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ABSTRACT 

 

Several previous publications have shown the area and delay reduction when implementing real number 

computation using HUB formats for both floating-point and fixed-point. In this paper, we present a HUB 

floating-point adder for FPGA which greatly improves the speed of previous proposed HUB designs for these 

devices. Our architecture is based on the double path technique which reduces the execution time since each 

path works in parallel. We also deal with the implementation of unbiased rounding in the proposed adder. 

Experimental results are presented showing the goodness of the new HUB adder for FPGA 
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I. INTRODUCTION 

 

to When specific Floating-Point (FP) is needed for 

some applications, Field-Programmable Gate Array 

(FPGA) design allows to meet the required features. 

Thus, nowadays many systems are not implemented 

in ASIC but using FPGAs. Traditionally FPGA 

implementations use fixed-point arithmetic mainly 

because many of the Digital Signal Processing (DSP) 

applications tolerate error precision providing low-

cost implementation at the same time. However, in 

the last years a fast growth of floating-point 

implementations and studies has been seen in the 

literature. There are more DSP applications 

implementing complex algorithms which require 

extended dynamic range and higher precision. The 

drawback is that the implied implementations on 

FPGA are costlier than their fixed-point counterparts. 

However, there are some promising researches 

proposing designs of adders and multipliers (key units 

on most DSP applications) which use other format 

than the IEEE-754 standard for binary floating point 

with lower cost. Specifically, the implementations on 

FPGA of an adder and multiplier are analyzed in 

having simultaneously less area and delay (compared 

to conventional implementations). In this brief, we 

use the same format as that used in named HUB 

format. 

 

Half Unit Biased 

HUB is the acronym of Half-Unit-Biased format and 

it is based on shifting the standard numbers by half 

unit in the last place (ULP). Some of its important 

features are that the two’s complement is carried out 

by bit-wise inversion, the round to- nearest is 

performed by simple truncation, and requires the 
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same number of bits for storage as its conventional 

counterpart for the same precision. Thanks to those 

characteristics, it is possible to eliminate the rounding 

logic which significantly reduces both area and delay. 

 

HUB in adder 

A floating-point HUB number, x, has a similar 

representation as the binary floating-point standard. 

The difference between both representations is in the 

mantissa. A normalized HUB mantissa, Mx, has both a 

value 1 < Mx < 2 and an implicit least significant bit 

(ILSB) which equals one. The efficiency of using HUB 

formats for floating-point approach has been 

demonstrated in several works, the authors analyze 

the benefits of using HUB format for floating-point 

adders, multipliers, and converters from a 

quantitative point of view for ASIC implementation. 

The HUB adder proposed in is optimized for FPGA 

devices in achieving excellent results. In this paper 

we present new architectures based on the double-

path technique that speed up the previous results of 

HUB addition in FPGA devices. Moreover, the 

problem of bias when rounding in the previous 

architectures is overcome by adapting the proposal in. 

 

Rounding in IEEE754 

The rounding operation is performed in almost all 

arithmetic operations involving real numbers. There 

are several ways to perform this operation, although 

unbiased rounding-to-nearest (RN) has the best 

characteristics. It provides the closest possible number 

to the original exact value, but if the exact value is 

exactly halfway between two numbers, then it is 

selected randomly. The most commonly used 

approach is the tie-to-even method, which is the 

default mode of the floating-point (FP) IEEE-754 

standard . However, the implementation of this 

rounding mode is relatively complex, and the area 

and the delay introduced for rounding circuits may be 

very large, since they normally lead in the critical 

path. For this reason, it is generally used in the FP 

circuits. Many researchers have proposed different 

architectures to reduce the impact of this delay by 

merging rounding with other operations or removing 

it from the critical path, wherein if the result of an 

addition is the input to another one, the addition 

required for rounding up is postponed until the next 

operation. In a dedicated circuit to compute the sticky 

bit in parallel with the main path was proposed with 

the aim of accelerating the implementation of 

multiplication. 

A compound adder (a circuit that, having a carry-save 

input, delivers the results and the result plus one) was 

proposed in to generate the rounded result of any 

operation. In three different methods were compared 

for multipliers that simplify rounding decisions and 

merge the rounding up with the computation of the 

operation. Similarly, Burgess proposed combining 

rounding with the final addition to convert the carry-

save solution into the conventional representation. 

