
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed 

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited 

  

 

  

 

International Journal of Scientific Research in Science and Technology 

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com) 
 

 

472 

Existence and Uniqueness Theorem for the Flow of two Immiscible Fluids 

Through Porous Media with Decreasing Exponential Saturation 
Pandya Parth M1, Dr. Gajendra Purohit2, Dr. P. H. Bhathawala3 
1Research Scholar, Pacific University, Udaipur, Rajasthan, India 

2Director, Pacific College of Basic & Applied Sciences, Pacific University, Udaipur, Rajasthan, India 
3Professor, Department of Mathematics, V.N.S.G. University, Surat, Gujarat, India  

 

 

 

Article Info 

Volume  7, Issue 6 

Page Number: 472-482 

Publication Issue : 

November-December-2020 

 

 

Article History 

Accepted : 15 Dec  2020 

Published : 30 Dec  2020 

ABSTRACT 

 

We are able to find a wide variety of physical phenomenon from the domain of 

natural sciences in which exponential decays occurs. In the present paper, we 

have considered the decreasing exponential saturation function for the flow of 

two immiscible fluids through porous media.   The partial differential equation 

arises for the flow of two immiscible fluids through porous medium with 

decreasing exponential saturation yields a non-linear partial differential 

equation of parabolic nature. Such equations are very difficult to solve 

analytically. The present paper describes the existence and uniqueness of 

similarity of this type of equations. 

Keywords : Physical Phenomenon, Linear Partial Differential Equation 

 

 

I. INTRODUCTION 

 

The non-linear partial differential system governing the flow of two immiscible fluids through porous media, as 

in [1] is given by, 

 
𝜕𝑠

𝜕𝑡
=

𝜕

𝜕𝑥
| 𝑅(𝑆)

𝜕𝑆

𝜕𝑥
|        (1.1) 

 and the corresponding boundary and initial conditions are 

    𝑠(𝑥, 0) = 0        (1.2) 

    𝑠(0, 𝑡) = 𝑓(𝑡)         (1.3) 

    lim
𝑥→∞

𝑠(𝑥, 𝑡) = 0     for 𝑡 > 0       (1.4) 

  where 𝑠 > 0, 0 < 𝑥 < ∞, 0 < 𝑡 ≤ 𝑇  and  

    𝑅(𝑠) =
𝐾

𝑃
∙

𝑘𝑖
𝛿𝑖

∙
𝑘𝑛
𝛿𝑛

𝑘𝑖
𝛿𝑖

+
𝑘𝑛 

𝛿𝑛

∙
𝑑𝑃𝑐

𝑑𝑠
 

  in which  

   𝐾 = Permeability of the media 

   𝑃 = Porosity of the media 

   𝐾𝑖 = Relative permeability of the injected phase 
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   𝑘𝑛 = Relative permeability of the native phase 

   𝛿𝑖 = Viscosity of the injected phase 

   𝛿𝑛 =  Viscosity of the native phase 

   𝑠 = Saturation of the injected phase 

   𝑡 = time 

   𝑥 = special co-ordinate 

   𝑃𝑐 = Capillary pressure    

  

 Equation (1.1) is parabolic at any point (𝑥, 𝑡), at which 𝑠 > 0. However at points where 𝑠 = 0, it is 

degenerate parabolic. Because of this degeneracy, (1.1) need not always have a classical solution. 

 A class of weak solution of (1.1) were introduced by Oleinik, Kalashnikov and You-Lin [2]. They 

proved existence and uniqueness of such solutions and in addition they showed that if at some instant ′𝑡0
′ ,  a 

weak solution of 𝑠(𝑥, 𝑡0) has a compact support, then 𝑠(𝑥, 𝑡) has compact support for any 𝑡 ≥ 𝑡0. 

 Equation (1.1), for 𝑅(𝑠) = 𝜆𝑒−𝛼,   𝑓(𝑡) = 𝑓0𝑒−𝛼 is transformed into an ordinary differential equation, 

    (𝑓𝑣𝑓′)′ +
𝑣𝛼+1

2𝜆
𝜂𝑓′ −

𝛼

𝜆
𝑓 = 0     (1.5) 

  with the help of similarity transformation 

    𝜂 =
𝑥

𝑡
𝛼+1

2

,        𝑠 = 𝑒−𝛼𝑓(𝜂);    0 < 𝜂 < ∞ 

   Where 𝜆, 𝑣, 𝛼 are constants and (𝑣, 𝛼) >  −1, and dashes denote differentiation w.r.t. 𝜂.

