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ABSTRACT 

The non-linear partial differential equation of a parabolic type governing the phenomenon of finger-imbibition 

in polyphase fluid flow through a homogeneous porous medium with capillary pressure has been discussed using 

the one parameter continuous group transformation. An analytical solution for average cross sectional area 

occupied by fingers has been obtained in terms of transcendental functions. 
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I. INTRODUCTION 

  

The present paper discussed the phenomenon of finger-imbibition in polyphase fluid flow through homogeneous 

porous medium with capillary pressure. This phenomenon arises under certain conditions due to the 

simultaneous occurrence of two specific phenomenon viz., fingering and imbibition. Here, we have assumed that 

injection of preferentially wetting, less viscous fluid into a porous medium saturated with resident fluid is 

initiated under imbibition and in consequence, the resident fluid is pushed by invaling injected fluid which gives 

arise to fingering; Verma [1, 2] called this conjoint phenomenon as fingero-imbibition. 

 

In this paper the underlying assumptions are that the two fluids are immiscible and the injected fluid is less 

viscous than native fluid as well as preferentially wetting with respect to porous materials and the effect of 

capillary pressure is involved.  The mathematical formulation of basic equations yields a non-linear partial 

differential equation governing finger-imbibition in the investigated fluid- fluid displacement problem. An 

analytical expression for average cross sectional area occupied by fingers has been obtained by similarity method 

of one parameter continuous group of transformations [3] which is applied to derive the functional relationship 

between two independent variables which give rise to a similarity transformation. Employing this transformation 

to the non-linear partial differential equation, it reduce to an ordinary differential equation which is further 

reduced into the form of Abel’s equation of second kind [4] whose solution is obtained in terms of transcendental 

functions. 
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II. STATEMENT OF THE PROBLEM 

 

We consider a finite cylindrical piece of homogeneous porous matrix, saturated with native fluid (N) which is 

completely surrounded by an impermeable surface except for one end, which is termed as the imbibition face 

(x=0), and this end is exposed to an adjacent formation of injection fluid (e.g. water). It is preferentially wetting 

and less viscous. This gives rise to a displacement process in which imbibition and the consequent displacement 

of native liquid (e.g. oil) produces instabilities. This arrangement describes a one-dimensional phenomenon of 

finger-imbibition. 

III. CAPILLARY PRESSURE 

 

The capillary pressure 𝑝0  is defined as the pressure discontinuity between the phases across their common 

interface and is a function of saturation. For definiteness, here we have assumed 𝑃𝑐 to be a continuous linear 

function of water saturation of the form [5]  

 

    𝑃𝑐 = 𝛽 𝑆𝑤     (3.1) 

and     

    𝑝𝑐 = 𝑝𝑜 − 𝑝𝑤     (3.2) 

Where  𝛽  is a capillary constant. 𝑆𝑤  is the water saturation and 𝑝𝑤  and 𝑝0   are pressures in water and oil 

respectively. The case 𝑝0 = 0 has been discussed by a number of authors. Here, 𝛽 is a small positive constant. 

IV. RELATION BETWEEN RELATIVE PERMEABILITY AND PHASE SATURATION 

 

An analytical relation between relative permeability and phase saturation, due to Scheidegger and Johnson [6], 

has been given by, 

    𝑘𝑤 = 𝑆𝑤     (4.1) 

and 

    𝑘𝑜 = 1 − 𝑆𝑤 = 𝑆𝑜    (4.2) 

Where 𝑘𝑤 and 𝑘𝑜 are the fictious relative permeability of injected and native fluid respectively. 𝑆𝑤 and 𝑆𝑜are 

saturation of the injected and native phase respectively.  

V. FUNDAMENTAL EQUATION 

 

We further assume that the flow of two immiscible phases is governed by Darcy’s law; we may, therefore, write 

the seepage velocities injected and native fluids as 

 

   𝑉𝑤 = −(
𝑘𝑤

𝛿𝑤
)𝐾

𝜕𝑝𝑤

𝜕𝑥
      (5.1) 

   𝑉𝑜 = −(
𝑜

𝛿𝑜
)𝐾

𝜕𝑝𝑜

𝜕𝑥
      (5.2) 

Neglecting the variation in phase density the equation of continuity for injected phase is given by  

   𝑃
𝜕𝑆𝑤

𝜕𝑡
+

𝜕𝑉𝑤

𝜕𝑥
= 0      (5.3) 

Where P is the porosity of the medium. 