  

RN in HUB 

A totally different approach would be to use a new 

real-number encoding, in order to simplify the 

implementation of RN. Thus, the problem would 

change from optimizing the rounding operation to 

dealing with arithmetic operations under the new 

number representation. This proposal is found with 

RN representations bandwidth half-unit-biased (HUB) 

formats. Together with other advantages, these new 

formats allow performing RN simply by truncation. 

On the other hand, these new formats are based on 

the simple modifications of the conventional formats 

and so could be applied to practically any 

conventional format. In this paper, we focus on the 

HUB FP formats. 

The efficiency of using the HUB formats for a fixed-

point representation has been demonstrated By 

reducing the bit width while maintaining the same 

accuracy, the area cost and delay of finite impulse 

response filter implementations have been 

dramatically reduced and similarly for the QR 

decomposition . In this paper, we perform a 

quantitative estimation of the benefit obtained using 
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the HUB formats to implement the FP computation 

systems under RN. Some preliminary results for half-

precision FP adders and multipliers were presented. 

The work in shows that the area and power 

consumption of a basic FP adder could be improved 

by up to 70% for high frequencies when using HUB 

formats, whereas they remain the same for the basic 

FP multiplier. In addition to a deeper analysis, in this 

paper, we extend these results to other sizes and 

circuits, such as converters. 

In comparison with the work i, the main 

contributions of this paper are as follows: 

1) A detailed architecture for basic adders and 

multipliers to deal with HUB numbers; 

2) A study of the conversions between different FP 

formats and the corresponding architectures; 

3) The experimental comparison of accuracy 

between HUB and conventional formats; 

4) Measures of improvements in area, speed, and 

power consumption for single- and double-

precision adders, multipliers, and converters. 

 

FPGA 

Advancements in Field Programmable Gate Array 

(FPGA) technology are continuously being reported. 

High speed and flexibility, possibility of taking 

advantage of the inherent parallelism of many 

systems and algorithms, short time-to-market, good 

cost- performance tradeoff, large amount of 

embedded resources, and availability of specialized 

intellectual property (IP) cores make FPGAs the 

preferred implementation platform in many industrial 

applications. Until a relatively recent time there were 

two separate approaches to design digital systems for 

industrial control applications: a sequential (software) 

approach based on either microcontrollers or Digital 

Signal Processors (DSPs) and associated embedded 

peripherals, and a parallel (hardware) approach, 

usually restricted to solve specific parts of problems 

requiring high-performance solutions. 

Industrial penetration of this second approach was 

conditioned by the limited knowledge of the 

technology and the design tools, lack of maturity of 

these tools, price, and lack of some specialized 

hardware functionalities. One of the major 

impediments to a wider adoption of reconfigurable 

computing as a new paradigm is the complexity of 

programming FPGAs and the need for some hardware 

design expertise to tame them. As FPGAs evolved 

taking advantage of fabrication technology scaling 

down, vendors started to develop soft processor cores 

that may be implemented from standard FPGA 

resources, as well as to integrate embedded (hard) 

processors in their devices. This trend has seen a 

tremendous continuous development, to the extent 

that current solutions are countless. 

Because of this, the past dichotomy of design 

approaches resulted in a paradigm shift that 

constitutes the major current asset of FPGAs, which 

cannot be just seen as hardware accelerators anymore, 

but as very powerful System-on-Chip (SoC) platforms. 

The combination in a single chip of embedded (or soft) 

processors with custom optimized, high performance 

hardware peripherals has open the door for the 

unlimited application of FPGAs in all areas of digital 

design for industrial applications. Not surprisingly, 

the characteristics, design tools and methodologies, 

and application areas of these devices have been 

extensively analyzed over the past years , just to 

mention the works specifically focused on industrial 

systems. However, being a relatively mature but also 

still young area, new features are continuously being 

developed. 

Therefore, in the authors’ opinion a review of the 

most recent advancements in FPGA technology will 

be useful for the industrial informatics research 

community. Thus, the aim of this article is to provide 

such review together with an analysis of the impact 

the new features of current devices may have in the 

design of digital systems for industrial applications. 

The analysis is mainly carried out in three areas, 

namely digital real-time simulation, advanced control 

techniques, and electronic instrumentation, with 
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focus on mechatronics, robotics, and power systems 

design. 