   

  At the boundaries, we require the condition,  
    𝑓(0) = 𝑓0 
    𝑓(∞) = 0 for fixed 𝑡 ∈ [0, 𝑇] 

 The rigorous study of these similarity analysis was done by Atkinson and Peletier [3,4] and by 

Shampine [5,6]. They considered the equation, 

[𝑘(𝑓) 𝑓′]′ +
1

2
𝜂𝑓′ = 0,       0 < 𝜂 < ∞    (1.6) 

 in which 𝑘(𝑠) is defined, real and continuous for 𝑠 > 0 with 𝑘(0) ≥ 0 and 𝑘(𝑠) > 0 if 𝑠 > 0. Clearly, if 

we set 𝛼 = 0,  equation (1.5) becomes a special case of (1.6). 

   In this paper, we extend the analysis of [3] to problem 
[𝑓𝑚]′′ + 𝑝𝜂𝑓′ = 𝑞𝑓     0 < 𝜂 < ∞     (1.7) 

𝑓(0) = 𝑓0,     𝑓(∞) = 0       (1.8) 

where 𝑝 =
𝑣𝛼+1

2𝜆
, 𝑞 =

𝛼

𝜆
 in which 𝛼, 𝜆, 𝑣 are arbitrary constants. 

Obviously equation (1.7) incorporates equation (1.5) and therefore, it is necessary to consider a weak solution 

of the problem (1.7), (1.8). 

 

 

DEFINITION 

 

A function 𝑓 is said to be a weak solution of equation (1.7),(1.8) if, 

 

(i) 𝑓 is bounded, continuous, and non-negative on [0, ∞). 

(ii) (𝑓𝑚)(𝜂) has continuous derivative w.r.t. 𝜂 on (0, ∞) and 

(iii) 𝑓 satisfies the identity 
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∫ 𝜙′{ (𝑓𝑚)′ + 𝑝𝜂𝑓}𝑑𝜂

∞

0

+ (𝑝 + 𝑞) ∫ 𝜙 𝑓 𝑑𝜂

∞

0

= 0 

    𝑓𝑜𝑟 𝑎𝑙𝑙 𝜙 ∈ 𝐶0
1[0, ∞). 

 

Now, we establish the following results. 

 

(i) Let 𝑓0 > 0, then problem (1.7), (1.8) has a weak solution with compact support if and only if 𝑝 ≥ 0 and 

2𝑝 + 𝑞 > 0.  This solution is unique. 

(ii) Let 𝑓0 = 0 then problem (1.7), (1.8) has a non-trivial weak solution with compact support if and only if 

𝑝 > 0, 2𝑝 + 𝑞 = 0. 

  Suppose if and only if 𝑝 > 0,   2𝑝 + 𝑞 = 0 

  In this case, there exist a one parameter family of such solutions. 

 

II. THE METHOD 

 

Let 𝑓 be a weak solution of problem (1.7), (1.8) with compact support in [0, ∞). 

⇒ 𝑓 > 0 in the right neighborhood of 𝜂 = 0. i.e. there exists a number 𝑎 > 0 such that 𝑓 > 0 on (0, 𝑎), 𝑓 =

0 on [𝑎, ∞). 

It was shown in [3] that in a neighborhood of any point where 𝑓 > 0, 𝑓 is classical solution of equation (1.7).  

Thus, we shall be concerned with proving the existence and uniqueness of a classical positive solution o (1.7) 

on (0, 𝑎) which satisfies the boundary conditions 

     𝑓(0) = 𝑓0       (2.1) 

     𝑓(𝑎) = 0,     (𝑓𝑚)′(𝑎) = 0     (2.2)  

 

The condition at 𝜂 = 𝑎 follows from the requirement that 𝑓 and (𝑓𝑚)′  are continuous on (0, ∞). 

Before turning to the existence, we obtain a preliminary non-existence result. 

  

LEMMA 1 

 

The existence of non-trivial weak solution of equation (1.7) with compact support implies one of the following 

propositions. 

 

(i) 𝑝 > 0   or 

(ii) 𝑝 = 0  and 𝑞 > 0 

 

PROOF: 

Suppose, 𝑓  is a non-trivial weak solution of (1.7) with compact support. Then there exists 𝑎 > 0, such that 

    𝑓 > 0 in (𝑎 − 𝜀, 𝑎) for some 𝜀 > 0 and  

    𝑓 = 0 in [𝑎, ∞). 

