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ABSTRACT 

 

Deep Reinforcement Learning (DRL) has become a normally adopted methodology to alter the agents to be told 

complex management policies in varied video games, after Deep-Mind used this technique to play Atari games. 

In this paper, we will develop a Deep Reinforcement Learning Model along with Deep Q-Learning Algorithm 

that will enable our autonomous agent to play the classical snake game. Specifically, we will employ a Deep 

Neural Network (DNN) trained with a variant of Q-Learning. No rules about the game are mentioned, and 

initially the agent is provided with no information on what it needs to do. The goal for the system is to figure 

out the rules and elaborate a method to maximize the score or reward. 
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I. INTRODUCTION 

 

One of the most well-known models of 

Reinforcement Learning used for playing games is 

called TD-gammon [1] which was developed decades 

ago. It was used to play the Backgammon game and it 

surpassed human-level performance. However, this 

technique shows very little generalization to different 

games and failed to attract wide attention. As a recent 

breakthrough in deep learning, DeepMind creatively 

combined deep learning with reinforcement learning 

and came up with the distinguished deep Q-learning 

network (DQN) model [2]. DQN outperforms all the 

previous approaches on six games and surpasses 

human-level performance on 3 games. This 

breakthrough lit up researchers’ passion and lots of 

similar researches (e.g., [3, 4]) presently emerged. 

 

However, DQN might not be straightforwardly 

applied to any or all scenarios as a result of its naïve 

reward mechanism solely produces thin and delayed 

rewards which will cause ineffective learning of correct 

policies [5]. In most reinforcement learning problems, 

to decrease the correlation of sampled experiences when 

training the network, a technique named Experience 

Replay is usually adopted [6]. However, this method 

samples previous experiences haphazardly while not 

considering their quality. To solve this downside, an 

improved approach was proposed by Schaul et al. [7] 

namely “Prioritized Experience Replay”. 

 

In Reinforcement Learning, we have two components: 

The Environment and The Agent. Every time the agent 

performs an action, the environment provides a reward 

to the agent, which might be positive or negative that 

depends on how smart the action was from that of the 

specified state. The goal of the agent is to find what 

actions will maximize the reward, according to the 

possible state. States are the observations that the agent 

receives at every iteration from the environment. A state 

may be its position, its speed, or whatever array of 

variables describes the environment. The Reinforcement 

Learning notation that is used for the decision-making 

method that the agent adopts is termed as policy. On a 
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theoretical level, a policy could be a mapping from the 

state space (the space of all the attainable observations 

that the agent will receive) into the action space (the 

space of all the actions the agent will take, say UP, 

DOWN, LEFT and RIGHT). The optimal agent is in a 

position to generalize over the entire state space to 

consistently predict the best possible action, even for 

those situations that the agent has never seen before. 

 

II.  GAME ENVIRONMENT AND TECHNICAL 

FOUNDATION 
 

This section describes the proposed Snake Game 

Environment and the technical foundation required of a 

typical Deep Reinforcement Learning Model. 

A. Game Environment 

Snake Game is a classical digitized game, 

throughout which the player will control the snake to 

maximize the score by eating the apples that are 

spawned at random places. Only one apple appears 

within the game screen at any time. Moreover, because 

the snake can grow one grid long by eating an apple, 

avoiding collision is vital to its survival. 

 

In this work, we will implement the Snake Game in 

Python as the testbed of autonomous agents. The Snake 

and the apple will be randomly deployed when the game 

starts. The game score will be initialized at 0 and will 

increase by 1 as the snake reaches a target. Moreover, 

after the collision of the snake the game will end and the 

game score will be reset to 0 at the start of the new 

game.     After the previously given apple is eaten a new 

apple respawns and the target of the snake changes 

during the game when it reaches a previously 

determined target. 

 

Therefore, having the ability to localize new targets in 

an adaptive manner is crucial for the agent playing the 

Snake Game. The number of control signals within the 

Snake Game are four, i.e. UP, DOWN, LEFT and 

RIGHT. At each step in time, the snake will move one 

grid forward on its course direction, unless the control 

signal it receives is in an orthogonal direction. 

 

B. Technical Foundation 

Deep Q-Network (DQN) was firstly presented by 

Mnih et al. [2] which was used to play Atari 2600 video 

games using the Arcade Learning Environment (ALE) 

[8]. DQN demonstrates its ability to successfully learn 

complicated control policies directly from raw pixel 

inputs. DQN is a convolutional neural network (CNN) 

trained by a variation of the classical Q-learning 

algorithm [9]. DQN algorithm advances traditional 

Reinforcement Learning techniques because it utilizes 

CNN to estimate the Q-function that provides a 

mechanism to approximate Q-values of feasible actions 

directly from the most recently observed states (pixels). 

To train the neural network and to keep the iterative 

evaluations stable, DQN uses mini-batches of 

experience. Each experience is manifested as a four-

tuple (s; a; r; s'), where s denotes the state of the 

observed environment, a denotes the action that agent 

performs in state s. After the agent executes action (a) in 

state (s), it receives the reward r from the environment 

and goes into the next state (s'). Along game play, agent 

stores the experience in memory for future sampling and 

training of CNN, which is known as experience replay 

[6].  

