. P. (2022). Gene-

Environment Interactions and Epigenetic

Regulation in Autism Etiology through Multi-

Omics Integration and Computational Biology

Approaches. International Journal of Scientific

Research and Modern Technology, 1(8), 1–16.

https://doi.org/10.38124/ijsrmt.v1i8.463

24) Jiao, Q., Xu, B., & Fan, Y. (2021, October).

Design of cloud native application architecture

based on kubernetes. In 2021 IEEE Intl Conf on

Dependable, Autonomic and Secure Computing,

Intl Conf on Pervasive Intelligence and

Computing, Intl Conf on Cloud and Big Data

Computing, Intl Conf on Cyber Science and

Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech) (pp.

494-499). IEEE.

25) Kalenda, M., Hyna, P., & Rossi, B. (2018).

Scaling agile in organizations: A comparative

study of agile scaling frameworks and practices.

Journal of Systems and Software, 146, 87–103.

https://doi.org/10.1016/j.jss.2018.09.065

26) Kamei, Y., Shihab, E., Adams, B., Hassan, A. E.,

Mockus, A., Sinha, A., & Ubayashi, N. (2012). A

large-scale empirical study of just-in-time

quality assurance. IEEE Transactions on

Software Engineering, 39(6), 757-773.

27) Koskinen, M., Mikkonen, T., & Abrahamsson, P.

(2019, November). Containers in software

development: A systematic mapping study. In

International conference on product-focused

software process improvement (pp. 176-191).

Cham: Springer International Publishing.

28) Lorenz, T., Frischling, C., Cuadros, R., &

Heinitz, K. (2016). Autism and overcoming job

barriers: Comparing job-related barriers and

possible solutions in and outside of autism-

specific employment. PLOS ONE, 11(1),

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

625

e0147040.

https://doi.org/10.1371/journal.pone.0147040

29) Merkel, D. (2014). Docker: Lightweight Linux

containers for consistent development and

deployment. Linux Journal, 2014(239), 2.

https://scholar.google.com/scholar_lookup?title=

Docker%3A%20Lightweight%20Linux%20cont

ainers%20for%20consistent%20development%2

0and%20deployment&author=Merkel%2C%20

D.&publication_year=2014

30) Mishra, D., & Mishra, A. (2011). Complex

software project development: Agile methods

adoption. Journal of Software Maintenance and

Evolution: Research and Practice, 23(8), 549–

564. https://doi.org/10.1002/smr.519

31) Mohan, S. (2023). The Benefits of using

containerization in DevOps workflows,

https://razorops.com/blog/benifits-of-

usingcontainerization-devops-workflow

32) Morabito, R. (2017). Virtualization on internet

of things edge devices with container

technologies: A performance evaluation. IEEE

Access, 5, 8835–8850.

https://doi.org/10.1109/ACCESS.2017.2702500

33) Naidu, N. (2023). A Complete Guide to Aligning

Agile, DevOps, and DevSecOps,

https://www.altimetrik.com/blog/agile-devops-

and-devsecops

34) Paasivaara, M., Behm, B., Lassenius, C., &

Hallikainen, M. (2018). Large-scale agile

transformation at Ericsson: A case study.

Empirical Software Engineering, 23(1), 255–289.

https://doi.org/10.1007/s10664-017-9525-7

35) Pahl, C., Jamshidi, P., & Zimmermann, O.

(2020). Architectural principles for cloud

software. Communications of the ACM, 63(5),

56–65. https://doi.org/10.1145/3375636

36) Parsons, S., & Cobb, S. (2011). State-of-the-art of

virtual reality technologies for children on the

autism spectrum. European Journal of Special

Needs Education, 26(3), 355–366.

https://doi.org/10.1080/08856257.2011.593831

37) Peinl, R., Holzschuher, F., & Pfitzer, F. (2020).

Kubernetes and Docker: Performance metrics

for containerized applications in cloud

environments. Journal of Systems and Software,

162, 110516.

https://doi.org/10.1016/j.jss.2019.110516

38) Putta, S., Paasivaara, M., & Lassenius, C. (2018).

