
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Conference on Advances in Materials, Computing and Communication Technologies

In Association withInternational Journal of Scientific Research in Science and Technology

Volume 9 | Issue 1 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

 708

HUB Floating-Point Adder Using Double Path
Dr. S. Ramesh1, Saravanavel K2

1Professor Department of ECE, KPR Institute of Technology Coimbatore, Tamil Nadu, India
2Student (ME – VLSI) KPR Institute of Technology, Coimbatore, Tamil Nadu, India

ABSTRACT

Several previous publications have shown the area and delay reduction when implementing real number

computation using HUB formats for both floating-point and fixed-point. In this paper, we present a HUB

floating-point adder for FPGA which greatly improves the speed of previous proposed HUB designs for these

devices. Our architecture is based on the double path technique which reduces the execution time since each

path works in parallel. We also deal with the implementation of unbiased rounding in the proposed adder.

Experimental results are presented showing the goodness of the new HUB adder for FPGA

Keywords—Component, Formatting, Style, Styling, Insert

I. INTRODUCTION

to When specific Floating-Point (FP) is needed for

some applications, Field-Programmable Gate Array

(FPGA) design allows to meet the required features.

Thus, nowadays many systems are not implemented

in ASIC but using FPGAs. Traditionally FPGA

implementations use fixed-point arithmetic mainly

because many of the Digital Signal Processing (DSP)

applications tolerate error precision providing low-

cost implementation at the same time. However, in

the last years a fast growth of floating-point

implementations and studies has been seen in the

literature. There are more DSP applications

implementing complex algorithms which require

extended dynamic range and higher precision. The

drawback is that the implied implementations on

FPGA are costlier than their fixed-point counterparts.

However, there are some promising researches

proposing designs of adders and multipliers (key units

on most DSP applications) which use other format

than the IEEE-754 standard for binary floating point

with lower cost. Specifically, the implementations on

FPGA of an adder and multiplier are analyzed in

having simultaneously less area and delay (compared

to conventional implementations). In this brief, we

use the same format as that used in named HUB

format.

Half Unit Biased

HUB is the acronym of Half-Unit-Biased format and

it is based on shifting the standard numbers by half

unit in the last place (ULP). Some of its important

features are that the two’s complement is carried out

by bit-wise inversion, the round to- nearest is

performed by simple truncation, and requires the

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 708-717

709

same number of bits for storage as its conventional

counterpart for the same precision. Thanks to those

characteristics, it is possible to eliminate the rounding

logic which significantly reduces both area and delay.

HUB in adder

A floating-point HUB number, x, has a similar

representation as the binary floating-point standard.

The difference between both representations is in the

mantissa. A normalized HUB mantissa, Mx, has both a

value 1 < Mx < 2 and an implicit least significant bit

(ILSB) which equals one. The efficiency of using HUB

formats for floating-point approach has been

demonstrated in several works, the authors analyze

the benefits of using HUB format for floating-point

adders, multipliers, and converters from a

quantitative point of view for ASIC implementation.

The HUB adder proposed in is optimized for FPGA

devices in achieving excellent results. In this paper

we present new architectures based on the double-

path technique that speed up the previous results of

HUB addition in FPGA devices. Moreover, the

problem of bias when rounding in the previous

architectures is overcome by adapting the proposal in.

Rounding in IEEE754

The rounding operation is performed in almost all

arithmetic operations involving real numbers. There

are several ways to perform this operation, although

unbiased rounding-to-nearest (RN) has the best

characteristics. It provides the closest possible number

to the original exact value, but if the exact value is

exactly halfway between two numbers, then it is

selected randomly. The most commonly used

approach is the tie-to-even method, which is the

default mode of the floating-point (FP) IEEE-754

standard . However, the implementation of this

rounding mode is relatively complex, and the area

and the delay introduced for rounding circuits may be

very large, since they normally lead in the critical

path. For this reason, it is generally used in the FP

circuits. Many researchers have proposed different

architectures to reduce the impact of this delay by

merging rounding with other operations or removing

it from the critical path, wherein if the result of an

addition is the input to another one, the addition

required for rounding up is postponed until the next

operation. In a dedicated circuit to compute the sticky

bit in parallel with the main path was proposed with

the aim of accelerating the implementation of

multiplication.