One major issue when evaluating new architectures is 

determining how a fair comparison to existing 

commercial FPGA architectures can be made. The 

Versatile Place and Route (VPR) tool is widely used 

in FPGA architecture research; however, the 

computer-aided design (CAD) algorithms used within 

are different from those of modern FPGAs, as is its 

underlying island- style FPGA architecture. As 

examples, VPR does not support retiming, nor does it 

support carry chains that are present in all major 

FPGA devices. To enable modeling of our FPFPGA 

and comparison with a standard island-style FPGA, 

we propose a methodology to evaluate an architecture 

based on an existing FPGA device. The key element 

of our methodology is to adopt virtual embedded 

blocks (VEBs), created from the reconfigurable fabric 

of an existing FPGA, to model the area, placement, 

and delay of the embedded blocks to be included in 

the FPGA fabric. Using this method, the impact of 

incorporating embedded elements on performance 

and area can be quickly evaluated, even if an actual 

implementation of the element is not available. 

 

II. PROPOSED METHOD 

 

BASIC OPERATIONS UNDER HUB FORMATS 

An HUB FP format should include a significand that 

is represented using an HUB fixed-point number and 

an exponent that is represented in any conventional 

way . An HUB fixed-point format is produced when 

the exactly represented numbers (ERNs) of a 

conventional representation are increased (or biased) 

by half unit in the last place (ULP). This shifting of 

the ERNs could be seen as an implicit least significant 

bit (ILSB) set to one. For example, the HUB version of 

the IEEE-754 single precision has 25 bits for the 

significand, where the first and last bits are implicit 

and equal to 1, but only 23 bits are stored, as in the 

conventional version. 

Fig. 2.1 shows an example for a binary FP format with 

3-bit significand. Given a real value, its representation 

using either conventional or HUB formats will 

produce different rounding errors, although the 

accuracy of both the formats is the same. In fact, the 

rounding errors for both the formats are 

complementary (i.e., the addition of both the 

rounding errors equals 0.5 ULP). The main advantage 

of computing the HUB formats is that the two’s 

complement operation is implemented simply by a 

bitwise inversion and RN by truncation. The unbiased 

rounding may require forcing the LSB to zero, when 

all the discarded bits are zero . 

  

The general procedure to operate with the HUB 

numbers involves the following steps : First, the ILSB 

is explicitly appended to the significand of input 

operands. Second, the operation is performed in a 

classic way, such that all the bits of the significand 

result before rounding are obtained. Finally, the 

significand is rounded simply by truncation. However, 

since the ILSB is a constant value, the datapath could 

be further optimized depending on the specific 

operation. Next, 

 
Fig. 2.1. Example of ERNs for a conventional FP 

format and its HUB version. 
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we develop several architectures to support the HUB 

numbers. These architectures are adapted from the 

basic architectures described . We are aware that 

many optimizations to these architectures have been 

proposed in the literature. However, none can be 

selected as the best, since this selection depends on 

many different factors. Even if the more relevant ones 

were selected, it would not be possible to review all of 

them in this paper. Thus, we simply describe the 

adaptation of these basic architectures with the aim of 

their being used as examples to investigate the 

implementation of other much more sophisticated 

approaches. 

 

FP ADDERS 

A basic FP addition for conventional numbers 

requires several steps, which could be implemented 

using the significand datapath shown in Fig. 2.2(a). 

First, the operand exponents (d = Ex − Ey ) are 

compared and the significands are aligned accordingly. 

The latter is usually performed by right shifting (|d| 

bits) the significand corresponding to the number 

with the lowest exponent, which is selected using the 

swap module and the sign of d. The computation of 

the sticky bit corresponding to the bits shifted beyond 

the precision of the significand is also performed. The 

sticky bit is required for the computation of two’s 

complement and rounding. Second, either the 

effective addition or the subtraction of the aligned 

significands is performed for the m + 3 MSBs (the 

significand plus guard, round, and sticky bits). In 

general, in order to perform subtraction, the 

significand corresponding to the lower exponent is 

previously one’s complemented using the significand 

comparator and the conditional bit inverters. 

 
Fig. 2.2. Basic FP adder architectures for (a) standard 

and (b) HUB numbers. 

 

Moreover, the sticky bit is introduced in the adder to 

complete the two’s complement transformation. The 

result of addition has to be normalized by shifting 1 

bit to the right, if an overflow is produced. Otherwise, 

it is shifted to the left if there are leading zeros whose 

number is computed in the leading one detector. 

