

International Journal of Scientific Research in Science and Technology Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com) © 2021 | IJSRST | Volume 8 - Issue 1

Cr³⁺ Emission in Al₅GeO_{9.5} and Al₅SiO_{9.5} Phosphors

P. K. Tawalare¹, S. K. Omanwar², V. B. Bhatkar³, S. V. Moharil⁴
¹Department of Physics, JagadambaMahavidyalaya, Achalpur City, India
²Department of Physics, Sant Gadge Baba Amravati University, Amravati, India
³Department of Physics, Shri Shivaji Science College, Amravati, India
⁴ Department of Physics, RashtrasantTukadoji Maharaj Nagpur University, Nagpur,India

ABSTRACT

Combustion synthesis of Cr³⁺activated Al₅GeO_{9.5} and Al₅SiO_{9.5} phosphors was attempted. XRD results indicated formation of alumina, while luminescence results showed profound changes from Al₂O₃:Cr³⁺. Al₅SiO_{9.5}:Cr³⁺a did not show any photoluminescence, while Al₅GeO_{9.5}:Cr³⁺ showed very intense luminescence; almost 150% of that shown by Al₂O₃:Cr³⁺.

I. INTRODUCTION

alpha Alumina α -Al₂O₃ is a remarkable host material for rare earth ions because it presents excellent mechanical hardness combined with chemical stability and solubility besides a high transparency window from the ultraviolet to the infrared [1]. It plays a major role in many technologies due to its remarkable physical properties, such as a high melting point, hydrophobicity, high elastic modulus, high optical transparency, high refractive index, thermal and chemical stability, low surface acidity, and fine optical and dielectric characteristics [2–4]. The good adhesion to Si surface makes Al₂O₃ attractive in the microelectronics and optoelectronics [5,6]. Owing to some of these properties, it is also an excellent laser host. The ruby (Al₂O₃:Cr³⁺) is the first crystal found to exhibit a laser emission as demonstrated by Maiman at the Hughes Lab in 1960 [7,8], which marked the beginning of the solid state laser technology. The wide gain and high quantum efficiency of Sapphire

(Al₂O₃:Ti) makes this material the optimum ultrafast laser crystal [9].

There are several double oxides involving Al₂O₃which might be easily prepared by combustion synthesis using exothermic reaction between aluminum nitrate and urea. From literature, we found two particular formulae quite attractive; viz. Al₅GeO_{9.5} and Al₅SiO_{9.5}. Both these compounds contain high percentage of alumina. Their structures (orthorhombic) are different from beta alumina (hexagonal) and modification of luminescence properties of Cr³⁺ in these hosts is expected. With these expectations, attempts were made to synthesize Cr³⁺ activated Al₅GeO_{9.5} and Al₅SiO_{9.5} using combustion synthesis. Results of these experiments are discussed here.

II. METHODS AND MATERIAL

Phosphors were prepared by combustion method using metal nitrates as oxidizer and urea as a fuel [10,11]. Aluminium nitrate, SiO₂/GeO₂ and urea were

thoroughly mixed in molar ratio 5:1:15.83. A crucible containing the mixture was inserted at 500 C in a preheated furnace. In few minutes the mixtures swells with evolution of gases and finally a flame appears. The flame lasts for about a minute. The crucible is removed from the furnace after the flame extinguishes. The foamy product is crushed to powder and used for further characterization. For preparing Cr^{3+} doped samples Chromium nitrate in the desired quantity was added to the starting mixture.

The crystalline phases of the synthesized samples were identified by x-ray diffraction (XRD) patterns recorded on XPERT-PRO diffractometer using Cu K_{α} (λ =1.54059 Å) radiation. The photoluminescence (PL) and photoluminescence excitation (PLE) spectra were measured on Hitachi F-7000 spectrophotometer.

III. RESULTS AND DISCUSSION

shows xrd pattern of the synthesized Fig.1 phosphor.Surprisingly the patterns for Al₅GeO_{9.5} and Al₅SiO_{9.5} both matched with that of Al₂O₃. It appears that the compounds are not formed by the combustion synthesis. Further experiments proved the contrary. EDAX analysis of Al₅GeO_{9.5} clearly showed presence of Ge (Fig.2). Further, luminescence properties of these compounds were entirely different. Fig.3 shows PL emission spectrum for Cr³⁺ doped Al₅GeO_{9.5} and Al₅SiO_{9.5} and Al₂O₃ excited by 413 nm.Intense line attributable to $({}^{2}E \rightarrow {}^{4}A_{2g})$ is seen around 698 nm in the emission spectrum of Al₂O₃:Cr³⁺with several components due to splitting of ²E levels in crystal field. Similar emission peaking at 699 nm is observed for Al₅GeO_{9.5}:Cr³⁺with much higher intensity. On the other hand, emission was totally quenched in Al₅SiO_{9.5}:Cr³⁺.