Additionally, DQN uses former network parameters 

to check the Q-values of the next state, which provides a 

stable training target for CNN [10]. To understand how 

the agent makes decisions, it’s necessary to understand 

what a Q-Table is. A Q-table is a matrix that correlates 

the state of the agent with each and every potential 

action that the agent will take-on. The values in the 

table are the action’s chances of success, based on the 

rewards it got throughout the training. The values within 

the Q-Table represent the expected reward of taking 

action a from a state s. This table is the policy of the 

agent that we mentioned before: it determines what 

actions ought to be taken from every state so as to 

maximize the expected reward. The problem with this 

can be that the policy is a table hence it can only handle 

a finite state space. That is to say, we cannot have an 

infinitely large table with infinite states. This can 

become a problem for those situations where we are 

expecting the number of possible states to be very large. 

Deep Q-Learning increases the capability of Q-Learning, 

since the policy isn't a table but a Deep Neural Network. 

The Q-values are updated in accordance with the 

Bellman equation [11]. 
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Fig. 1. Bellman equation  

1) State: A state can be the representation of a 

situation in which the agent will find itself. The 

state will also represent the input the Neural 

network will take.  

In our case, the state can be an array which will 

contain 11 Boolean variables, which will take 

into account: 

❖ If the snake is in danger from its 

immediate proximity i.e. Left, Right and 

Straight. 

❖ If the snake moves in the direction Up, 

Down, Left or Right. 

❖ If the food is Left, Right, Above or 

Below. 

 

2) Loss: The Deep neural network optimizes the 

output (action) to a specific input (state) trying to 

maximize the expected reward. The Loss 

function gives the value that expresses how 

accurate the prediction is compared to the truth. 

The job of a neural network is to reduce the loss 

and to abridge the difference between the real 

target and the predicted one. 

 

3) Reward: The AI tries to maximize the expected 

reward in any given circumstance. A positive 

reward is only given to the agent once it eats the 

food target (+10). If the snake hits a wall or hits 

itself, negative reward (-10) is given. In addition, 

there can be a positive reward for each and every 

step that the snake takes without dying. In that 

case, the agent might just decide to run in a loop, 

since it would get positive rewards for each step 

that it takes. Reinforcement Learning agents 

sometimes present us with flaws in our strategy 

that we did not anticipate, as such outsmarting us 

in that way. 

 

General Algorithm:                           

 

❖ The Q-value is randomly initialized at the 

beginning of the game.  

❖ The system gets the present state ‘s’ (the 

observation). 

❖ Based on the state 's', it executes an action, 

randomly or based on its neural network. 

During the primary phase of the training, the 

system usually adopts random actions to 

maximize exploration. Henceforth, the system 

depends more and more on its neural network. 

❖ When the AI chooses and performs an action, 

the environment gives it a reward. After that the  

❖ agent reaches a new state s' and it updates its Q-

value as per the Bellman equation. Also, for 

each and every move that the agent makes, it 

stores the original state (s), the action (a), the 

state reached after performing that action (s'), 

the reward (r) obtained and whether the game is 

terminated or not. This data is then used a 

sample to train the neural network. This process 

is known as Replay Memory. 

❖ These last two operations can be recursive in 

nature until an explicit condition is met 

(example: the game ends). 

 

 
Fig. 2. Sample Image of Algorithm 

 

III. LITERATURE SURVEY  
 

Refer Table I for the Literature Survey 

 

IV. CONCLUSION 

 

In this paper, we have discussed how Reinforcement 

Learning can be used to train an agent that will learn 

how to play the classical snake game while being 

trained using DQN (Deep Q-Network). Specifically, we 

will propose a rigorously designed reward mechanism 

to resolve the sparse and delayed reward issue. Also, we 

will employ a training gap strategy to eliminate 

improper training experiences and implement a dual 

experience replay method to further improve the 

training efficacy. Using the State-Action-Reward-State-

Action (SARSA) algorithm the proficiency of the game 

will increase due to the quick task performance. It will 

provide relatively better results as when compared to the 

existing techniques. 
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TABLE I 

 

Sr. 

No. 

Paper Name Author Methods Proposed Advantages Limitations 

1. Autonomous 

Agents in Snake 

Game via Deep 

Reinforcement 

Learning 

Zhepei Wei, Di 

Wang, Ming 

Zhang, Ah-

Hwee Tan, 

Chunyan Miao, 

You Zhou. 

Deep Q-learning  

 

1. Using Deep Q-

learning, issue of reward 

mechanism to solve the 

sparse and delayed 

reward issue, employ the 

training gap strategy to 

exclude improper 

training experiences, and 

implement a dual 

experience replay method 

to further improve the 

training efficacy has 

solved. 

 

1. The first several 

games, both the game 

scores and the survival 

time are expected to be 

low because the agent 

only chooses random 

actions. 

2. Exploration of 

Reinforcement 

Learning to Play 

Snake Game 

 

Ali Jaber 

Almalki, Pawel 

Wocjan 

 

 

 

Deep Q-Learning, 

State-Action-

Reward-State-Action 

(SARSA) 

Algorithm and 

Reinforcement 

Learning. 