Besides normalization, the result has to be rounded 

based on the two LSBs of the result and the sticky bit. 

However, no roundup is required when the result has 

at least two leading zeros . Thus, left shifting and 

rounding are performed in parallel paths. On the 

other hand, the new exponent is also generated in a 

parallel path. If the result of addition is rounded up, 

an overflow may be produced, which requires a new 

correction of the exponent. The same basic 

architecture could be used for the HUB numbers, 

although the significands are 1 bit larger and the 

rounding circuit is removed. However, knowing that 

the ILSB always equals 1, the significand datapath is 

further optimized, as shown in Fig. 3.2(b). The first 

difference is in the right shifter used to align the 

significands, because the ILSB has to be included at 

the input to obtain a correct result if no shifting is 

performed. Furthermore, the sticky-bit computation 

logic has been removed. Given that the ILSBs of both 

the significands equals 1, the sticky bit is always one 

for nonaligned significands. Moreover, the sticky bit 

is not required for aligned significands because 

shifting is not performed. 
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In this HUB architecture, we should note that the 

conditional bit inverters directly perform the two’s 

complement, as explained in Section II, and no carry 

input is required in the fixed-point adder. The 

conditional inverter at the output of the right shifter 

has to be modified to control when shifting is not 

performed. In this case, the ILSB is explicitly 

represented by the LSB of the output. It then has to 

be set to 1 after the inversion to complete the two’s 

complement operation. 

On the other hand, Fig. 2.2(b) shows that the ILSB of 

the second operand is appended at the corresponding 

input of the fixed-point adder. Despite this, the fixed-

point adder is slightly shorter than the one shown in 

Fig. 2.2(a). The latter requires two guard bits and the 

carry input for the sticky bit (i.e., m +2 bits) due to 

the rounding operation. However, in the HUB 

approach shown in Fig. 3.2(b), no guard bits are 

required because rounding is performed by truncation. 

Thus, the fixed-point adder has only m +1 bits (one 

additional bit to support the ILSB). In fact, the ILSB is 

shown in the architecture to simplify the explanation, 

although, this fixed-point addition can be 

implemented using an m-bit adder and an inverter. 

Finally, the rounding path [gray in Fig. 2.2(a)] is 

removed, because rounding is simply performed by 

truncation. Consequently, given that explicit 

rounding up is not performed for the HUB 

architecture, overflow could not occur after rounding. 

Thus, the additional correction of the exponent 

required in Fig. 2.2(a) is eliminated, which also 

simplifies the exponent data path. 

 

PROPOSED DOUBLE-PATH HUB ADDER 

The proposed double-path HUB adder is presented in 

Fig.3.3. It has a global structure similar to that of the 

classic double- path implementation, except that the 

circuits required for rounding have been eliminated 

to handle floating point HUB numbers. The left adder 

forms the Close path, and the right adder forms the 

Far path, both including only one variable shifter (R-

SHIFTER in the Far path and L-SHIFTER in the Close 

path, shadowed in Fig. 3.3). The variable right shifter, 

R-SHIFTER of Fig. 3.2, is now placed in the Far path 

and the variable left- and one-bit right shifter L/R1-

SHIFTER of Fig. 3.2 is now placed in the Close path. 

Apart from the aforementioned differences, when 

comparing the double-path approach (Fig. 3.3) with 

the previous single path approach (Fig. 3.2) we can 

see that the comparator of Fig. 3.2 has been prevented 

and the inversion of one of the operands (if required) 

is performed before shifting in the double- path 

architecture (Fig. 3.3). We can also see that there is a 

fixed R1- SHIFTER in the Close path and a fixed 

L1/R1-SHIFTER in the Far path. These modules are 

explained later and the logic needed to implement 

them is very simple (similar to one multiplexer). 

 
Fig. 2.3. Double-path HUB adder 

Before entering in Close and Far path, the swap 

module of Fig. 3.3 places the mantissa of the highest 

exponent in the left output depending on the sign of 

the difference of exponents (d). This ensures that the 

mantissa of the greatest number is located at the left 

output of the swap module except when the 

difference of exponent is 0 (d = 0), in which case the 

position of the greatest operand is unknown. The top 

conditional inverter of Fig. 2.3 inverts the operand if 

the Effective Operation (Eop) is a subtraction only. 