Further experiments were performed on Al₅GeO_{9.5}:Cr³⁺. Fig.4 shows effect of Cr³⁺concentration on PL emission intensity. Intensity is maximum for 0.4 mol.% Cr³⁺. Intensity decreases for higher concentrations due to concentration quenching.From

these data critical distance for Cr^{3+} - Cr^{3+} transfer can be calculated using the formula [12]. $Rc = 2 (3V/4\pi x_c N)^{1/3}(1)$

where x_c is the critical concentration (0.004), N is the number of Al sites in the unit cell (5) and V is the volume of the unit cell (168.034 Å³). Rc comes out to be 25.22 Å.This is considerably greater than 17 Å observed for Al₂O₃:Cr³⁺.

Fig.1 XRD patterns of Al₅Ge/SiO_{9.5} and Al₂O₃

Fig.3 PL emission spectra of a) Al₅GeO_{9.5}, b) Al₂O₃ and c) Al₅SiO_{9.5}, activated with Cr³⁺. Excitation was by 413 nm light.

WAVELENGTH (nm)

Fig.4 PL emission spectra of a) Al₅GeO_{9.5}:Cr³⁺

Inset shows effect of Cr³⁺concentration on intensity of 699 nm line.

Corresponding excitation spectrum is shown in Fig.5. ${}^{4}A_{2g} \rightarrow {}^{4}T_{1g}({}^{4}F)$ and ${}^{4}T_{2g}({}^{4}F)$ bands can be clearly seen around 413 and 556 nm. Splitting of ${}^{4}T_{1g}({}^{4}F)$, ${}^{4}T_{2g}({}^{4}F)$ levels is barely visible in the spectrum recorded at room temperature.

Fig.6 shows luminescence decay curve for Al₅GeO_{9.5}:Cr³⁺ (0.2 mol.%). Single exponential is observed which can be fitted to decay constant $\tau = 3.5$ ms which is almost same as that for Al₂O₃:Cr³⁺ (3.36 ms).

Fig.5 PL excitation spectrum for 699 nm emission of Al₅GeO_{9.5}:Cr³⁺.

Fig.6 Luminescence decay curve for 699 nm emission of Al₅GeO_{9.5}:Cr³⁺.

IV. CONCLUSION

Attempts were made to synthesize Al₅GeO_{9.5} and Al₅SiO_{9.5}compounds by combustion synthesis and obtain modification of luminescence properties of Cr³⁺ activated phosphors. XRD analysis of the combustion synthesized powders showed presence of alpha alumina phase. On the other hand, EDAX indicated presence of Ge. Luminescence properties were also changed a great deal. In Al₅SiO_{9.5}, Cr³⁺ emission was totally quenched while luminescence increased by about 50 % in Al₅GeO_{9.5}. These inconsistencies need to be investigated further.

V. REFERENCES

- Glauco S. Maciel, NikiforRakov, Michael Fokine, Isabel C. S. Carvalho and Carlos B. Pinheiro, Appl Phys Lett, 89 (2006) 081109-1-3
- [2]. Y. Kim, S.M. Lee, C.S. Park, S.L. Lee, M.Y. Lee, Appl. Phys.Lett. 71 (1997) 3604–3606.
- [3]. E.P. Gusev, M. Copel, E. Cartier, I.J.R. Baumvol, C. Krug, M.A. Gribelyuk, Appl. Phys. Lett. 76 (2000) 176–178.
- [4]. A. Pillonnet-Minardi, O. Marty, C. Bovier, C. Garapon, J. Mugnier, J. Opt. Mater. 16 (2001) 9–13.
- [5]. L. Rebohle, M. Braun, R. Wutzler, B. Liu, J.M. Sun, M. Helm, W. Skorupa, Appl. Phys. Lett. 104 (2014) 251113.
- [6]. R. Serna, C.N. Afonso, Appl. Phys. Lett. 69 (1996) 1541.
- [7]. T. Maiman, Nature 187 (1960) 493.
- [8]. G. Boulon, Opt. Mater. 34 (2012) 499–512.
- [9]. V.B. Mikhailik, H. Kraus, D. Wahl, Appl. Phys. Lett. 86 (2005) 101909
- [10]. J.J. Kingsley, K. Suresh and K.C. Patil, J.Mater. Sci. 25 (1990) 1305
- [11]. J.J. Kingsley, N. Manickam and K.C. Patil, Bull. Mater. Sci. 13 (1990) 179
- [12]. G. Blasse, Philips Res. Rep. 24 (1969) 131

