
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

First International Conference on Computer Engineering

 International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

Volume 5 Issue 8, November-December-2020

59

Training an AI agent to play a Snake Game via Deep Reinforcement Learning
Reetej Chindarkar1, Kartik Kaushik1, Rutuja Vetal1, Ronak Thusoo1, Prof. Pallavi Shimpi2

1Department of Computer Engineering, Dr. D.Y.Patil School of Engineering, Lohegaon,Maharashtra India
2Assistant Professor, Department of Computer Engineering, Dr. D.Y.Patil School of Engineering, Lohegaon,

Maharashtra India

ABSTRACT

Deep Reinforcement Learning (DRL) has become a normally adopted methodology to alter the agents to be told

complex management policies in varied video games, after Deep-Mind used this technique to play Atari games.

In this paper, we will develop a Deep Reinforcement Learning Model along with Deep Q-Learning Algorithm

that will enable our autonomous agent to play the classical snake game. Specifically, we will employ a Deep

Neural Network (DNN) trained with a variant of Q-Learning. No rules about the game are mentioned, and

initially the agent is provided with no information on what it needs to do. The goal for the system is to figure

out the rules and elaborate a method to maximize the score or reward.

Keywords: Deep reinforcement learning, Snake Game, Autonomous agent, Deep Learning, Experience replay

I. INTRODUCTION

One of the most well-known models of

Reinforcement Learning used for playing games is

called TD-gammon [1] which was developed decades

ago. It was used to play the Backgammon game and it

surpassed human-level performance. However, this

technique shows very little generalization to different

games and failed to attract wide attention. As a recent

breakthrough in deep learning, DeepMind creatively

combined deep learning with reinforcement learning

and came up with the distinguished deep Q-learning

network (DQN) model [2]. DQN outperforms all the

previous approaches on six games and surpasses

human-level performance on 3 games. This

breakthrough lit up researchers’ passion and lots of

similar researches (e.g., [3, 4]) presently emerged.

However, DQN might not be straightforwardly

applied to any or all scenarios as a result of its naïve

reward mechanism solely produces thin and delayed

rewards which will cause ineffective learning of correct

policies [5]. In most reinforcement learning problems,

to decrease the correlation of sampled experiences when

training the network, a technique named Experience

Replay is usually adopted [6]. However, this method

samples previous experiences haphazardly while not

considering their quality. To solve this downside, an

improved approach was proposed by Schaul et al. [7]

namely “Prioritized Experience Replay”.

In Reinforcement Learning, we have two components:

The Environment and The Agent. Every time the agent

performs an action, the environment provides a reward

to the agent, which might be positive or negative that

depends on how smart the action was from that of the

specified state. The goal of the agent is to find what

actions will maximize the reward, according to the

possible state. States are the observations that the agent

receives at every iteration from the environment. A state

may be its position, its speed, or whatever array of

variables describes the environment. The Reinforcement

Learning notation that is used for the decision-making

method that the agent adopts is termed as policy. On a

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 5 | Issue8

© 2020 IJSRST | Print ISSN: 2395-6011 | Online ISSN: 2395-602X | Published : 18/12/2020 - 59-61

2

theoretical level, a policy could be a mapping from the

state space (the space of all the attainable observations

that the agent will receive) into the action space (the

space of all the actions the agent will take, say UP,

DOWN, LEFT and RIGHT). The optimal agent is in a

position to generalize over the entire state space to

consistently predict the best possible action, even for

those situations that the agent has never seen before.

II. GAME ENVIRONMENT AND TECHNICAL

FOUNDATION

This section describes the proposed Snake Game

Environment and the technical foundation required of a

typical Deep Reinforcement Learning Model.

A. Game Environment

Snake Game is a classical digitized game,

throughout which the player will control the snake to

maximize the score by eating the apples that are

spawned at random places. Only one apple appears

within the game screen at any time. Moreover, because

the snake can grow one grid long by eating an apple,

avoiding collision is vital to its survival.

In this work, we will implement the Snake Game in

Python as the testbed of autonomous agents. The Snake

and the apple will be randomly deployed when the game

starts. The game score will be initialized at 0 and will

increase by 1 as the snake reaches a target. Moreover,

after the collision of the snake the game will end and the

game score will be reset to 0 at the start of the new

game. After the previously given apple is eaten a new

apple respawns and the target of the snake changes

during the game when it reaches a previously

determined target.