A compound adder (a circuit that, having a carry-save

input, delivers the results and the result plus one) was

proposed in to generate the rounded result of any

operation. In three different methods were compared

for multipliers that simplify rounding decisions and

merge the rounding up with the computation of the

operation. Similarly, Burgess proposed combining

rounding with the final addition to convert the carry-

save solution into the conventional representation.

RN in HUB

A totally different approach would be to use a new

real-number encoding, in order to simplify the

implementation of RN. Thus, the problem would

change from optimizing the rounding operation to

dealing with arithmetic operations under the new

number representation. This proposal is found with

RN representations bandwidth half-unit-biased (HUB)

formats. Together with other advantages, these new

formats allow performing RN simply by truncation.

On the other hand, these new formats are based on

the simple modifications of the conventional formats

and so could be applied to practically any

conventional format. In this paper, we focus on the

HUB FP formats.

The efficiency of using the HUB formats for a fixed-

point representation has been demonstrated By

reducing the bit width while maintaining the same

accuracy, the area cost and delay of finite impulse

response filter implementations have been

dramatically reduced and similarly for the QR

decomposition . In this paper, we perform a

quantitative estimation of the benefit obtained using

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 708-717

710

the HUB formats to implement the FP computation

systems under RN. Some preliminary results for half-

precision FP adders and multipliers were presented.

The work in shows that the area and power

consumption of a basic FP adder could be improved

by up to 70% for high frequencies when using HUB

formats, whereas they remain the same for the basic

FP multiplier. In addition to a deeper analysis, in this

paper, we extend these results to other sizes and

circuits, such as converters.

In comparison with the work i, the main

contributions of this paper are as follows:

1) A detailed architecture for basic adders and

multipliers to deal with HUB numbers;

2) A study of the conversions between different FP

formats and the corresponding architectures;

3) The experimental comparison of accuracy

between HUB and conventional formats;

4) Measures of improvements in area, speed, and

power consumption for single- and double-

precision adders, multipliers, and converters.

FPGA

Advancements in Field Programmable Gate Array

(FPGA) technology are continuously being reported.

High speed and flexibility, possibility of taking

advantage of the inherent parallelism of many

systems and algorithms, short time-to-market, good

cost- performance tradeoff, large amount of

embedded resources, and availability of specialized

intellectual property (IP) cores make FPGAs the

preferred implementation platform in many industrial

applications. Until a relatively recent time there were

two separate approaches to design digital systems for

industrial control applications: a sequential (software)

approach based on either microcontrollers or Digital

Signal Processors (DSPs) and associated embedded

peripherals, and a parallel (hardware) approach,

usually restricted to solve specific parts of problems

requiring high-performance solutions.

Industrial penetration of this second approach was

conditioned by the limited knowledge of the

technology and the design tools, lack of maturity of

these tools, price, and lack of some specialized

hardware functionalities. One of the major

impediments to a wider adoption of reconfigurable

computing as a new paradigm is the complexity of

programming FPGAs and the need for some hardware

design expertise to tame them. As FPGAs evolved

taking advantage of fabrication technology scaling

down, vendors started to develop soft processor cores

that may be implemented from standard FPGA

resources, as well as to integrate embedded (hard)

processors in their devices. This trend has seen a

tremendous continuous development, to the extent

that current solutions are countless.

Because of this, the past dichotomy of design

approaches resulted in a paradigm shift that

constitutes the major current asset of FPGAs, which

cannot be just seen as hardware accelerators anymore,

but as very powerful System-on-Chip (SoC) platforms.

The combination in a single chip of embedded (or soft)

processors with custom optimized, high performance

hardware peripherals has open the door for the

unlimited application of FPGAs in all areas of digital

design for industrial applications. Not surprisingly,

the characteristics, design tools and methodologies,

and application areas of these devices have been

extensively analyzed over the past years , just to

mention the works specifically focused on industrial

systems. However, being a relatively mature but also

still young area, new features are continuously being

developed.

Therefore, in the authors’ opinion a review of the

most recent advancements in FPGA technology will

be useful for the industrial informatics research

community. Thus, the aim of this article is to provide

such review together with an analysis of the impact

the new features of current devices may have in the

design of digital systems for industrial applications.

The analysis is mainly carried out in three areas,

namely digital real-time simulation, advanced control

techniques, and electronic instrumentation, with

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 708-717

711

focus on mechatronics, robotics, and power systems

design.

