

Energy Transfer in Co-doped KMgCl₃: Ce³⁺-Eu³⁺ Phosphor

Anuradha Poddar*, V. M. Pendsey

Department of Physics, DRB Sindhu Mahavidyalaya, Nagpur, Maharashtra, India

ABSTRACT

Article Info	The present work discusses photoluminescence in $\rm KMgCl_3$ singly doped by $\rm Ce^{3_+}$				
Volume 8, Issue 1	ions and $\operatorname{Eu}^{\scriptscriptstyle 3+}\!\!ions$ independently and co-doped. Co-doped phosphor showed				
Page Number: 61-67	transfer of energy between a sensitizer ion Ce to an activator ion Eu and				
Publication Issue :	resulted into enhancement in photoluminescence emission. Phosphors have				
January-February-2021	been prepared using wet chemical synthesis. XRD pattern of KMgCl3 matched				
	with the standard JCPDS file 20-0905. The PL emission spectra have been				
	observed for $Ce^{\scriptscriptstyle 3\scriptscriptstyle +}$ at 353nm and 375nm due to 5d-4f transition at excitation				
	wavelength of 338 nm. PL of Eu ³⁺ is peaking at 596nm and 616nm at excitation				
	wavelength of 394 nm in orange and red region due to $^5D_{0}\text{-}^7F_1$ and $^5D_{0}\text{-}^7F_2$				
	transition.				
	$KMgCl_3:Ce^{3_{+}}Eu^{3_{+}}\ have\ two\ peaks\ in\ \ PL\ emission\ spectra\ in\ orange-red\ region$				
	of the spectrum at 596 nm and 616nm by UV excitation at 268nm $% \left({{{\rm{B}}} {{\rm{B}}} {{B$				
	transitions of $\mathrm{Eu}^{\scriptscriptstyle 3_+}$ ion with improved luminescence properties. The energy				
Article History	transfer from $Ce^{\scriptscriptstyle 3\scriptscriptstyle +}$ to $Eu^{\scriptscriptstyle 3\scriptscriptstyle +}$ has been discussed based on the excitation and				
Accepted : 06 Jan 2021	emission spectra.				
Published : 16 Jan 2021	Keywords : Photoluminescence, Phosphor, XRD, Co-doped				

I. INTRODUCTION

Over the last few years, intensive research has been devoted to the development of efficient luminescent materials. In the view of developing new luminescent materials, interest in the luminescent properties and energy transfer process was developed. A number of reports have appeared describing spectroscopic properties of pure and activated sulphides and revealing applications. Gedam et al. have reported the halosulphate materials as phosphors [1–8]. Moreover mixed sulphates are also known to be good PL and TL materials. Sahare et al. [9–11] have studied mixed sulphate systems for the applications in dosing of high energy radiations using TL technique. They synthesized and characterized K₂Ca₂(SO₄)₃:Eu, Dy [12] and K₂Ca₂(SO₄)₃:Eu [13]; LiNaSO4:Eu [14] and LiNaSO4:Eu,Dy [15]. Energy transfer between pairs of rare earth ions at dilution levels below the selfquenching limits is through multi polar interactions like dipole–dipole interactions or dipole–quadrupole interactions [16–18]. The energy transfer from Ce³⁺ to different activator ions in different host lattices has been reported [19-21].

Study on crystal structure, PL, TL, TL response, fading and reusability by doping RE and transition metals as well as energy transfer from

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

 $Ce^{3+} \rightarrow Eu^{2+} \rightarrow Eu^{3+}$ in K₃Ca₂(SO₄)₃F has been reported elsewhere [22-24]. We have previously studied PL characteristics of phosphor (KMgSO₄F:Dy/Eu) [25].

The objective of the present work is to study luminescence in the host, prepared at room environment.