Therefore, having the ability to localize new targets in

an adaptive manner is crucial for the agent playing the

Snake Game. The number of control signals within the

Snake Game are four, i.e. UP, DOWN, LEFT and

RIGHT. At each step in time, the snake will move one

grid forward on its course direction, unless the control

signal it receives is in an orthogonal direction.

B. Technical Foundation

Deep Q-Network (DQN) was firstly presented by

Mnih et al. [2] which was used to play Atari 2600 video

games using the Arcade Learning Environment (ALE)

[8]. DQN demonstrates its ability to successfully learn

complicated control policies directly from raw pixel

inputs. DQN is a convolutional neural network (CNN)

trained by a variation of the classical Q-learning

algorithm [9]. DQN algorithm advances traditional

Reinforcement Learning techniques because it utilizes

CNN to estimate the Q-function that provides a

mechanism to approximate Q-values of feasible actions

directly from the most recently observed states (pixels).

To train the neural network and to keep the iterative

evaluations stable, DQN uses mini-batches of

experience. Each experience is manifested as a four-

tuple (s; a; r; s'), where s denotes the state of the

observed environment, a denotes the action that agent

performs in state s. After the agent executes action (a) in

state (s), it receives the reward r from the environment

and goes into the next state (s'). Along game play, agent

stores the experience in memory for future sampling and

training of CNN, which is known as experience replay

[6].

Additionally, DQN uses former network parameters

to check the Q-values of the next state, which provides a

stable training target for CNN [10]. To understand how

the agent makes decisions, it’s necessary to understand

what a Q-Table is. A Q-table is a matrix that correlates

the state of the agent with each and every potential

action that the agent will take-on. The values in the

table are the action’s chances of success, based on the

rewards it got throughout the training. The values within

the Q-Table represent the expected reward of taking

action a from a state s. This table is the policy of the

agent that we mentioned before: it determines what

actions ought to be taken from every state so as to

maximize the expected reward. The problem with this

can be that the policy is a table hence it can only handle

a finite state space. That is to say, we cannot have an

infinitely large table with infinite states. This can

become a problem for those situations where we are

expecting the number of possible states to be very large.

Deep Q-Learning increases the capability of Q-Learning,

since the policy isn't a table but a Deep Neural Network.

The Q-values are updated in accordance with the

Bellman equation [11].

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 5 | Issue8

© 2020 IJSRST | Print ISSN: 2395-6011 | Online ISSN: 2395-602X | Published : 18/12/2020 - 59-61

3

Fig. 1. Bellman equation

1) State: A state can be the representation of a

situation in which the agent will find itself. The

state will also represent the input the Neural

network will take.

In our case, the state can be an array which will

contain 11 Boolean variables, which will take

into account:

❖ If the snake is in danger from its

immediate proximity i.e. Left, Right and

Straight.

❖ If the snake moves in the direction Up,

Down, Left or Right.

❖ If the food is Left, Right, Above or

Below.

2) Loss: The Deep neural network optimizes the

output (action) to a specific input (state) trying to

maximize the expected reward. The Loss

function gives the value that expresses how

accurate the prediction is compared to the truth.

The job of a neural network is to reduce the loss

and to abridge the difference between the real

target and the predicted one.

3) Reward: The AI tries to maximize the expected

reward in any given circumstance. A positive

reward is only given to the agent once it eats the

food target (+10). If the snake hits a wall or hits

itself, negative reward (-10) is given. In addition,

there can be a positive reward for each and every

step that the snake takes without dying. In that

case, the agent might just decide to run in a loop,

since it would get positive rewards for each step

that it takes. Reinforcement Learning agents

sometimes present us with flaws in our strategy

that we did not anticipate, as such outsmarting us

in that way.

General Algorithm:

❖ The Q-value is randomly initialized at the

beginning of the game.

❖ The system gets the present state ‘s’ (the

observation).

❖ Based on the state 's', it executes an action,

randomly or based on its neural network.

During the primary phase of the training, the

system usually adopts random actions to

maximize exploration. Henceforth, the system

depends more and more on its neural network.

❖ When the AI chooses and performs an action,

the environment gives it a reward. After that the

❖ agent reaches a new state s' and it updates its Q-

value as per the Bellman equation. Also, for

each and every move that the agent makes, it

stores the original state (s), the action (a), the

state reached after performing that action (s'),

the reward (r) obtained and whether the game is

terminated or not. This data is then used a

sample to train the neural network. This process

is known as Replay Memory.

❖ These last two operations can be recursive in

nature until an explicit condition is met

(example: the game ends).