One major issue when evaluating new architectures is

determining how a fair comparison to existing

commercial FPGA architectures can be made. The

Versatile Place and Route (VPR) tool is widely used

in FPGA architecture research; however, the

computer-aided design (CAD) algorithms used within

are different from those of modern FPGAs, as is its

underlying island- style FPGA architecture. As

examples, VPR does not support retiming, nor does it

support carry chains that are present in all major

FPGA devices. To enable modeling of our FPFPGA

and comparison with a standard island-style FPGA,

we propose a methodology to evaluate an architecture

based on an existing FPGA device. The key element

of our methodology is to adopt virtual embedded

blocks (VEBs), created from the reconfigurable fabric

of an existing FPGA, to model the area, placement,

and delay of the embedded blocks to be included in

the FPGA fabric. Using this method, the impact of

incorporating embedded elements on performance

and area can be quickly evaluated, even if an actual

implementation of the element is not available.

II. PROPOSED METHOD

BASIC OPERATIONS UNDER HUB FORMATS

An HUB FP format should include a significand that

is represented using an HUB fixed-point number and

an exponent that is represented in any conventional

way . An HUB fixed-point format is produced when

the exactly represented numbers (ERNs) of a

conventional representation are increased (or biased)

by half unit in the last place (ULP). This shifting of

the ERNs could be seen as an implicit least significant

bit (ILSB) set to one. For example, the HUB version of

the IEEE-754 single precision has 25 bits for the

significand, where the first and last bits are implicit

and equal to 1, but only 23 bits are stored, as in the

conventional version.

Fig. 2.1 shows an example for a binary FP format with

3-bit significand. Given a real value, its representation

using either conventional or HUB formats will

produce different rounding errors, although the

accuracy of both the formats is the same. In fact, the

rounding errors for both the formats are

complementary (i.e., the addition of both the

rounding errors equals 0.5 ULP). The main advantage

of computing the HUB formats is that the two’s

complement operation is implemented simply by a

bitwise inversion and RN by truncation. The unbiased

rounding may require forcing the LSB to zero, when

all the discarded bits are zero .

The general procedure to operate with the HUB

numbers involves the following steps : First, the ILSB

is explicitly appended to the significand of input

operands. Second, the operation is performed in a

classic way, such that all the bits of the significand

result before rounding are obtained. Finally, the

significand is rounded simply by truncation. However,

since the ILSB is a constant value, the datapath could

be further optimized depending on the specific

operation. Next,

Fig. 2.1. Example of ERNs for a conventional FP

format and its HUB version.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 708-717

712

we develop several architectures to support the HUB

numbers. These architectures are adapted from the

basic architectures described . We are aware that

many optimizations to these architectures have been

proposed in the literature. However, none can be

selected as the best, since this selection depends on

many different factors. Even if the more relevant ones

were selected, it would not be possible to review all of

them in this paper. Thus, we simply describe the

adaptation of these basic architectures with the aim of

their being used as examples to investigate the

implementation of other much more sophisticated

approaches.

FP ADDERS

A basic FP addition for conventional numbers

requires several steps, which could be implemented

using the significand datapath shown in Fig. 2.2(a).

First, the operand exponents (d = Ex − Ey) are

compared and the significands are aligned accordingly.

The latter is usually performed by right shifting (|d|

bits) the significand corresponding to the number

with the lowest exponent, which is selected using the

swap module and the sign of d. The computation of

the sticky bit corresponding to the bits shifted beyond

the precision of the significand is also performed. The

sticky bit is required for the computation of two’s

complement and rounding. Second, either the

effective addition or the subtraction of the aligned

significands is performed for the m + 3 MSBs (the

significand plus guard, round, and sticky bits). In

general, in order to perform subtraction, the

significand corresponding to the lower exponent is

previously one’s complemented using the significand

comparator and the conditional bit inverters.

Fig. 2.2. Basic FP adder architectures for (a) standard

and (b) HUB numbers.

Moreover, the sticky bit is introduced in the adder to

complete the two’s complement transformation. The

result of addition has to be normalized by shifting 1

bit to the right, if an overflow is produced. Otherwise,

it is shifted to the left if there are leading zeros whose

number is computed in the leading one detector.

Besides normalization, the result has to be rounded

based on the two LSBs of the result and the sticky bit.