 

Thus in (𝑎 − 𝜀, 𝑎), 𝑓 satisfies (1.7) and at 𝜂 = 𝑎, 𝑓 satisfies (2.2). Integration of (1.7) from 𝜂 ∈ (𝑎 − 𝜀, 𝑎) to a 

yields 

    − (𝑓𝑚)′(𝜂) = 𝑝𝜂 𝑓(𝜂) + (𝑝 + 𝑞) ∫ 𝑓(𝜉) 𝑑𝜉
𝑎

𝜂
     (2.3) 
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In view of the continuity of 𝑓 and (𝑓𝑚)′  it is possible to find 𝜂0 ∈ (𝑎 − 𝜀, 𝑎) such that 𝑓′(𝜂0) < 0  

 

Hence, 𝑝 and (𝑝 + 𝑞) cannot both be less than zero. 

 

Thus, if 𝑝 = 0, 𝑞 must be positive. Now, suppose that 𝑝 < 0. Then by (2.3), 𝑝 + 𝑞 > 0 and hence 𝑞 > 0.   It 

follows from (1.7) that 𝑓  cannot have a maximum in (𝑎 − 𝜀, 𝑎) and hence 𝑓′ < 0 on (𝑎 − 𝜀, 𝑎). Therefore, (2.3) 

implies  

    −𝑚𝑓𝑚−2(𝜂)𝑓′(𝜂) − 𝑝𝜂 ≤ (𝑝 + 𝑞)(𝑎 − 𝜂)     (2.4)  

  for all 𝜂 ∈ (𝑎 − 𝜀, 𝑎). If we now let 𝜂 → 𝑎, we obtain a contradiction.  

  Hence, 𝑝 > 0. 

 

III. SOLUTION NEAR 𝜼 = 𝒂 

 

Let a be an arbitrary positive number. It is clear from Lemma 1, that a necessary condition for the existence for 

a positive solution of problem (1.7), (2.2) in the neighbourhood of 𝜂 = 𝑎 is that either 𝑝 > 0 or 𝑝 = 0 and 𝑞 >

0.  Now, we show that this condition is also sufficient. For that, let 𝑝 = 0 and 𝑞 > 0. Then we can solve 

problem (1.7), (2.1),(2.2) uniquely and  

  𝑓(𝜂, 𝑎) = {
𝑞(𝑚−1)2

2𝑚(𝑚+1)
(𝑎 − 𝜂)2}

1

𝑚−1
       0 < 𝜂 < 𝑎  (3.1) 

is an unique solution of problem (1.7), (2.2). Because 𝑓(0, 𝑎) is continuous, monotonically increasing function 

of a such that 𝑓(0,0) = 0 and 𝑓(0, ∞) = ∞ , the equation 𝑓(0, 𝑎) = 𝑓0 is uniquely solvable for 𝑓0 ≥ 0.  Let 𝑎(𝑓0) 

be its solution, then 𝑓 = 𝑓(𝜂, 𝑎(𝑓0)) is an unique solution of problem (1.7), (2.1), (2.2). 

 

Now, consider the case when 𝑝 > 0. First we prove the following lemma. 

 

LEMMA 2 

Let 𝑏 ∈ (0, 𝑎) and let 𝑓 be a positive solution of the problem (1.7), (2.2) on [𝑏, 𝑎).  

(i) If 𝑝 + 𝑞 ≥ 0 then 𝑓′(𝜂) < 0 on [𝑏, 𝑎). 

(ii) If 𝑝 + 𝑞 < 0, and there exist an 𝜂0 ∈ [𝑏, 𝑎) such that 𝑓′(𝜂0) = 0 then 𝑓 has a maximum at 𝜂0 and 𝜂0 <

[
𝑝+𝑞

𝑞
] 𝑎.    

If 𝑓 is a positive solution of (1.7), (2.2) on [0, 𝑎) then 

(i) 𝑝 + 𝑞 > 0, 𝑓′(0) < 0   

(ii) 𝑝 + 𝑞 = 0, 𝑓′(0) = 0 

(iii) 𝑝 + 𝑞 < 0, 𝑓′(0) > 0  

 

PROOF 

Integrating of (1.7) from 𝜂 ∈ [𝑏, 𝑎) to a yields (2.3). If 𝑝 + 𝑞 ≥ 0, this implies that (𝑓𝑚)′(𝜂) < 0 and hence 

𝑓′(𝜂) < 0 on [𝑏, 𝑎). 

If 𝑝 + 𝑞 < 0, we note that 𝑞 < 0 and hence 𝑓′(𝜂0) = 0 ⇒ 𝑓′′(𝜂0) < 0. 

If follows that, 𝑓 has maximum at 𝜂 = 𝜂0 and 𝑓′(𝜂) < 0 on (𝜂0, 𝑎). 

