
IJSRST2057103 | Published : 21 March - 2020 [(5) 7 : 618-623]

© 2020 IJSRST | Volume 5 | Issue 7 | Print ISSN : 2395-6011 | Online ISSN: 2395-602X

 4th National Conference on Advances in Engineering and Applied Science

Organized by : Anjuman College of Engineering and Technology (ACET) Nagpur,

Maharashtra, India, In association with

International Journal of Scientific Research in Science and Technology

618

FPGA Implementation of Filtered Image Using 2D Gaussian Filter

Mrs. Ruhina Quazi, Ankit Bodele, Amit Fernandez, Sylvester Clarke, Tushar Madavi

Department of Electronics and Telecommunication , ACET, Nagpur, Maharashtra, India

ABSTRACT

Image filtering is one of the very useful techniques in image processing and computer vision. It is used to

eliminate useless details and noise from an image. In this paper, a hardware implementation of image filtered

using 2D Gaussian Filter will be present. The Gaussian filter architecture will be described using a different way

to implement convolution module. Thus, multiplication is in the heart of convolution module, for this reason,

three different ways to implement multiplication operations will be presented. The first way is done using the

standard method. The second way uses Field Programmable Gate Array (FPGA) features Digital Signal

Processor (DSP) to ensure and make fast the scalability of the effective FPGA resource and then to speed up

calculation. The third way uses real multiplier for more precision and a the maximum uses of FPGA resources.

In this paper, we compare the image quality of hardware (VHDL) and software (MATLAB) implementation

using the Peak Signal-to-Noise Ratio (PSNR). Also, the FPGA resource usage for different sizes of Gaussian

kernel will be presented in order to provide a comparison between fixed-point and floating point

implementations.

Keywords : Gaussian Filter; convolution; fixed point arithmetic; Floating point arithmetic; FPGA

I. INTRODUCTION

Convolution has been widely used in computer vision

and image processing, including object recognition

[2] and image matching [3], However, convolution

operation typically requires a significant amount of

computing resources [4].Image filtering is applied as

pre-processing to eliminate useless details and noise

from an image. It is produced by convolution

between an image and 2D Gaussian mask. In the

literature, several efficient FPGA implementations of

the 2D convolution operation have been proposed

[5]–[9].

Hanumantharaju et al. [10] proposed a hardware

architecture suitable for FPGA/ASIC implementation

of a 2D Gaussian surround function for image

processing application which offers a savings of

memory. Barbole et al. [11] implemented steerable

Gaussian smoothing filters on an FPGA platform

based on a VirtexV ML506 using the pipelined

approach and DSP which reduces memory

requirements. Talbi et al.[5] developed architecture

for separable and two-dimensional Gaussian

smoothing filters, which was implemented in the

VirtexV FPGA platform. They prove that the first

approach is significantly faster than the second one.

In the same year, Cabello et al. [2] implemented a 2D

Gaussian Filter in FPGA using fixed-point arithmetic

and floating point arithmetic, they found that

increasing the kernel sizes, they reduced the

computational costs using floating point arithmetic

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 5 | Issue 7 | IJSRST/Conf/NCAEAS/ACET/2020/01

619

In this paper, a Gaussian filter on an Field

Programmable Gate Array (FPGA) platform will be

implemented. We will focus in the main bloc which

is the convolution module based on the

multiplication operation. Thus, the multiplier is in

the heart of the proposed design. For this, the

standard multiplier will be firstly implemented. Then,

in order to accelerate calculus and to minimize

resource use, FPGA features will be used which are

DSP (Digital Signal Processor) and RAMs. Finally, in

order to have more precision in image output, a real

multiplier proposed in [13] will be used to implement

the entire architecture. It is a new way to do a

multiplication between two real numbers. Our

application is implemented by two tools such as

MATLAB and VHDL, and simulated on the ISE

simulator.

The remainder of this paper is as follows. Section 2

introduces the image filtering algorithm. The

hardware implementation of image filtering is

presented in section 3. In section 4, the hardware

optimization of convolution module based on

changing the multiplier will be discussed.

Experimental results are given in section 5. Finally, a

conclusion will be done in section 6.

II. IMAGE FILTERING ALGORITHM

Smoothing filters are widely used in many

applications such as object recognition, matching,

classification, etc. They are applied as pre-processing

for removing useless details and noise [14]. We will

focus on image filtering based on Gaussian filter.

A. Gaussian mask

Gaussian filter is one of the most important and

widely used filtering algorithms in image processing

[5]. Gaussian filter (G) is defined in equation 1.

where G is the Gaussian mask at the location with

coordinates x and y,α is the parameter which defines

the standard deviation of the Gaussian. If the value of

is large, the image smoothing effect will be higher.