However, no roundup is required when the result has

at least two leading zeros . Thus, left shifting and

rounding are performed in parallel paths. On the

other hand, the new exponent is also generated in a

parallel path. If the result of addition is rounded up,

an overflow may be produced, which requires a new

correction of the exponent. The same basic

architecture could be used for the HUB numbers,

although the significands are 1 bit larger and the

rounding circuit is removed. However, knowing that

the ILSB always equals 1, the significand datapath is

further optimized, as shown in Fig. 3.2(b). The first

difference is in the right shifter used to align the

significands, because the ILSB has to be included at

the input to obtain a correct result if no shifting is

performed. Furthermore, the sticky-bit computation

logic has been removed. Given that the ILSBs of both

the significands equals 1, the sticky bit is always one

for nonaligned significands. Moreover, the sticky bit

is not required for aligned significands because

shifting is not performed.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 708-717

713

In this HUB architecture, we should note that the

conditional bit inverters directly perform the two’s

complement, as explained in Section II, and no carry

input is required in the fixed-point adder. The

conditional inverter at the output of the right shifter

has to be modified to control when shifting is not

performed. In this case, the ILSB is explicitly

represented by the LSB of the output. It then has to

be set to 1 after the inversion to complete the two’s

complement operation.

On the other hand, Fig. 2.2(b) shows that the ILSB of

the second operand is appended at the corresponding

input of the fixed-point adder. Despite this, the fixed-

point adder is slightly shorter than the one shown in

Fig. 2.2(a). The latter requires two guard bits and the

carry input for the sticky bit (i.e., m +2 bits) due to

the rounding operation. However, in the HUB

approach shown in Fig. 3.2(b), no guard bits are

required because rounding is performed by truncation.

Thus, the fixed-point adder has only m +1 bits (one

additional bit to support the ILSB). In fact, the ILSB is

shown in the architecture to simplify the explanation,

although, this fixed-point addition can be

implemented using an m-bit adder and an inverter.

Finally, the rounding path [gray in Fig. 2.2(a)] is

removed, because rounding is simply performed by

truncation. Consequently, given that explicit

rounding up is not performed for the HUB

architecture, overflow could not occur after rounding.

Thus, the additional correction of the exponent

required in Fig. 2.2(a) is eliminated, which also

simplifies the exponent data path.

PROPOSED DOUBLE-PATH HUB ADDER

The proposed double-path HUB adder is presented in

Fig.3.3. It has a global structure similar to that of the

classic double- path implementation, except that the

circuits required for rounding have been eliminated

to handle floating point HUB numbers. The left adder

forms the Close path, and the right adder forms the

Far path, both including only one variable shifter (R-

SHIFTER in the Far path and L-SHIFTER in the Close

path, shadowed in Fig. 3.3). The variable right shifter,

R-SHIFTER of Fig. 3.2, is now placed in the Far path

and the variable left- and one-bit right shifter L/R1-

SHIFTER of Fig. 3.2 is now placed in the Close path.

Apart from the aforementioned differences, when

comparing the double-path approach (Fig. 3.3) with

the previous single path approach (Fig. 3.2) we can

see that the comparator of Fig. 3.2 has been prevented

and the inversion of one of the operands (if required)

is performed before shifting in the double- path

architecture (Fig. 3.3). We can also see that there is a

fixed R1- SHIFTER in the Close path and a fixed

L1/R1-SHIFTER in the Far path. These modules are

explained later and the logic needed to implement

them is very simple (similar to one multiplexer).

Fig. 2.3. Double-path HUB adder

Before entering in Close and Far path, the swap

module of Fig. 3.3 places the mantissa of the highest

exponent in the left output depending on the sign of

the difference of exponents (d). This ensures that the

mantissa of the greatest number is located at the left

output of the swap module except when the

difference of exponent is 0 (d = 0), in which case the

position of the greatest operand is unknown. The top

conditional inverter of Fig. 2.3 inverts the operand if

the Effective Operation (Eop) is a subtraction only.

Next, the operands arrive to both the Close and Far

paths.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 708-717

714

Note that in both paths the Implicit Least Significant

Bit (ILSB) of the operands is incorporated as the Least

Significant Bit (LSB) of the operation in the suitable

modules in the architecture (R1-SHIFTER, R-

SHIFTER and both adders). Note, as well, that sign

extension (bit 0) is incorporated in the top conditional

inverter and at the second input of the two adders.

Let us deal with the Close and the Far paths

separately:

CLOSE PATH.

The Close path is intended for effective subtraction of

two floating-point HUB numbers with a difference

between the exponents less than two (d = 0; 1). In this

case, aligning the input operands is almost not

required, but normalizing the results may required

large left shifting. The R1-SHIFTER module in the

Close path of Fig. 3.3 is used when d = 1 to perform a

fixed shift of one position to the right (if d = 0 it

allows the data to go through without shifting).