Next, the operands arrive to both the Close and Far 

paths. 
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Note that in both paths the Implicit Least Significant 

Bit (ILSB) of the operands is incorporated as the Least 

Significant Bit (LSB) of the operation in the suitable 

modules in the architecture (R1-SHIFTER, R- 

SHIFTER and both adders). Note, as well, that sign 

extension (bit 0) is incorporated in the top conditional 

inverter and at the second input of the two adders. 

Let us deal with the Close and the Far paths 

separately: 

  

CLOSE PATH. 

The Close path is intended for effective subtraction of 

two floating-point HUB numbers with a difference 

between the exponents less than two (d = 0; 1). In this 

case, aligning the input operands is almost not 

required, but normalizing the results may required 

large left shifting. The R1-SHIFTER module in the 

Close path of Fig. 3.3 is used when d = 1 to perform a 

fixed shift of one position to the right (if d = 0 it 

allows the data to go through without shifting). 

The output c of the adder is suitably shifted by the 

variable left-shifter, L-SHIFTER. The number of bits 

to be shifted is calculated by the module LZOD which 

detects the leading 0 or 1 depending on the sign of the 

output c. Note that the prevention of the comparator 

of Fig. 3.2 makes a negative output c possible. This 

happens when the input operands have the same 

exponent (d=0) and the swap module place the 

mantissa of the lowest operand in the left output. 

Thus, a conditional inverter is required at the end of 

the Close path (Cond. Inverter module in the bottom 

of Fig. 3.3). The left shift is filled with 0’s. 

 

FAR PATH. 

This path covers the rest of the cases (i.e. subtraction 

with d > 1 and addition). In this case, aligning the 

input operands may be required but, at most, one-bit 

shifting may be required for normalization. Therefore, 

a variable shifter is required at the input of the adder 

for alignment (R-SHIFTER in the Far path of Fig. 3.3). 

The final L1/R1-SHIFTER module corrects a possible 

overflow in the addition operation (one-bit right shift) 

or the case of having a pattern 0.1xxx in the result of a 

subtraction operation (one-bit left shift). Note that for 

the subtraction of the mantissas of two HUB numbers, 

it is not necessary to calculate the sticky bit since it is 

always one due to the ILSB of the second operand 

(the right shifted operand), and thus, it always 

involves an incoming carry to the adder (sticky=1). 

After the Close and Far paths, the final multiplexer of 

Fig. 3.3 selects the result of either the Close or the Far 

path depending of the effective operation (Eop) and 

the difference of exponents (d). 

 

UNBIASED ROUND-TO-NEAREST 

When the result of an operation is just in the middle 

of two exactly representable numbers (tie case), 

rounding may be performed in any direction. 

However, the careless election of this direction may 

produce a statistical bias in the results. To avoid 

annoying statistical anomalies of some applications 

due to this bias, we should round either up or down 

with similar probability for the tie case. In a deep 

analysis of the three source of bias for HUB-FP 

addition is presented. A bias can be produced under 

any of the next operations: 

1) aligned addition (d = 0), 

2) aligned subtraction (d = 0), 

3) subtraction with difference of exponents of one 

(d = 1). 

In the algorithms to reduce, or even, prevent the bias 

for the tie case are also proposed. Next, we introduce 

this solution to our double-path architecture. The first 

source of bias (aligned addition) occurs only in the 

Far path (which is devoted to perform subtractions 

with d > 1 and additions), whereas the other two 

always happen in the Close path (which is devoted to 

perform subtractions with d = 0; 1). Hence, the 

adaptation of the solution proposed to our 

architecture is almost straightforward. Fig. 2.4 shows 

the modifications required in the architecture of Fig. 

2.3 to support the unbiased solution. The differences 

with Fig. 2.3 are the two modules entitled” unbiased” 

(shadowed in Fig. 2.4). These modules involve a very 
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simple logic such that the hardware cost and the 

penalty time are very small. On the one hand, the 

logic to prevent the bias for the aligned addition is 

included at the output of the Far path. On the other 

hand, the bias for the aligned subtraction is, in fact, 

prevented in the original double-path architecture 

and only the logic to eliminate the bias for the third 

source is needed. In this case, depending on the LSB 

of the result, the pattern 0111... is inserted in the left 

shifting. 