To estimate 𝜂0, we set 𝜂 = 𝜂0 in (2.3) and using the fact that 𝑓′(𝜂0) < 0 on (𝜂0, 𝑎) we obtain, 
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0 = 𝑝𝜂0𝑓(𝜂0) + (𝑝 + 𝑞) ∫ 𝑓(𝜉) 𝑑𝜉

𝑎

𝜂0

 

    > 𝑝𝜂0 𝑓(𝜂0) + (𝑝 + 𝑞) ∫ 𝑓(𝜂0) 𝑑𝜉
𝑎

𝜂0
  

  Hence, 𝑝𝜂0 + (𝑝 + 𝑞)(𝑎 − 𝜂0) < 0   or   (𝑝 + 𝑞)𝑎 − 𝑞𝜂0 < 0.   

  Recalling that, 𝑞 > 0, we obtain upper bound for 𝜂0 viz. 

      𝜂0 < [
𝑝+𝑞

𝑞
] 𝑎 

  Finally, if we set 𝜂 = 0, (2.3) yields,  

     −(𝑓𝑚)′ (0) = (𝑝 + 𝑞) ∫ 𝑓(𝜉) 𝑑𝜉
𝑎

0
 

  from which sign of 𝑓′(0) follows. Now, we procced for existence. 

 

LEMMA 3 

Let 𝑝 > 0 and let 𝑞 be arbitrary. Then given any 𝑎 > 0, there exists an 𝜀 > 0 such that problem (1.7), (2.2) has a 

unique positive solution in (𝑎 − 𝜀, 𝑎) 

 

PROOF 

 

As in [3], we reduce the problem to that of establishing the local existence of solution of an equivalent integral 

equation. To derive this let 𝑓 be a positive solution in (𝑎 − 𝜀, 𝑎) for some 𝜀 > 0. 

 

By lemma 2, it is possible to choose an 𝜀 > 0 such that 𝑓′ < 0 in (𝑎 − 𝜀, 𝑎). Therefore, consider an inverse 

function 𝜂 = 𝜎(𝑓).  

 

Rewriting (2.3) as, 

(𝑓𝑚)′(𝜂) = 𝑞𝜂 𝑓(𝜂) − (𝑝 + 𝑞) ∫ 𝑓(𝜉)𝑑𝜉

𝑎

𝜂

 

 Hence, 𝜎(𝑓) satisfies the integro-differential equation, 

     
𝑑𝜎

𝑑𝑓
=

𝑚 𝑓𝑚−1

𝑞 𝑓 𝜎(𝑓)−(𝑝+𝑞) ∫ 𝜎(𝜙)𝑑𝜙
𝑓

0

 

 Integrating from 0 to f yields, 

𝜎(𝑓) − 𝑎 = 𝑚 ∫
𝜙𝑚−1 𝑑𝜙

𝑞 𝜙 𝜎(𝜙) − (𝑝 + 𝑞) ∫ 𝜎(Ψ)𝑑Ψ
𝜙

0

𝑓

0

  

 

 or introducing 𝜏(𝑓) = 1 − 𝑎−1𝜎 (𝑓) then, 

 

    𝜏(𝑓) =
𝑚

𝑎2  ∫
𝜙𝑚−1 𝑑𝜙

𝑞 𝜙+𝑞 𝜙 𝜏(𝜙)−(𝑝+𝑞) ∫ 𝜏(Ψ)𝑑Ψ
𝜙

0

𝑓

0
    (3.2) 

 

Now, we prove that, (3.2) has a unique positive solution in a right neighborhood of 𝑓 = 0.  

 

Let 𝜆 > 0 and let 𝑋 be a function 𝜏(𝑓) defined on [0. 𝛾], such that 

    0 ≤ 𝜏(𝑓) ≤ 𝜌 =
𝑝

2(|𝑞|+|𝑝+𝑞|)
  

We denote by ||. || the supremum norm on X, then X is a complete metric space. We define the operator,  

    𝑀(𝜏)(𝑓) =
𝑚

𝑎2  ∫
𝜙𝑚−1𝑑𝜙

𝑝𝜙+𝑞𝜙 𝜏(𝜙)−(𝑝+𝑞) ∫ 𝜏(𝜓)𝑑𝜓
𝜙

0

𝑓

0
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Let 𝜏 ∈ 𝑋 then, 

 𝑝𝜙 + 𝑞𝜙𝜏(𝜙) − (𝑝 + 𝑞) ∫ 𝜏(𝜓)𝑑𝜓

𝜙

0

 

     ≥ {𝑝 − (|𝑞| + |𝑝 + 𝑞|)||𝜏||} ∙ 𝜙 

     ≥
1

2
𝑝𝜙 

Hence, 𝑀(𝜏)(𝑓) ≤
𝑚

𝑎2 ∫
𝜙𝑚−2

1

2
𝑝𝜙

𝑓

0
𝑑𝜙 ≤

2𝑚

(𝑚−1)𝑝𝑎2  𝛾𝑚−1 

Thus, 𝑀(𝜏) is well defined on the whole of X. Thus,  

 

𝑀(𝜏): [0, 𝛾] → 𝑅 is non-negative and continuous and moreover there exists 𝛾0 > 0 such that if 𝛾 < 𝛾0 and 𝜏 ∈

𝑋, ||𝑀(𝜏)|| ≤ 𝜌. 