Fig. 2. Sample Image of Algorithm

III. LITERATURE SURVEY

Refer Table I for the Literature Survey

IV. CONCLUSION

In this paper, we have discussed how Reinforcement

Learning can be used to train an agent that will learn

how to play the classical snake game while being

trained using DQN (Deep Q-Network). Specifically, we

will propose a rigorously designed reward mechanism

to resolve the sparse and delayed reward issue. Also, we

will employ a training gap strategy to eliminate

improper training experiences and implement a dual

experience replay method to further improve the

training efficacy. Using the State-Action-Reward-State-

Action (SARSA) algorithm the proficiency of the game

will increase due to the quick task performance. It will

provide relatively better results as when compared to the

existing techniques.

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 5 | Issue8

© 2020 IJSRST | Print ISSN: 2395-6011 | Online ISSN: 2395-602X | Published : 18/12/2020 - 59-61

59

TABLE I

Sr.

No.

Paper Name Author Methods Proposed Advantages Limitations

1. Autonomous

Agents in Snake

Game via Deep

Reinforcement

Learning

Zhepei Wei, Di

Wang, Ming

Zhang, Ah-

Hwee Tan,

Chunyan Miao,

You Zhou.

Deep Q-learning

1. Using Deep Q-

learning, issue of reward

mechanism to solve the

sparse and delayed

reward issue, employ the

training gap strategy to

exclude improper

training experiences, and

implement a dual

experience replay method

to further improve the

training efficacy has

solved.

1. The first several

games, both the game

scores and the survival

time are expected to be

low because the agent

only chooses random

actions.

2. Exploration of

Reinforcement

Learning to Play

Snake Game

Ali Jaber

Almalki, Pawel

Wocjan

Deep Q-Learning,

State-Action-

Reward-State-Action

(SARSA)

Algorithm and

Reinforcement

Learning.

1. Deep Q-Learning helps

to increase the efficiency

of the Q-Learning and

provide a steady flow to

control the snake’s

position in the game.

1. The performance of

the SARSA algorithm

depends upon the user’s

instruction and state of

the changing in the

action occurred

accordingly.

3. Exploration of

Reinforcement

Learning to Snake

Bowei Ma,

Meng Tang, Jun

Zhang

Q-Learning, State-

Action-Reward-

State-Action

(SARSA) Algorithm

and Reinforcement

Learning.

1. SARSA is the on-policy

algorithm that helps to

make decisions

effectively.

2. SARSA algorithm

supports agent to

effectively interact with

the environment.

1. Even with a

decreasing exploration

probability, the

performance of Q-

learning algorithm is

not very stable.

2. Other approximation

of the state space could

be explored for better

performance.

3. To further improve

the learning rate of the

Snake agent, Expected

SARSA could be used.

4. Solving the Classic

Snake Game Using

AI

Shubham

Sharma,

Saurabh Mishra,

Nachiket

Deodhar,

Akshay

Katageri, Parth

Sagar

Breadth-first search,

Almighty move.

1. AI Bot is trained to

achieve the maximum

score possible in the

minimum number of

steps.

2. This can also be used in

other games of bigger

1. Almighty move is

not used from the first

iteration as the number

of steps required

increases to a large

extent, thus increasing

the time complexity.

2. In BFS, the

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 5 | Issue8

© 2020 IJSRST | Print ISSN: 2395-6011 | Online ISSN: 2395-602X | Published : 18/12/2020 - 59-61

60

 size, which are the part of

“Electronic Sport” to train

the players.

limitation is that, it

guarantees the snake

till length 4, because

for length greater than

4 the snake can bite

itself.

5. Automated Snake

Game Solvers via

AI Search

Algorithms

Shu Kong, Joan

Aguilar Mayans

A*Search, A*

Searching with

Forward, Random

move.

1.The informed search

algorithms can also show

a reasonable reliability

and the highest efficiency

at the beginning of the

run this property

disappear at the end

game.

2. In contrary almighty

move is a slow algorithm

at the beginning but has

guaranteed a max score at

end.

3. Combination of the

different algorithm can

achieve perfect

reliability.

1. A* search algorithm

is dependent on the

cost of the path to

reach the current fruit

from the starting, and

the heuristic distance

from the head of the

snake to the next fruit.

2. It only checks the

path till the fruit is

reached, with the

knowledge of the

previous path cost.

3. Random Move can

easily reach a dead end

since it blindly moves

forward.

6. Snake Played by a

Deep

Reinforcement

Learning Agent

K. Hornik, M.

Stinchcombe, H.