According to the referred data [26] the Carnalite (KMgCl₃ _ 6H2O, hydrous magnesium and potassium chloride) crystal structure has the following parameters. It has orthorhombic symmetry class and usually displays granular structure. It belongs to Pbnn space group and has a hardness of 2.5, the same as the nail. It is soluble in H2O. The Unit Cell Parameters are a=9.5980, b=16.1410, and c=22.5190. It has number of formula Unit, Z=12and Unit Cell Volume, Vc =3488.67Å3. Number of atomic position per full P/U=132 Molar Unit Cell. and Volume, Vm=175.11cm³/mol. Its R-factor μ =108.752MU,1/cm. Mass attenuation coefficient, μ /p=68.548cm2/g. Figure 1(A) shows the crystal structure of KMgCl₃. Anhydro carnallite has corner and face-sharing. Carnallite minerals have 2/3 of KCl6 octahedral face sharing networks. Mg(H2O)6 octahedral occupy the open spaces within the KCl octahedra. This face sharing creates more chance of instability according to the third rule from Pauling's rules. According to Brynestadetal, KMgCl₃ takes the orthorhombic structure belonging to space group D16 2h, at room temperature and undergoes a phase transition to the cubic perovskite structure as shown in Figure 1(B) at some temperature between 110°C and 170°C [27]. Midorikawa et al. suggested crystalline KMgCl₃ undergoes phase transitions at 296,224,212 and142°C. The room temperature phase of KMgCl₃ is found to be monoclinic from the fact that the extinction position varies as temperature changes, though it has been reported to be orthorhombic [28]. Figure (B) shows perovskite structure of KMgCl₃ crystal where K⁺ ions are at the center of a cube, with Mg²⁺ ions at the corners. Chlorine ions are located on the midst of each of the sides of the cube12-fold coordination around K⁺ which is then in the form of a cuboctahedron. The coordination around K⁺ can also be described as a tetra-capped square prism. Each Mg²⁺ ion is octahedrally coordinated. MgCl₆ octahedra share their corner to form a three- dimensional network. The cubic structure is not stable anymore and the cubic structure "collapses" by means of tilting of the MgCl₆ octahedra [29].

Figure 1(A). Crystal Structure of KMgCl₃. (B) Perovskite structure of KMgCl₃ crystal.

II. EXPERIMENTAL DETAILS

The sample KMgCl₃: Ce³⁺, KMgCl₃: Eu³⁺ and KMgCl₃:Ce³⁺,Eu³⁺ were prepared by Wet chemical synthesis(WCS). MgCl₂ and KCl of AR grade were taken in a stoichimetric ratio and they are dissolved separately in double distilled de-ionized water and mixed together, resulting in a solution of KMgCl₃. Then water-soluble sulphate salt of Cerium, or Europium was added to obtain KMgCl₃:Ce³⁺ KMgCl₃:Eu³⁺. KMgCl₃:Ce³⁺,Eu³⁺ in liquid form was synthesized by adding water-soluble sulphate salt of Cerium (2mol %) and Europium ((a) 0.05,(b)0.1,(c)0.5mol%). Then the solution was evaporated at 80°C and then slowly cooled at room temperature. Compounds formed by this route are hygroscopic and catch moisture if left in the open, so they are annealed in at 400°C for 2 hour under normal atmosphere. The resultant polycrystalline mass was crushed to fine particle in a crucible. The powder was used in further study. The formation of pure compound was confirmed by taking the X-ray diffraction (XRD). The photoluminescence (PL) emission spectra of the samples were recorded using Fluorescence spectrophotometer (Shimatzu RF-5301 PC) fitted with a sensitive photomultiplier. Emission and excitation spectra in the 250–450nm and 350-650 nm range were recorded. The spectral slit width of spectrophotometer was kept at 1.5 nm.

III.RESULTS AND DISCUSSION

A. X-ray diffraction (XRD)

The XRD of KMgCl₃ (Figure 2) pattern did not indicate presence of the constituents and other likely phases. The maximum lines of the XRD pattern matches with the standard JCPDS file20-0905which is a direct evidence for the formation of the desired compound. These results indicate that the final product was formed in homogeneous form.