We should note that in the simple HUB adder (Fig. 

3.2) it is possible to prevent the bias only for the case 

of aligned addition (if the corresponding logic is 

appended). To eliminate the other two sources of bias 

a negative result at the output of the adder is required. 

This is 

 
Fig. 2.4. Unbiased Double-path HUB adder 

 

not possible in the simple path approach due to the 

fact that the comparator in the architecture of Fig. 3.2 

ensures a positive result at the output. 

 

III. METHODOLOGY AND RESULT 

 

XILINX ISE DESIGN SUITE 

The Xilinx ISE tools allow the design to be entered 

several ways including graphical schematics, state 

machine diagrams, VHDL, and Verilog. The 

ISE®Design Suite controls all aspects of the design 

flow. Through the Project Navigator interface, you 

can access all of the design entry and design 

implementation tools. You can also access the files 

and documents associated with your project. 

 

Project Navigator Interface 

By default, the Project Navigator interface is divided 

into four panel subwindows, as seen in Fig.4.2. On the 

top left are the Start, Design, Files, and Libraries 

panels, which include display and access to the source 

files in the project as well as access to running 

processes for the currently selected source. The Start 

panel provides quick access to opening projects as 

well as frequently access reference material, 

documentation and tutorials. At the bottom of the 

Project Navigator are the Console, Errors, and 

Warnings panels, which display status messages, 

errors, and warnings. To the right is a multi-

document interface (MDI) window referred to as the 

Workspace. The Workspace enables you to view 

design reports, text files, schematics, and simulation 

waveforms. Each window can be resized, undocked 

from Project Navigator, moved to a new location 

within the main Project Navigator  window,  tiled, 

layered,  or  closed.  You  can use the View >Panels 

menu  commands to open  or  close panels.  You  can 

use the Layout > Load Default Layout to restore the 

default window layout. 

 
Fig.3.1.Project Navigator Interface 
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Design Panel 

The Design panel provides access to the 

• View pane 

• Hierarchy pane 

• Processes pane 

 

View Pane 

The View pane radio buttons enable you to view the 

source modules associated with the implementation 

or Simulation Design View in the Hierarchy pane. If 

you select Simulation, you must select a simulation 

phase from the drop down list. 

Hierarchy Pane 

The Hierarchy pane displays the project name, the 

target device, user documents, and design source files 

associated with the selected Design View. The View 

pane at the top of the Design panel allows you to view 

only those source files associated with the selected 

Design View, such as Implementation or Simulation. 

Each file in the Hierarchy pane has an associated icon. 

The icon indicates the file type (HDL file, schematic, 

core, or text file, for example). For a complete list of 

possible source types and their associated icons, see 

the ―Source File Types‖  topic in the ISE Help. 

From Project Navigator, select Help > Help Topics to 

view the ISE Help. If a file contains lower levels of 

hierarchy, the icon has a plus symbol (+) to the left of 

the name. You can expand the hierarchy by clicking 

the plus symbol (+). You can open a file for editing by 

double-clicking on the filename. 

Processes Pane 

The Processes pane is context sensitive, and it changes 

based upon the source type selected in the Sources 

pane and the top-level source in your project. From 

the Processes pane, you can run the functions 

necessary to define, run, and analyze your design. 

 

3.1 Workspace 

 

The Workspace is where design editors, viewers, and 

analysis tools open. These include ISE Text Editor, 

Schematic Editor, Constraint Editor, Design 

Summary/Report Viewer, RTL and Technology 

Viewers, and Timing Analyzer. Other tools such as 

the PlanAhead™ tool for I/O planning and 

floorplanning, ISim, third- party text editors, XPower 

Analyzer, and iMPACT open in separate windows 

outside the main Project Navigator environment 

when invoked. 

The Above mentioned method is applied in Xilinx 

and the output are obtained from the simulation 

window 

 
 

 

IV. CONCLUSION 

 

A double-path based HUB-FP adder to speed up the 

computation on FPGA devices is proposed. Compared 

to the single-path adder, the cost in area and energy 

of the double-path approach is reasonable, giving a 

substantial speedup, especially for short bit-width 

mantissas. In addition, we analyze the impact of 

adding the hardware required to produce unbiased 

addition in the proposed architecture. In this case, 

with a slight increment in the delay and area, the new 

architecture prevents the three sources of bias. 
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