Following Scheidegger [7], the analytical condition governing imbibition is, 
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   𝑉𝑤 + 𝑉𝑜 = 0      (5.4) 

VI. FORMULATION OF DIFFERENTIAL EQUATION 

Substituting the value of 𝑉𝑤  and 𝑉𝑜 from (5.1-2) into equation (5.4), we get  

  𝐾 (
𝑘0

𝛿0
)

𝜕𝑝𝑜

𝜕𝑥
+ 𝐾 (

𝑘𝑤

𝛿𝑤
) 

𝜕𝑝𝑤

𝜕𝑥
= 0     (6.1) 

Substituting this value of 𝑝𝑜 from (3.2) into equation (6.1), we get, 

  
𝜕𝑝𝑤

𝜕𝑥
= −

(
𝑘𝑜
𝛿𝑜

)

(
𝑘𝑤
𝛿𝑤

)+(
𝑘0
𝛿0

)
 
𝜕𝑝𝑜

𝜕𝑥
       (6.2) 

Using (6.2) in equation (5.1) we get, 

  𝑉𝑤 = −𝐾 (
𝑘𝑤

𝛿𝑤
) [

𝑘0
𝛿0

(
𝑘𝑤
𝛿𝑤

)+(
𝑘𝑜
𝛿𝑜

)
  

𝜕𝑝𝑜

𝜕𝑥
]      (6.3) 

Substituting this value of 𝑉𝑤 into equation (5.3), we obtain,  

  𝑃 
𝜕𝑆𝑤

𝜕𝑡
+

𝜕

𝜕𝑥
[

𝑘0
𝛿0

(
𝑘𝑤
𝛿𝑤

)+(
𝑘𝑜
𝛿𝑜

)
  

𝜕𝑝𝑜

𝜕𝑥
] = 0     (6.4) 

Finally, using (3.1) in equation (6.4), we get,  

  𝑃 
𝜕𝑆𝑤

𝜕𝑡
+

𝜕

𝜕𝑥
[

𝑘0
𝛿0

(
𝑘𝑤
𝛿𝑤

)+(
𝑘𝑜
𝛿𝑜

)
  

𝜕𝑝𝑜

𝜕𝑆𝑤

𝜕𝑠𝑤

𝜕𝑥
] = 0    (6.5) 

Again, we use an approximation due to Scheidegger [7], 

  

𝑘0
𝛿0

(
𝑘𝑤
𝛿𝑤

)+(
𝑘𝑜
𝛿𝑜

)
 ≈

𝑘𝑜

𝛿0
        (6.6) 

In view of (3.1), (4.2) and (6.6) equation (6.5) becomes, 

  𝑃
𝜕𝑆𝑤

𝜕𝑡
+

𝐾𝛽

𝛿𝑜

𝜕

𝜕𝑥
[(1 − 𝑠𝑤)

𝜕𝑆𝑤

𝜕𝑥
]       (6.7) 

Setting 
𝑋

𝐿
= 𝑋, 𝑇 = 𝜃𝑡,  and 1 − 𝑆𝑤 = 𝑆, 

where 𝜃 = (
𝐾𝛽

𝑃𝛿0𝐿2), in equation (6.7), we get   

  
𝜕𝑆

𝜕𝑇
+ 𝑆

𝜕2𝑆

𝜕𝑋2 + (
𝜕𝑆

𝜕𝑋
)
2

= 0      (6.8) 

Equation (6.8) is non-linear partial differential equation describing the phenomenon of finger-imbibition in the 

flow of two immiscible phases through homogeneous porous media.  
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VII. SIMILARITY ANALYSIS 

In this section we analyze the problem (6.8) by studying its invariance under a global transformation. In particular, 

a family of one parameter continuous group of transformations, has been used to derive the similarity 

transformation which transformation (6.8) into an ordinary differential equation.  