 

Thus, if 𝛾 ≤ 𝛾0 then, M maps X into X. 

 

Let 𝜏1, 𝜏2 ∈ 𝑋 and let 𝛾 ≤ 𝛾0 then, 

 

  ||𝑀(𝜏1) − 𝑀(𝜏2)||  

  ≤
4𝑚

𝑎2𝑝2  ∫ 𝜙𝑚−3 [|𝑞|𝜙||𝜏1 − 𝜏2|| + |𝑝 + 𝑞| ∫ ||𝜏1 − 𝜏2|| 𝑑𝜓
𝜙

0
]  𝑑𝜙

𝑓

0
  

   ≤
4𝑚

(𝑚−1)𝑎2𝑝2  (|𝑞| + |𝑝 + 𝑞|)||𝜏1 − 𝜏2|| ∙ 𝛾𝑚−1  

 

Hence, there exists 𝛾1 ∈ (0, 𝛾0]  such that if 𝛾 ≤ 𝛾1, 𝑀 is a contraction on X. thus, by Banach-Cacciopolo 

contraction mapping principle [7, p.404], M has a unique fixed point in X and equation (3.2) has a unique 

solution. 

 

IV. BACKWARD CONTINUATION 

 

Let 𝑎 > 0 and 𝑓(𝜂) be the solution of (1.7), (2.2) we constructed in the previous section. Then 𝑓 is defined and 

positive in a left neighborhood of 𝜂 = 𝑎. Now, we continue 𝑓 backwards as a function of 𝜂. By the standard 

theory [7], this can be done uniquely so long as 𝑓  remains positive and bounded. Now, there are three 

possibilities. 

 

(a) 𝑓(𝜂) → ∞ as 𝜂 decreases to some 𝜂1 ∈ [0, 𝑎). 

(b) 𝑓(𝜂) can be continued back to 𝜂 = 0. 

(c) 𝑓(𝜂) → 0 as 𝜂 decreases to some 𝜂2 ∈ [0, 𝑎). 

 Now, we try to rule out possibility (a). 

 

LEMMA 4 

 

Let 𝑏 ∈ {0, 𝑎),  and let 𝑓 be a positive solution of problem (1.7), (3.1) on (𝑏, 𝑎). 

 

Then, if 𝑝 > 0, 

sup
(𝑏, 𝑎) 𝑓(𝜂) ≤ [

𝑚 − 1

2𝑚
𝑎2 max{𝑝, 2𝑝 + 𝑞}]

1

𝑚−1
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PROOF 

 

(i) Let 𝑝 + 𝑞 ≥ 0, then by Lemma 2, 𝑓′ < 0 on (𝑏, 𝑎). Using in (2.4), we get,  

 −𝑚 𝑓𝑚−2(𝜂)𝑓′(𝜂) ≤ (𝑝 + 𝑞)𝑎 − 𝑞𝜂  𝑏 ≤ 𝜂 ≤ 𝑎.  

 Integration from 𝜂 to a yields, 

 
𝑚

𝑚−1
 𝑓𝑚−1(𝜂) ≤ (𝑎 − 𝜂) [𝑝𝑎 +

1

2
𝑞(𝑎 − 𝜂)] , 𝑏 ≤ 𝜂 ≤ 𝑎    (4.1) 

 

 and hence, 

 
sup

(𝑏, 𝑎)
𝑚

𝑚−1
 𝑓𝑚−1 (𝜂) ≤

1

2
(2𝑝 + 𝑞)𝑎2      (4.2) 

(ii) Let 𝑝 + 𝑞 < 0. Then, it follows from (2.3), that,       

 −𝑚𝑓𝑚−1 (𝜂)𝑓′(𝜂) ≤ 𝑝 𝜂 𝑓(𝜂) 

 If we divide by 𝑓(𝜂) and integrate from 𝜂 to a, we get, 

 
𝑚

𝑚−1
 𝑓𝑚−1 (𝜂) ≤

1

2
𝑝 (𝑎2 − 𝜂2),           𝑏 ≤ 𝜂 ≤ 𝑎     (4.3) 

  Thus,  

  
sup

(𝑏, 𝑎)
𝑚

𝑚−1
𝑓𝑚−1(𝜂) ≤

1

2
𝑝𝑎2       (4.4) 

 

Because the bound of Lemma 4 is uniform in 𝑏, 𝑓(𝜂) can never become unbounded as 𝜂 decreases.  