B. Photoluminescence (PL) in KMgCl₃:Ce³⁺

Figure 3 shows excitation spectra of KMgCl₃: $Ce^{3+}phosphor shows broadband at 338nm and 264nm at emission wavelength of 375nm. Figure 4 shows PL emission spectra of <math>Ce^{3+}$ ions under excitation of 264nm (Figure 4 (a) 2 mol%, (b) 5 mol%, (c) 10 mol% of Ce) and 338nm (Figure 4 (d) 2 mol%, (e) 5 mol%, (f) 10 mol% of Ce) wavelength of light showed double hump at 353nm and 375nm in

ultraviolet to visible region of the spectra that depends on host lattice which is close to wavelength of UVA1 phototherapy lamps. These are assigned to the 5d-4f transition of Ce^{3+} ions The double peaked spectrum is characteristic of split ground state (${}^{2}F_{7/2}$ and ${}^{2}F_{5/2}$) of Ce^{3+} . Pl intensity increases with increase in concentration of Ce^{3+} ions observed upto 10 mol% in this study

Figure 3: Excitation spectra of KMgCl₃: $Ce^{3+10mol\%}$ at $\lambda_{em}=375nm$.

C. PL in KMgCl₃: Eu³⁺

Figures 5 and 6 show the excitation and emission spectra of KMgCl₃: Eu³⁺at λ_{em} =616nm and λ_{ex} =394nm respectively. Excitation spectrum shows peak at 394nm and at this excitation wavelength emission is observed at the wavelength of 596nm and 616nm.The intensity of the spectra is observed very low.Eu³⁺ emission usually occurs from ⁵D₀-⁷F₁ transitions. Usually two transitions are observed ⁵D₀-⁷F₁ (around 596nm) and ⁵D₀-⁷F₂ (around616nm).The first⁵D₀-⁷F₁ transition is forbidden as electric dipole, but allowed as magnetic dipole [30].

Figure 4 : Emission spectra of KMgCl₃:Ce³⁺at $\lambda_{ex}=264nm$ of Ce (a) 2, (b) 5, (c) 10 mol% and at $\lambda_{ex}=338nm$ of Ce(d)2,(e)5, (f) 10mol%

This is the only transition when Eu^{3+} occupies as it's coinciding with a center of symmetry. When Eu^{3+} ion is situated at a site, which lacks the inversion symmetry, then the transitions corresponding to even values of J (except 0) are electric dipole allowed and red emission is observed. The prominent peaks are observed at 596nm and weak emission is seen at 616nm due to ${}^{5}D_{0}{}^{-7}F_{1}$ magnetic dipole transitions of Eu^{3+} ions and due to the hypersensitive ${}^{5}D_{0}{}^{-7}F_{2}$ electric dipole transition respectively when excited at 394nm. The luminescent properties of the phosphors occur from complex interactions among the host structure, defects, activators, and interfaces.

Figure 5 : Excitation spectra of KMgCl₃:Eu^{3+0.1} mol% halo-phosphor monitored at λ_{em} =616nm.

D. PL in co-doped KMgCl₃:Ce³⁺, Eu³⁺

The emission spectra of KMgCl₃:Eu³⁺ phosphor which showed emission at 596 nm and 616 nm with lesser intensity when excited at 394 nm. PL excitation and emission spectra of co-doped KMgCl₃:Ce,Eu is shown in Figures 6 and 7 for excitation of 264 nm. The excitation spectrum is monitored, recorded and plotted at 616 nm of emission wavelength. The emission spectra were recorded for the samples for different concentrations (2 mol% for Ce and 0.05, 0.1 and 0.5mol% for Eu). When this sample was excited by 268 nm, it shows emission with two broad spectra at 596 nm and 616 nm which is attributed to Eu³⁺ transitions indicating transfer of energy from sensitizer Ce³⁺ to activator Eu³⁺ .The prominent peaks are observed at 596nm and at 616nm due to ${}^5D_0{}^{-7}F_1$ magnetic dipole transitions of Eu³⁺ ions and due to the hypersensitive 5D0-7F2 electric dipole transition respectively when excited at 268nm. However, KMgCl₃:Eu³⁺ sample when excited by wavelength of 394 nm results in an emission band of lower intensity while KMgCl₃:Ce,Eu sample excited by wavelength of 268nm results in an emission band of much higher intensity maintaining the emission wavelengths. The emission intensity has increased with the increase in Eu³⁺concentration and reached a maximum value for 0.5mol% of Eu whereas concentration of Ce was fixed at 2 mol%. This indicates that the KMgCl₃:Ce,Eu lattice is more suitable for higher concentrations of Eu³⁺ions upto 0.5mol%.