B. Convolution operation

In general, smoothing can be effected by convolve the

original image I(x,y) of the size h x w with a Gaussian

mask G(x,y) as illustrated in equation 2. It is obtained

by computing the sum of products among the input

image and a smaller Gaussian matrix of the size(3×3).

A 2D convolution using a 3×3mask and 3×3 input

image is illustrated in Figure reffig1.

Fig. 1: Convolution operation

III. HARDWARE IMPLEMENTATION OF IMAGE

FILTERING

In this section, the proposed architecture design of

the Gaussian filter will be presented

A. Block diagram of image filtering

Figure 2 illustrates the block diagram of image

filtering. First, the input image and the Gaussian

mask are read and saved by MATLAB. Next, These

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 5 | Issue 7 | IJSRST/Conf/NCAEAS/ACET/2020/01

620

values are converted into a vector in a text file

extension *.coe using the MATLAB tool and loaded

the text file in block RAM (BRAM). The text file of

Gaussian mask and image is stored respectively in

BRAM1 and BRAM2. After that, the convolution

operation is effected between these pixel values of

two BRAM (1 and 2) using VHDL tool and saving the

obtain results in another block (BRAM3). Finally, the

text file of BRAM3 is converted by MATLAB tool in

order to display the results form an image. The next

step, we defined each block of diagram in Figure 2.

B. Synchronous architecture hardware of image

filtering

Figure 3 depicts the block diagram of synchronous

image filtering which contains a set of modules:

Control Module, 3 BRAMs (matrix of input image,

matrix of Gaussian mask, matrix of filtered image)

and convolution Module.

1) Gaussian Filter

The convolution of an image with a Gaussian mask

Fig. 2: Block diagram of image filtering

Fig. 3: Synchronous architecture of image filtering

involves floating point multiplications, which

consumes considerable hardware resources. The

Gaussian mask size (3×3) is presented by the matrix

below by choosing the standard deviation equal to 0.5.

Then, it is necessary to convert the floating point

coefficients to fixed integer point coefficients for

hardware implementation of the Gaussian filter. In

the convolution process, each mask values has to be

multiplied with each element of the image and then

divided by a power of 2 [15], [16]. The approximation

of the Gaussian mask is presented by equation below.

2) Block RAM

In Xilinx FPGAs, a Block RAM (BRAM) is a dedicated

two-port memory that stores up to 36Kb of data.

The FPGA contains many of these blocks. Inside of

each, small logic block is a configurable lookup table.

It is normally used for logic functions, and it can be

also reconfigured as a few bits of RAM. Several of

them can be combined into a larger RAM which is

denoted by a distributed RAM. BRAM is synchronous,

this means that the read and write operations from

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 5 | Issue 7 | IJSRST/Conf/NCAEAS/ACET/2020/01

621

and to the memory are based on the clock input

signal. The read and write operations are also

dependent on the read/write enable ports. In our case,

BRAM2 is used to store the data test image using .coe

file which is generated with Matlab tool, and a

BRAM1 is used to store the .coe file of Gaussian mask,

which are then read by the control module. BRAM3

will save the data filtered.

3) Control module

The control unit is an important step of the proposed

synchronous architecture. It allows to generate the

address to BRAMs (1 and 2) and transfers the data

from each BRAM to the corresponding convolution

module for computing the Sum of Products (SoP)

between these values, after that the convoluted value

is stored in BRAM3. The control module is designed

as a Finite State Machine (FSM) simulated in VHDL.

Figure 4 illustrates the Finite State Machine (FSM) of

the control module.

In the first state, initialization parameter will be

affected. Then in state 1, the signal rd-v will be

putted to 1 to access both memories. FSM increments

the counter MY1 and MY2 when the MX1 and MX2

counter are finished addressing a line of image pixel

block (3 by 3) and the same Gaussian block. This

process is repeated the addressing of the blocks, if it is

completed then goes to state 2 if not it returns to state

1. States 2 and 3 represent two late cycles to

synchronize system signal. After that, it goes to state

4 where the machine puts the rd-v signal to zero in

order to stop the addressing of the two memories and

goes to state 5. In the state 5, the machine tests the

SoP-fait signal, if it is equal to zero then it returns to

the same state, if not it stored the value of SoP-in a

table. After that, it increments the counter one ” i ”

or ” j ” in order to read a new block, if ” i ” is different

to the (length of size image -1) and ” j ”is different

(width of size image -1) then returns to state 1. If not

goes to state 6 (end process). Where,

X is the length of size image -1) and Y is the width

of size image -1.

Fig. 4: FSM of the control unit

4) Convolution Module

Convolution module focuses on the calculation of the

sum of products (SoP) between pixels in BRAM1 and

BRAM2 for a window of 3 by 3. Equation 5 depicts an

example of the convolution module between

Gaussian mask integer and matrix 3×3 from input

image.