 Let 𝑆 = 𝜃 (𝑋, 𝑇)      (7.1) 

by the solution of the problem (6.8). consider the general stretching transformation of (S, X, T) – space, 

 𝑆∗ = 𝛿𝑆,        𝑋∗ = 𝛼𝑋,      𝑇∗ = 𝛽𝑇    (7.2) 

with parameter (𝛿, 𝛼, 𝛽). If 𝛿(𝛽) and 𝛽(𝛼) are somehow determined, then (7.2) will be a family of one parameter 

continuous groups of transformations.  

 Let 𝑆∗ = 𝜃∗(𝑋∗, 𝑇∗)      (7.3) 

be the new solution surface corresponding to (7.2). hence, original solution surface transforms, 

   

𝜕𝑆

𝜕𝑇
=

𝛽

𝛿

𝜕𝑆∗

𝜕𝑇∗

𝜕𝑆

𝜕𝑋
=

𝛼

𝛿

𝜕𝑆∗

𝜕𝑋∗

𝜕2𝑆

𝜕𝑋2 =
𝛼2

𝛿

𝜕2𝑆∗

𝜕𝑋∗2

 

]
 
 
 
 

       (7.4) 

Since, 𝜃(𝑋, 𝑇) is defined by (6.8), we have,  

  
𝛽

𝛿

𝜕𝑆∗

𝜕𝑇∗ +
𝑆∗𝛼2

𝛿2

𝜕2𝑆∗

𝜕𝑋∗2 +
𝛼2

𝛿2  (
𝜕𝑆∗

𝜕𝑋∗)
2

= 0   (7.5) 

For invariance, it is necessary that both the operators on the left and right hand sides of (7.5) agree with those in 

(6.8) multiplied a common factor. Thus, for invariance  

  𝛿 = 1;    𝛼2 = 𝛽 ⇒ 𝛼 = √𝛽.     

Hence, the one parameter continuous group of transformations, which leaves the problem (6.8) invariant is,  

  𝑆∗ = 𝑆, 𝑋∗ = √𝛽𝑋,   𝑇∗ = 𝛽𝑇    (7.6) 

Thus, for 𝑆∗, we have  

  
𝜕𝑆∗

𝜕𝑇∗ + 𝑆∗ 𝜕2𝑆∗

𝜕𝑋∗2 + (
𝜕𝑆∗

𝜕𝑋∗)
2

= 0    (7.7) 

Now, due to uniqueness, 𝜃 must be same function of (𝑋∗, 𝑇∗) as 𝜃∗ is of (𝑋, 𝑇), i.e., 

  𝜃∗(𝑋, 𝑇) = 𝜃(𝑋∗, 𝑇∗)      (7.8) 
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As a consequence of transformation (7.6) and the invariance condition (7.8), we obtain a functional equation 

which must be satisfied by the solution; therefore, (7.8) implies, 

  𝜃(√𝛽𝑋, 𝛽𝑇) = 𝜃(𝑋, 𝑇)      (7.9) 

This functional relation (7.9) holds true for all values of 𝛽. To obtain a functional form that the solution 𝜃(𝑋, 𝑇) 

must have consider 𝜕/𝜕𝛽 of (7.9) near the identity 𝛽 = 1;  we then have 

  
𝑋

2 √𝛽

𝜕

𝜕𝑋
 [𝜃(√𝛽 𝑋, 𝛽𝑇)] + 𝑇

𝜕

𝜕𝑇
[𝜃(√𝛽𝑋, 𝛽𝑇)] = 0 (7.10) 

as 𝛽 → 1, 𝜃(𝑋, 𝑇) satisfies a first order p.d.e. 