 $Figure \; 8: PL \; emission \; spectra \; of \\ KMgCl_3:Ce^{3+}_{2mole\%}, Eu^{3+} \; \ \ \ (a)0.05, (b)0.1, (c)0.5mol\% \; at \; \lambda_{ex} = 268 \; nm$

Photoluminescence emission peak position is shown in the table 1 which shows huge increase in the PL intensity when KMgCl₃ co-doped with Ce³⁺ and Eu³⁺ and table also illustrates intensity increases with increase in concentration of dopants.

Phosphors	λ_{ex}	λ_{emi}	Relative PL
	(nm	peak	intensity
)	(nm)	(a.u.)

KMgCl3:Ce ³⁺ 2mol% KMgCl3:Ce ³⁺ 5mol% KMgCl3:Ce ³⁺ 10mol%	264 and 338	353,37 5 353,37 5 353,37 5	9,11 24,25 12,14 39,44 14,16 44,52	and and and
KMgCl3:Eu ³⁺ 0.05mol% KMgCl3:Eu ³⁺ 0.1mol% KMgCl3:Eu ³⁺ 0.5mol%	394	596,61 6 596,61 6 596,61 6	11,06 28,08 34,11	
KMgCl3:Ce ³⁺ 2mol%,Eu ³⁺ 0.05m ol% KMgCl3:Ce ³⁺ 2mol%,Eu ³⁺ 0.1mol % KMgCl3:Ce ³⁺ 2mol%,Eu ³⁺ 0.5mol %	268	596,61 6 596,61 6 596,61 6	181,112 414,454 559,604	

The luminescence mechanism could be understood from the energy-level diagram, Figure 9. In KMgCl₃ co-doped with Ce³⁺ and Eu³⁺ the excitation into the Ce^{3+} band at 264 nm leads to the Eu^{3+} . This means that in Ce³⁺ can be used as sensitizer which transfers its energy to the activator Eu³⁺. The first step of the path through which the activation energy is transferred from the sensitizer Ce³⁺ to the activator Eu³⁺ involves transfer between the 5d-4f, (Ce^{3+}) energy is transferred to a Eu^{3+} activator ${}^5D_0 {}^-7F_1$ and ${}^5D_0 {}^-7F_2$ transition of Eu³⁺ ion. Moreover, an additional way of transfer energy is possible, namely, the radiation transitions in Ce³⁺ may excite directly the neighboring Eu atoms. Emission spectra of Eu³⁺ peaks, spectra in the red region significantly improve the colour rendering index. This powder may be potentially utilized in the manufacture of fluorescent lamps for advertising signs and other colour rendering devices. excellent luminescent properties allowed And

recommending these phosphors as good candidates for different applications.

Figure 9 : $Ce^{3+}-Eu^{3+}$ energy transfer mechanism in KMgCl₃ halo-sulphate phosphor

IV.CONCLUSION

PL emission spectra of Ce³⁺ ions under excitation of 338nm wavelength of light showed double hump at 353nmand 375nm which is in ultraviolet to visible region which may be useful in UVA1 phototherapy lamps. When KMgCl₃ is doped with Eu³⁺ions then very low Pl intensity is observed but when the same host is co-doped significant increase in Eu³⁺ emission is observed at the same wavelength. KMgCl₃: Ce³⁺-Eu³⁺phosphors prepared by wet chemical method are good for Ce³⁺-Eu³⁺energy transfer. KMgCl₃: Ce³⁺, Eu³⁺shows strong emission at 596 nm and 616 nm which is in orange and red region due to ⁵D₀-7F₁ and ⁵D₀-7F₂ transitions of Eu³⁺ ion.

V. REFERENCES

- S.C. Gedam, S.J. Dhoble, S.V. Moharil, J. Lumin. 121 (2) (2006) 450.
- [2]. S.C. Gedam, S.J. Dhoble, S.V. Moharil, J. Lumin. 124 (1) (2007)120.