 

The estimates (4.1) and (4.3) provide upper bounds for 𝑓(𝜂) which also tends to zero as 𝜂 → 𝑎.  Lower bounds 

can be derived in exactly the same way, one finds 

 

(i) If 𝑝 + 𝑞 ≥ 0. 
𝑚

𝑚−1
 𝑓𝑚−1(𝜂) ≥

1

2
𝑝(𝑎2 − 𝜂2),  𝑏 ≤ 𝜂 ≤ 𝑎    (4.5) 

(ii) If 𝑝 + 𝑞 < 0. 

 
𝑚

𝑚−1
 𝑓𝑚−1(𝜂) ≥ {𝑝𝑎 +

1

2
𝑞(𝑎 − 𝜂)} (𝑎 − 𝜂),     (4.6) 

          𝑚𝑎𝑥. (𝑏, 𝜂0) ≤ 𝜂 ≤ 𝑎.  

                        ≥
1

2
(2𝑝 + 𝑞)(𝑎2 − 𝜂2).  

The following lemma distinguishes between the possibilities (b) and (c). 

 

 

LEMMA 5 

 

Let 𝑓 be the positive solution of problem (1.7),(2.2) in a left neighbourhood of 𝜂 = 𝑎. Assume that 𝑝 > 0, then, 

 

(i) If (2𝑝 + 𝑞) > 0, 𝑓(𝜂) > 0 on [0, 𝑎). 

(ii) If (2𝑝 + 1) = 0, 𝑓(𝜂) > 0 on (0, 𝑎) and 𝑓(0) = 0.  

(iii) If (2𝑝 + 𝑞) < 0, there exists on 𝜂∗ ∈ (0, 𝑎) such that 𝑓(𝜂∗) > 0 on (𝜂∗, 𝑎) and 𝑓(𝜂∗) = 0. 
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PROOF 

 

Integrating of (2.3) from 𝜂 to a yields the following integral equation for 𝑓: 

 

 (𝑓𝑚)(𝜂) = 𝑝𝜂 ∫ 𝑓(𝜉)𝑑𝜉
𝑎

𝜂
+ (2𝑝 + 𝑞) ∫ (𝜉 − 𝜂)𝑓(𝜉)𝑑𝜉

𝑎

𝜂
    (4.7) 

 

Now, suppose 2𝑝 + 𝑞 > 0, then by the previous Lemma we may continue 𝑓(𝜂) back to 𝜂 = 0,  and 𝑓(0) > 0. 

However, using the bounds for 𝑓, we can actually give upper and lower bounds for 𝑓(0). This can be done by 

the following proposition and for that we define the quantities, 

    𝜆 =
2𝑝+𝑞

𝑝
,   𝜇 =  1 − [

𝑝+𝑞

𝑝
]

2
, 𝐴 = [

𝑚−1

2𝑚
𝑝𝑎2]

1

𝑚−1  

 

PROPOSITION 1 

 

Let 𝑝 > 0, and 2𝑝 + 𝑞 > 0,  then,  

 

(i) If 𝑝 + 𝑞 ≥ 0 (𝜆 ≥ 1)  

𝜆
1

𝑚𝐴 ≤ 𝑓(0) ≤ 𝜆
1

𝑚−1
 𝐴  

(ii) If 𝑝 + 𝑞 ≤ 0 (0 < 𝜆 ≤ 1) 

(𝜇 𝜆)
1

𝑚−1𝐴 ≤ 𝑓(0) ≤ 𝜆
1

𝑚 𝐴  
 

Both estimates are sharp for 𝑝 + 𝑞 = 0  

 

PROOF 

 

(i) The upper bound follows at once from (4.1). To obtain lower bound, we use (4.6)  

 in (4.7),  

(𝑓𝑚)(0) = (2𝑝 + 𝑞) ∫ 𝑓(𝜉)𝑑𝜉
𝑎

0
       (4.8) 

 Result follows after an elementary computation, 

(ii) In this case, we only have a bound for 𝑓 on [𝜂0, 𝑎),  where 𝜂0 is the value for 𝜂 for  

 which 𝑓  reaches to maximum. By (4.3) and (4.6), 

𝜆
1

𝑚−1
 𝐴 [1 −

𝜂2

𝑎2]

1

𝑚−1
≤ 𝑓(𝜂) ≤ 𝐴 [1 −

𝜂2

𝑎2]

1

𝑚−1
  ,      𝜂0 ≤ 𝜂 ≤ 𝑎      (4.9) 

 

However 𝑓(𝜂) ≤ 𝑓(𝜂0) on [0, 𝜂0] and therefore (4.9) holds for 0 ≤ 𝜂 ≤ 𝑎. Using (4.9) in (4.8),  we get desired 

upper bound. 