 

1. Deep Q-Learning helps 

to increase the efficiency 

of the Q-Learning and 

provide a steady flow to 

control the snake’s 

position in the game.  

 

 

 

1. The performance of 

the SARSA algorithm 

depends upon the user’s 

instruction and state of 

the changing in the 

action occurred 

accordingly. 

 

3. Exploration of 

Reinforcement 

Learning to Snake 

 

Bowei Ma, 

Meng Tang, Jun 

Zhang 

 

 

Q-Learning, State-

Action-Reward-

State-Action 

(SARSA) Algorithm 

and Reinforcement 

Learning. 

1. SARSA is the on-policy 

algorithm that helps to 

make decisions 

effectively. 

2. SARSA algorithm 

supports agent to 

effectively interact with 

the environment. 

1. Even with a 

decreasing exploration 

probability, the 

performance of Q-

learning algorithm is 

not very stable. 

2. Other approximation 

of the state space could 

be explored for better 

performance. 

3. To further improve 

the learning rate of the 

Snake agent, Expected 

SARSA could be used. 

 

4. Solving the Classic 

Snake Game Using 

AI 

Shubham 

Sharma, 

Saurabh Mishra, 

Nachiket 

Deodhar, 

Akshay 

Katageri, Parth 

Sagar 

Breadth-first search, 

Almighty move. 

1. AI Bot is trained to 

achieve the maximum 

score possible in the 

minimum number of 

steps. 

2. This can also be used in 

other games of bigger 

1. Almighty move is 

not used from the first 

iteration as the number 

of steps required 

increases to a large 

extent, thus increasing 

the time complexity. 

2. In BFS, the 
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 size, which are the part of 

“Electronic Sport” to train 

the players. 

limitation is that, it 

guarantees the snake 

till length 4, because 

for length greater than 

4 the snake can bite 

itself. 

5. Automated Snake 

Game Solvers via 

AI Search 

Algorithms 

 

Shu Kong, Joan 

Aguilar Mayans 

 

 

 

A*Search, A* 

Searching with 

Forward, Random 

move. 

 

1.The informed search 

algorithms can also show 

a reasonable reliability 

and the highest efficiency 

at the beginning of the 

run this property 

disappear at the end 

game. 

2. In contrary almighty 

move is a slow algorithm 

at the beginning but has 

guaranteed a max score at 

end. 

3. Combination of the 

different algorithm can 

achieve perfect 

reliability. 

1. A* search algorithm 

is dependent on the 

cost of the path to 

reach the current fruit 

from the starting, and 

the heuristic distance 

from the head of the 

snake to the next fruit. 

2. It only checks the 

path till the fruit is 

reached, with the 

knowledge of the 

previous path cost. 

3. Random Move can 

easily reach a dead end 

since it blindly moves 

forward. 

 

6. Snake Played by a 

Deep 

Reinforcement 

Learning Agent 

K. Hornik, M. 

Stinchcombe, H. 

White. Mnih et 

al. 

Deep Reinforcement 

Learning, 

Reinforcement 

Learning 

1. By using pixels and 

Convolutional Neural 

Networks in the state 

space it is possible for the 

agent to ‘see’ the whole 

game, instead of just 

nearby obstacles.  

2. It can learn to 

recognize the places it 

should go to avoid 

enclosing and get the 

maximum score. 

1. The agent learns to 

avoid obstacles directly 

surrounding the snake’s 

head, but it can’t see 

the whole game. So, 

the agent will enclose 

itself and die, especially 

when the snake is 

longer. 

7. An adaptive 

Strategy via 

Reinforcement 

Learning for 

Prisoner’s 

Dilemma Game 

Lei Xue, 

Changyin Sun, 

Donald 

Wunsch, 

Yingjiang Zhou, 

Fang Yu. 

 

Reinforcement 

Learning, Temporal 

difference learning, 

Complex Learning. 

 

1. The agent with 

adaptive strategy can 

make decisions under a 

consideration of the long-

term reward. 

2. The adaptive agents 

were able to cooperate 

with their opponents 

without losing 

competitiveness. 

 

1. It is very difficult for 

the agents to achieve 

mutual cooperation by 

the characteristic of the 

scale-free network. 

2. The condition of the 

hubs is significant for 

the scale free network. 

8. Deep 

Reinforcement 

Ruben 

Rodriguez 

DQN, Prioritized 

Duelling DQN and 

1. It serves two 

advantages: it 

demonstrates the 

1. DQNs and A2C 

perform badly on 

games with a binary 
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Learning for 

General Video 

Game AI 

Torrado, Julian 

Togelius, Jialin 

Liu, Diego 

Perez-Liebana 

 

Advance Actor-

Critic (A2C) 

strengths and weaknesses 

of the current generation 

of reinforcement learning 

algorithms. 

2. It allows results 

achieved on GVGAI to be 

compared to other 

existing environments. 

score (win or lose, no 

intermediate rewards). 

2. High dependency of 

the initial conditions 

which suggests that 

running multiple times 

is necessary for 

accurately 

benchmarking DQN 

algorithms. 
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