  
𝑋

2

𝜕𝜃

𝜕𝑋
+ 𝑇

𝜕𝜃

𝜕𝑇
= 0      (7.11) 

The general solution of (7.11) involves an arbitrary function. The characteristic equation associated with (7.11) 

are  

  
𝑑𝑋

(
𝑋

2
)
=

𝑑𝑇

𝑇
=

𝑑𝑆

𝑂
        (7.12) 

The integral of the first two in (7.12) implies 𝜂 =
𝑋

√𝑇
     (7.13) 

and that of for the last two in (7.12) implies  

  𝑆 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐹(𝜂)       (7.14) 

Thus, the similarity transformation has the form 

  𝑆 = 𝐹(𝜂);    𝜂 =
𝑋

√𝑇
      (7.15) 

Applying this similarity transformation to equation (6.8) it reduces to, 

  𝐹𝐹′′ + (𝐹′)2 −
1

2
 𝜂 𝐹′ = 0     (7.16) 

Where 𝐹 = 𝐹(𝜂) and a prime denotes differentiation with respect to 𝜂 

The non-linear ordinary differential equation (7.10) is obtained by a similarity transformation of the problem 

(6.8). 

VIII. ANALYTIC SOLUTION 

To solve the equation (7.16), we get 

   𝐹(𝜂) = 𝜂2 𝑢(𝑧); 𝑧 = log 𝜂 , 𝑢′(𝑧) = 𝑝   (8.1) 

into equation (7.16); it reduced to 

 𝑢𝑝𝑝′(𝑢) + 𝑝2 + (7𝑢 −
1

2
) 𝑝 + 𝑢(6𝑢 − 1) = 0    (8.2) 

Equation (8.2) is Abel’s equation of second kind [4]; to solve it let 𝑢𝑝 = log 𝑣(𝑧) = 𝑀(𝑧).  then (8.2) becomes  
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𝑑𝑀

𝑑𝑧
+ (7𝑢 −

1

2
)

𝑀

𝑢
 + (6𝑢 − 1)𝑢 = 0     (8.3) 

Equation (8.3) is a linear o.d.e. of first order. The integrating factor of (8.3) is 

   𝑒𝑥𝑝. |∫ (7 −
1

2𝑢
)𝑑𝑧|     (8.4) 

Therefore the solution of the problem (8.3) is,  

   𝑀 𝑒𝑥𝑝. [∫ (7 −
1

2𝑢
) 𝑑𝑧] 

   = ∫ [𝑢(6𝑢 − 1)𝑒𝑥𝑝. [∫ (7 −
1

2𝑢
)𝑑𝑧]] 𝑑𝑧 + 𝑐      

     (8.5) 

Where C is constant of integration. Hence, in terms of 𝜂 and 𝐹(𝜂) equation (8.5) can be written as  

  𝑀 𝑒𝑥𝑝. (∫(
7

𝜂
− (

𝜂

2𝐹
))𝑑𝜂 )  

  = ∫ [(
𝐹

𝜂3) [1 − (
6𝐹

𝜂2)] × 𝑒𝑥𝑝. (∫ |(
7

𝜂
) − (

𝜂

2𝐹
)| 𝑑𝜂)] 𝑑𝜂 + 𝑐  

         (8.6) 

The constant C of integration can be determined by considering the boundary condition at 𝑡 = 0. Since at t=0, 

𝜂 = ∞ and 𝐹(𝜂) = ∞ the equation (8.6) gives C=0 and (8.6) reduced to 

  𝑀 𝑒𝑥𝑝. (∫(
7

𝜂
− (

𝜂

2𝐹
))𝑑𝜂 )  

  = ∫ [(
𝐹

𝜂3) [1 − (
6𝐹

𝜂2)] × 𝑒𝑥𝑝. (∫ |(
7

𝜂
) − (

𝜂

2𝐹
)| 𝑑𝜂)] 𝑑𝜂  

         (8.7) 

The equation (8.7) gives the solution of the problem in terms of transcendental function which is an approximate 

solution of the problem (6.8) which governs the phenomenon.  

 

IX. CONCLUSION 

 

In this section, we conclude the results of the previous sections. We have obtained an analytical solution of the 

finger-imbibition phenomenon of two immiscible phases in homogeneous porous media. The similarity 

transformation has been derived by using a family of one parameter continuous group of transformation. The 

similarity transformation thus obtained has been used to reduce the original partial differential equation to an 

ordinally differential equation known as Abel’s equation of second kind. The solution of this o.d.e. has been 

obtained in terms of transcendental function which represent the distribution of injected fluid in porous which 

was saturated by native fluid. 
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