White. Mnih et

al.

Deep Reinforcement

Learning,

Reinforcement

Learning

1. By using pixels and

Convolutional Neural

Networks in the state

space it is possible for the

agent to ‘see’ the whole

game, instead of just

nearby obstacles.

2. It can learn to

recognize the places it

should go to avoid

enclosing and get the

maximum score.

1. The agent learns to

avoid obstacles directly

surrounding the snake’s

head, but it can’t see

the whole game. So,

the agent will enclose

itself and die, especially

when the snake is

longer.

7. An adaptive

Strategy via

Reinforcement

Learning for

Prisoner’s

Dilemma Game

Lei Xue,

Changyin Sun,

Donald

Wunsch,

Yingjiang Zhou,

Fang Yu.

Reinforcement

Learning, Temporal

difference learning,

Complex Learning.

1. The agent with

adaptive strategy can

make decisions under a

consideration of the long-

term reward.

2. The adaptive agents

were able to cooperate

with their opponents

without losing

competitiveness.

1. It is very difficult for

the agents to achieve

mutual cooperation by

the characteristic of the

scale-free network.

2. The condition of the

hubs is significant for

the scale free network.

8. Deep

Reinforcement

Ruben

Rodriguez

DQN, Prioritized

Duelling DQN and

1. It serves two

advantages: it

demonstrates the

1. DQNs and A2C

perform badly on

games with a binary

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 5 | Issue8

© 2020 IJSRST | Print ISSN: 2395-6011 | Online ISSN: 2395-602X | Published : 18/12/2020 - 59-61

61

Learning for

General Video

Game AI

Torrado, Julian

Togelius, Jialin

Liu, Diego

Perez-Liebana

Advance Actor-

Critic (A2C)

strengths and weaknesses

of the current generation

of reinforcement learning

algorithms.

2. It allows results

achieved on GVGAI to be

compared to other

existing environments.

score (win or lose, no

intermediate rewards).

2. High dependency of

the initial conditions

which suggests that

running multiple times

is necessary for

accurately

benchmarking DQN

algorithms.

V. REFERENCES

[1]. G. Tesauro, “Temporal difference learning and

TDgammon,” Communications of the ACM, vol.

38, no. 3, pp. 58–68, 1995.

[2]. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. Riedmiller,

“Playing atari with deep reinforcement

learning,” ArXiv e-prints, 2013.

[3]. E. A. O. Diallo, A. Sugiyama, and T. Sugawara,

“Learning to coordinate with deep

reinforcement learning in doubles pong game,”

in Proceedings of IEEE International

Conference on Machine Learning and

Applications (ICMLA), 2017, pp. 14–19.

[4]. S. Yoon and K. J. Kim, “Deep Q networks for

visual fighting game AI,” in Proceedings of IEEE

Conference on Computational Intelligence and

Games (CIG), 2017, pp. 306–308.

[5]. M. Andrychowicz, D. Crow, A. Ray, J.

Schneider, R. Fong, P. Welinder, B. McGrew, J.

Tobin, P. Abbeel,and W. Zaremba, “Hindsight

experience replay,” in Proceedings of Annual

Conference on Neural Information Processing

Systems, 2017, pp. 5055–5065.

[6]. L.-J. Lin, “Reinforcement learning for robots

using neural networks,” Ph.D. dissertation,

Pittsburgh, PA, USA, 1992, UMI Order No.

GAX93-22750.

[7]. T. Schaul, J. Quan, I. Antonoglou, and D. Silver,

“Prioritized experience replay,” Computing

Research Repository, vol. abs/1511.05952, 2015.

[8]. M. G. Bellemare, Y. Naddaf, J. Veness, and M.

Bowling, “The arcade learning environment: An

evaluation platform for general agents,” Journal

of Artificial Intelligence Research, vol. 47, pp.

253–279, 2013.

[9]. P. D. Christopher J. C. H. Watkins, “Q-

learning,” Machine Learning, vol. 8, no. 3-4, pp.

279–292, 1992.

[10]. M. Roderick, J. MacGlashan, and S. Tellex,

“Implementing the deep q-network,” ArXiv e-

prints, 2017.

[11]. Ali Jaber Almalki, Pawel Wocjan, “Exploration

of Reinforcement Learning to Play Snake

Game” in Proceedings of International

Conference on Computational Science and

Computational Intelligence (CSCI), 2019, pp.

377-381.

http://www.ijsrst.com/