Benefits and challenges of adopting the Scaled

Agile Framework (SAFe): Preliminary results

from a multivocal literature review. Proceedings

of the 44th Euromicro Conference on Software

Engineering and Advanced Applications, 335–

343. https://doi.org/10.1109/SEAA.2018.00065

39) Rahman, M. A., Gao, J., & Helal, M. A. (2019).

Secure software development in DevOps era: A

systematic review and research agenda.

Information and Software Technology, 114, 58–

77. https://doi.org/10.1016/j.infsof.2019.06.006

40) Rodríguez, P., Garbajosa, J., & Giannakos, M.

(2016). Continuous deployment of software

intensive products and services: A systematic

mapping study. Journal of Systems and Software,

123, 263–291.

https://doi.org/10.1016/j.jss.2015.12.015

41) Schuck, R. K., Tagavi, D. M., Baiden, K. M.,

Dwyer, P., & Jain, A. (2021). Barriers to

employment among individuals with autism

spectrum disorder: A review of the literature.

Review Journal of Autism and Developmental

Disorders, 8, 200–214.

https://doi.org/10.1007/s40489-020-00225-8

42) Scott, M., Falkmer, M., Girdler, S., & Falkmer,

T. (2018). Viewpoints on factors for successful

employment for adults with autism spectrum

disorder. PLOS ONE, 13(11), e0207286.

https://doi.org/10.1371/journal.pone.0207286

43) Shahin, M., Ali Babar, M., & Zhu, L. (2017).

Continuous integration, delivery and

deployment: A systematic review on

approaches, tools, challenges and practices. IEEE

Access, 5, 3909–3943.

https://doi.org/10.1109/ACCESS.2017.2685629

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 1

Martina Ononiwu et al Int J Sci Res Sci & Technol. November-December-2023, 10 (6) : 606-626

626

44) Sillaber, C., Waltl, B., & Breu, R. (2020).

Automated vulnerability management in

software development: State of the practice,

challenges, and recommendations. Computers &

Security, 92, 101748.

https://doi.org/10.1016/j.cose.2020.101748

45) Silva da Silva, T., Selbach Silveira, M., Maurer,

F., & Hellmann, T. (2015). User-centered design

and agile methods: A systematic review.

Software: Practice and Experience, 45(9), 1311–

1346. https://doi.org/10.1002/spe.2205

46) Stol, K. J., Ralph, P., & Fitzgerald, B. (2016).

Grounded theory in software engineering

research: A critical review and guidelines.

Proceedings of the 38th International

Conference on Software Engineering, 120–131.

https://doi.org/10.1145/2884781.2884833

47) Taibi, D., Lenarduzzi, V., & Pahl, C. (2019).

Architectural patterns for microservices: A

systematic mapping study. Software: Practice

and Experience, 49(1), 3–27.

https://doi.org/10.1002/spe.2737

48) Turetken, O., Stojanov, I., & Trienekens, J.

(2017). Assessing the adoption level of scaled

agile development: A case study of a large-scale

agile transformation. Journal of Systems and

Software, 120, 72–89.

https://doi.org/10.1016/j.jss.2016.06.013

49) UT Dallas, (2017). Jonsson School Engineers

Help Autistic Teens Showcase Skills,

https://news.utdallas.edu/campus-

community/jonsson-school-engineers-help-

autistic-teens-showc/

50) Vallon, R., da Silva Estácio, B. J., Prikladnicki,

R., & Grechenig, T. (2018). Systematic literature

review on agile practices in global software

development. Information and Software

Technology, 96, 161-180.

51) Williams, L. E., Massagli, T. L., & Womack, S. R.

(2021). Communication strategies for

neurodiverse teams: Supporting autistic

professionals in collaborative software

development. Journal of Occupational and

Organizational Psychology, 94(4), 999–1018.

https://doi.org/10.1111/joop.12375

52) Zahedi, M., Shahin, M., & Babar, M. A. (2016).

A systematic review of knowledge sharing

challenges and practices in global software

development. International Journal of

Information Management, 36(6), 995-1019.