A. Performance Measures

The Peak Signal to Noise Ratio (PSNR) is the most

used parameter to evaluate image quality in the

literature [11], [17]– [20], [22]. PSNR value can be

computed by comparing two images which are

original image and filtered image. The PSNR was used

to measure the image quality. A higher PSNR value

indicates that the filtered image contains better image

quality. The PSNR has been calculated as follows;

 PSNR = 10 log10 (
2552

MSE
) (3)

Where, MSE is the Mean Square Error

(equation4)between the original image (I1(m,n)) and

the filtered image (I2(m,n)), with, m and n are pixels

of image M N.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 5 | Issue 7 | IJSRST/Conf/NCAEAS/ACET/2020/01

622

B. Simulation results in MATLAB and VHDL

In this section, simulation and implementation results

will be done. Figure 6 presents the filtered image by

two tools which are MATLAB and ModelSim-SE

(VHDL)

Fig. 6: Resulting filtered image in both MATLAB and

VHDL

The kernel size 3×3 will be conserved and sigma

values will be changed in order to see their impact in

the filtered image. Figure 7, 8 and 9 illustrate the

filtered image by the software (MATLAB) and

hardware (VHDL) implementations. We can deduce

that the blurring effect increases proportional to the

sigma value (respectively 0.5, 1 and 1.5).

For different sigma values, Table I resumes the

corresponding PSNR of images (in both VHDL and

MATLAB).

For sigma equal 0.5, we observe that the PSNR

(VHDL)obtains better result compared to PSNR

(MATLAB). So, when increase sigma, the PSNR value

of MATLAB and VHDL are decreased. Figure 10

shows the comparison between PSNR values both

resulting image in MATLAB and VHDL.

Normally, if PSNR value is more than 40 dB, this is an

indication that the quality of the image is good. But, if

the image is mean quality, the PSNR value is less than

30 db which is the case of our selected image. We

note that when we vary the sigma value the effect of

smoothing increase and the PSNR decrease.

TABLE I: PSNR values for different output images in

VHDL and MATLAB

IV. CONCLUSION

Hardware implementation of the Gaussian filter is

faster than software one. Thus, using FPGA we are

able to process the filtering at the same time of

reading the image. In this paper, we have presented

the implementation of two-dimensional convolution

on a Xilinx VirtexV FPGA platform based on a state

machine. We implemented Gaussian filters with

different sigma values. Then we optimized the

proposed architecture using different multipliers. At

the first, we used the standard multiplication ”” used

in VHDL language. Then we explored FPGA features

and DSP blocks. Finally, we introduced floating point

arithmetic. Performances and results show that area

and resources utilization decrease specially when

using DSP and BRAM of FPGA. Also, speed increase

comparing to the other solutions. By using floating

point arithmetic the image has more precision and

result seems to be is better.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 5 | Issue 7 | IJSRST/Conf/NCAEAS/ACET/2020/01

623

V. REFERENCES

[1]. H. Kopka and P. W. Daly, A Guide to LATEX,

3rd ed. Harlow, England: Addison-Wesley, 1999.

[2]. DG. Lowe, Distinctive image features from scale-

invariant keypoints, International Journal of

Computer Vision; 60(2), pp. 91-110, 2004.

[3]. L. Kabbai, M. Abdellaoui, A. Douik, New robust

descriptor for image matching, Journal of

Theoretical and Applied Information

Technology, 87(3), pp. 451- 460, 2016.

[4]. L.Rao, B.Zhang,J. Zhao, Hardware

Implementation of Reconfigurable 1D

Convolution, Journal of Signal Processing

Systems, 82(1), pp. 1-16, 2016.

[5]. F.Talbi, F.Alim, S. Seddiki, I. Mezzah, B.

Hachemi , Separable Convolution Gaussian

Smoothing Filters on a Xilinx FPGA platform,

International conference on innovative

computing technology (INTECH),Galcia, pp.112-

117, May 2015.

[6]. M. Neggazi, M. Bengherabi, A. Amira,.

Boulkenafet, An Efficient FPGA Implementation

of Gaussian Mixture Models Based Classifier,

IEEE. International Workshop on Systems,

Signal Processing and their Applications

(WoSSPA), Algiers , pp. 367-371.May 2013.

[7]. H. Zhang, M. Xia, and G. Hu, A Multiwindow

partial buffering scheme for FPGA based 2-D

convolvers, IEEE Transactions on Circuits and

Systems II: Express Briefs, 54(2), pp. 200 - 204,

February 2007.

[8]. L. Chang, J. Hernndez Palancar, L.E. Sucar, M.

Arias-Estrada, FPGAbased detection of SIFT

interest key points, Machine vision and

applications,24(2), pp.371-392, 2013.