 

To obtain lower bound, we note by (4.8), that  

 

(𝑓𝑚)(0) ≥ (2𝑝 + 𝑞) ∫ 𝜉 𝑓(𝜉)𝑑𝜉
𝑎

𝑎∗
       (4.10) 

    𝑤ℎ𝑒𝑟𝑒 𝑎∗ =
𝑝+𝑞

𝑝
𝑎. 

Because by Lemma 2, 𝜂0 ≤ 𝑎∗ we can use (4.9) in (4.10) to estimate 𝑓(0),  we conclude this with a result about 

the dependence of 𝑓 on the choice of 𝑎∗. 
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PROPOSITION 2 

 

Let 𝑝 > 0 and 2𝑝 + 𝑞 ≥ 0.  Suppose 𝑓(𝜂, 𝑎1) and 𝑓(𝜂, 𝑎2) are solutions of problem (1.7), (2.2) on (0, 𝑎1) and 

(0, 𝑎2) respectively. Then if 𝑎1 > 𝑎2, 𝑓(𝜂, 𝑎1) > 𝑓(𝜂, 𝑎2) everywhere on (0, 𝑎2).   

 

PROOF 

 

We denote 𝑓(𝜂, 𝑎1) by 𝑓𝑖(𝜂) 𝑓𝑜𝑟 𝑖 = 1,2.   

 

Suppose proposition is not true, therefore there exists an 𝜂 ̅ ∈ (0, 𝑎2) such that 𝑓1(𝜂 ̅) = 𝑓2(𝜂 ̅) and 𝑓1(𝜂) >

𝑓2(𝜂) on (𝜂 ̅, 𝑎2).  

 

It follows from (4.7) that for 𝑖 = 1,2 

 𝑓𝑖
𝑚(𝜂 ̅) = 𝑝 𝜂 ̅ ∫ 𝑓𝑖(𝜉)

𝑎𝑖

𝜂 ̅

 𝑑𝜉 + (2𝑝 + 𝑞) ∫ (𝜉 − 𝜂 ̅)𝑓𝑖(𝜉)𝑑𝜉

𝑎𝑖

𝜂 ̅

  

    Here,  𝑝 𝜂 ̅ ∫ 𝑓1(𝜉)
𝑎1

𝑎2
 𝑑𝜉 + (2𝑝 + 𝑞) ∫ (𝜉 − 𝜂)𝑓𝑖(𝜉)𝑑𝜉

𝑎1

𝑎2
 

   +𝑝 𝜂 ̅ ∫ [𝑓1(𝜉) − 𝑓2(𝜉)]
𝑎2

𝜂 ̅
 𝑑𝜉 + (2𝑝 + 𝑞) ∫ (𝜉 − 𝜂 ̅)[𝑓1(𝜉) − 𝑓2(𝜉)]𝑑𝜉

𝑎2

𝜂 ̅
 = 0  

 

The second and the fourth term of this expression are non-negative, while the other two are positive, therefore 

we have a contradiction. 

 

V. MAIN RESULT 

 

We now begin by proving existence and uniqueness of the solution of problem (1.7), (2.1), (2.2) which is 

positive on (0, 𝑎). By Lemma 1, a necessary condition for the existence of such a solution is that 𝑝 ≥ 0. 

 

Let 𝑝 > 0. Then by Lemma 3, for each  𝑎 > 0, there exists a unique positive solution 𝑓(𝜂, 𝑎) of (1.7), (2.2) in a 

left neighborhood of 𝜂 = 𝑎. By Lemma 5, this solution can be continued back to 𝜂 = 0 if and only if 2𝑝 + 𝑞 ≥

0. Thus, the boundary condition at 𝜂 = 0 is satisfied if we can find an 𝑎 > 0 such that 

 

 𝑓(0, 𝑎) = 𝑓0        (5.1) 

 

If only one such a exists, the solution is unique.  

Here two cases arise 

 

(i) 𝑓0 = 0 Then, by Lemma 5, equation (4.1) can only be satisfied if 2𝑝 + 𝑞 = 0. Moreover, (5.1) is then 

satisfied for any 𝑎 > 0.  

(ii) 𝑓0 > 0. Then, by Lemma 5, a necessary condition for (5.1) to have solution is that 2𝑝 + 𝑞 > 0. To prove 

that, it is sufficient we use observation due to Bareblatt [8].  