- [3]. S.C. Gedam, S.J. Dhoble, S.V. Moharil, Eur. Phys. J. Appl. Phys. 37 (2007) 73.
- [4]. S.C. Gedam, S.J. Dhoble, S.V. Moharil, J. Lumin. 126 (2007) 121.
- [5]. S.C. Gedam, S.J. Dhoble, S.Omanwar S.V. Moharil, Eur.Phys.J.Appl.Phys.39(2007) 39.
- [6]. S.C.Gedam,S.J.Dhoble,I.M.Nagpure,S.V.Godbol e,M.K.Bhide,J Phys.D: Appl.Phys. 40 (2007) 6039.
- [7]. S.C. Gedam, S.J. Dhoble, S.V. Moharil, J. Lumin. 128 (2008) 1.
- [8]. S.C. Gedam,S.J. Dhoble, I.M.Nagpure, S.V.Godbole, M.K.Bhide S.V.Moharil, J. Mater.Sci. 43 (2008) 3189.
- [9]. S.M.Dhopate, P.L.Muthal, V.K.Kondawar, S.V.Moharil, P.D.Sahare, J.Phys. D;Appl. Phys. 24 (1991) 1869.
- [10]. P.D. Sahare, S.V. Moharil, Radiat. Eff. Defects Solids 114 (1990)167.
- [11]. P.D. Sahare, S.V. Moharil, Radiat. Eff. Defects Solids 116 (1991) 275.
- [12]. A. Pandey, P.D. Sahare, Phys. Status Solidi A 199 (2003) 533
- [13]. A.Pandey,R.G.Sonkawade, P.D.Sahare, J.Phys. D:Appl. Phys. 35 2002) 2744.
- [14]. A.Pandey, P.D.Sahare, J.S.Bakare, S.P.Lochab, F.Singh, D.Kanjilal, J. Phys. D:Appl. Phys. 36 (2003) 2400.
- [15]. A. Pandey,V.K. Sharma, D.Mohan, R.K Kale, P.D.Sahare, J.Phys.D:Appl. Phys.35 (2002) 1330.
- [16]. R. Perret, A.M. Bouillet, Bull. Soc., Fr. Miner. Crystallgr 98 (1975) 254.
- [17]. B.C. Joshi, U.C. Pande, J. Phys. Phem. Solids 50 (1989) 599.
- [18]. A.K. Agrawal, N.C. Lohant, T.C. Pant, K.C. Pant, J. Solid State Chem. 54 (1984)219
- [19]. G. Blasse, Prog. Solid State Chem. 18 (1988) 79.
- [20]. H.S. Kiliaan, J.K. Kothe, G. Blasse, J. Electrochem. Soc. 134 (1987)2359.

- [21]. J.M. Verstegen, J.L. Sommerdijk, J.G. Erriet, J. Lumin. 6 (1973) 425.
- [22]. A Poddar,. S. C. Gedam S. J. Dhoble. Luminescence DOI 10.1002/bio.2839
- [23]. A. Poddar, S.C.Gedam and S. J.Dhoble, Bionano frontier, 5 2(II) 2012, 63-65.
- [24]. A. Poddar, S.C. Gedam, S.J. Dhoble.Bionano frontier, Vol. 5, 2012,454-456.
- [25]. A, S.C. Gedam, S.J. Dhoble, J. Lumin. 143 (2013)579.
- [26]. E.O. Schlemper, P.K. Sen Gupta, T. Zoltai, Am. Mineral. 70 (1985)1309.
- [27]. J. Brynestad, J.L. Yakel, G.P. Smith, J. Chem. Phys. 45 (1955)4552.
- [28]. M.Midorikawa,S.Miwa,Yoshihiro Ishibashi, Mater. Res. Bull. 14 (8) (1979) 987.
- [29]. I.R.Ibragimov, I.I. Fazlizhanov, M.L. Falin, V.A. Ulanov, Sov.
- [30]. Phys. Solid State 34 (10) (1992) 1745.
- [31]. G. Blasse, A. Brill, Philips Tech. Rev. 31 (1970) 304.

Cite this article as :

Anuradha Poddar, V. M. Pendsey, "Energy Transfer in Co-doped KMgCl₃: Ce³⁺-Eu³⁺ Phosphor", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 8 Issue 1, pp. 61-67, January-February 2021.

Journal URL : http://ijsrst.com/IJSRST21816