 

Let 𝑓(𝜂, 𝑎) be a solution problem (1.7), (2.2) on (0, 𝑎). Thus, choosing 𝜇 = 𝑎−1, 

𝑓(0, 𝑎) = 𝑎
2

𝑚−1𝑓(0,1) 

Therefore (5.1) can be written as 
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     𝑎
2

𝑚−1
 𝑓(0,1) = 𝑓0     (5.2) 

 

Because 2𝑝 + 𝑞 > 0, 𝑓(0,1) > 0.  It follows that for each 𝑓0 > 0 equation (5.2) has a unique solution 𝑎 (𝑓0). The 

function 𝑓 (𝜂, 𝑎(𝑓0)) now satisfies (1.7),(2.1), (2.2). In view of the uniqueness of 𝑎(𝑓0) it is the only function 

which does so. Remembering the solution we constructed for 𝑝 = 0, we have proved the following results. 

THEOREM 1 

 

(i) Let 𝑓0 > 0, then there exists a unique 𝑎 > 0 and a unique solution of problem (1.7), (2.1), (2.2) which is 

positive on (0, 𝑎) if and only if 𝑝 ≥ 0 and 2𝑝 + 𝑞 > 0. 

(ii) Let 𝑓0 = 0. Then for every 𝑎 > 0 there exists a unique solution of problem (1.7), (2.1), (2.2) which is 

positive on (0, 𝑎) if and only if 𝑝 > 0 and 2𝑝 + 𝑞 = 0. 

Therefore, it is easy to see that 

 

  𝑓(𝜂) = {
𝑓(𝜂, 𝑎)     0 ≤ 𝜂 < 𝑎
0               𝑎 ≤ 𝜂 < ∞

  

 

is a weak solution of (1.7) which satisfies the boundary condition (1.8). Hence, we show that if 𝑓0 > 0, this is 

the only solution of problem (1.7), (1.8) with compact support and that if 𝑓0 = 0 this is the only family of non-

trivial solution of problem (1.7), (1.8) with compact support.  

 

Let 𝑓(𝜂) be a weak solution of the problem (1.7), (1.8) with compact support. Therefore, it follows from Lemma 

5, that if 𝑓0 > 0, problem (1.7), (1.8) only has such a solution if 2𝑝 + 𝑞 > 0 and it is of the form 

 

 𝑓(𝜂) > 0 on [0, 𝑎).   

 𝑓(𝜂) = 0 on [𝑎, ∞). 

 

for some 𝑎 > 0. That is, 𝑓 must be of the type discussed above, and by Theorem 1, there exists only one such 

solution.  

 

If 𝑓0 = 0, besides the family of solution discussed above, one might expect non-trivial solution which are zero 

on a disconnected subset of (0, ∞). We now prove that such solution cannot exist. 

 

Let 𝑓 be a weak solution such that 𝑓 > 0  on (𝑎2, 𝑎1), where 0 < 𝑎1 < 𝑎2 < ∞ and 𝑓 = 0  at 𝜂 = 𝑎1 and 𝜂 = 𝑎2. 

Then, for 𝑓 to be a weak solution of (1.7), we require,  

 
𝑓(𝑎𝑖) = 0,   (𝑓𝑚)′(𝑎𝑖) = 0                     𝑖 = 1,2. 

On (𝑎1, 𝑎2), 𝑓 is a classical solution of (1.7) and hence integration of (1.7) from 𝑎1 to 𝑎2 yields  

 0 = (𝑝 + 𝑞) ∫ 𝑓(𝜉)𝑑𝜉
𝑎2

𝑎1
  

 

Because 𝑝 + 𝑞 = (2𝑝 + 𝑞) − 𝑝 < 0 and 𝑓 > 0  on (𝑎1, 𝑎2) we arrive at a contradiction . 

 

It follows that if 𝑓0 = 0,  any weak solution of problem (1.7),(1.8) with compact support must belong to the 

family of solution discussed above. Thus, we have proved the following theorem. 
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Theorem 2 

 

(i) Let 𝑓0 > 0. Then there exists a unique weak solution with compact support of problem (1.7), (1.8) if and 

only if 𝑝 ≥ 0 and 2𝑝 + 𝑞 > 0 

(ii) Let 𝑓0 = 0.  Then there exists a non-trivial weak solution with compact support of (1.7), (1.8) if and only 

if 𝑝 > 0 and 2𝑝 + 𝑞 = 0. For solution 𝑓 with the property 𝑓 > 0 on (0, 𝑎) and 𝑓 = 0  on [𝑎, ∞).  
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