The output c of the adder is suitably shifted by the

variable left-shifter, L-SHIFTER. The number of bits

to be shifted is calculated by the module LZOD which

detects the leading 0 or 1 depending on the sign of the

output c. Note that the prevention of the comparator

of Fig. 3.2 makes a negative output c possible. This

happens when the input operands have the same

exponent (d=0) and the swap module place the

mantissa of the lowest operand in the left output.

Thus, a conditional inverter is required at the end of

the Close path (Cond. Inverter module in the bottom

of Fig. 3.3). The left shift is filled with 0’s.

FAR PATH.

This path covers the rest of the cases (i.e. subtraction

with d > 1 and addition). In this case, aligning the

input operands may be required but, at most, one-bit

shifting may be required for normalization. Therefore,

a variable shifter is required at the input of the adder

for alignment (R-SHIFTER in the Far path of Fig. 3.3).

The final L1/R1-SHIFTER module corrects a possible

overflow in the addition operation (one-bit right shift)

or the case of having a pattern 0.1xxx in the result of a

subtraction operation (one-bit left shift). Note that for

the subtraction of the mantissas of two HUB numbers,

it is not necessary to calculate the sticky bit since it is

always one due to the ILSB of the second operand

(the right shifted operand), and thus, it always

involves an incoming carry to the adder (sticky=1).

After the Close and Far paths, the final multiplexer of

Fig. 3.3 selects the result of either the Close or the Far

path depending of the effective operation (Eop) and

the difference of exponents (d).

UNBIASED ROUND-TO-NEAREST

When the result of an operation is just in the middle

of two exactly representable numbers (tie case),

rounding may be performed in any direction.

However, the careless election of this direction may

produce a statistical bias in the results. To avoid

annoying statistical anomalies of some applications

due to this bias, we should round either up or down

with similar probability for the tie case. In a deep

analysis of the three source of bias for HUB-FP

addition is presented. A bias can be produced under

any of the next operations:

1) aligned addition (d = 0),

2) aligned subtraction (d = 0),

3) subtraction with difference of exponents of one

(d = 1).

In the algorithms to reduce, or even, prevent the bias

for the tie case are also proposed. Next, we introduce

this solution to our double-path architecture. The first

source of bias (aligned addition) occurs only in the

Far path (which is devoted to perform subtractions

with d > 1 and additions), whereas the other two

always happen in the Close path (which is devoted to

perform subtractions with d = 0; 1). Hence, the

adaptation of the solution proposed to our

architecture is almost straightforward. Fig. 2.4 shows

the modifications required in the architecture of Fig.

2.3 to support the unbiased solution. The differences

with Fig. 2.3 are the two modules entitled” unbiased”

(shadowed in Fig. 2.4). These modules involve a very

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 708-717

715

simple logic such that the hardware cost and the

penalty time are very small. On the one hand, the

logic to prevent the bias for the aligned addition is

included at the output of the Far path. On the other

hand, the bias for the aligned subtraction is, in fact,

prevented in the original double-path architecture

and only the logic to eliminate the bias for the third

source is needed. In this case, depending on the LSB

of the result, the pattern 0111... is inserted in the left

shifting.

We should note that in the simple HUB adder (Fig.

3.2) it is possible to prevent the bias only for the case

of aligned addition (if the corresponding logic is

appended). To eliminate the other two sources of bias

a negative result at the output of the adder is required.

This is

Fig. 2.4. Unbiased Double-path HUB adder

not possible in the simple path approach due to the

fact that the comparator in the architecture of Fig. 3.2

ensures a positive result at the output.

III. METHODOLOGY AND RESULT

XILINX ISE DESIGN SUITE

The Xilinx ISE tools allow the design to be entered

several ways including graphical schematics, state

machine diagrams, VHDL, and Verilog. The

ISE®Design Suite controls all aspects of the design

flow. Through the Project Navigator interface, you

can access all of the design entry and design

implementation tools. You can also access the files

and documents associated with your project.

Project Navigator Interface

By default, the Project Navigator interface is divided

into four panel subwindows, as seen in Fig.4.2. On the

top left are the Start, Design, Files, and Libraries

panels, which include display and access to the source

files in the project as well as access to running

processes for the currently selected source. The Start

panel provides quick access to opening projects as

well as frequently access reference material,

documentation and tutorials. At the bottom of the

Project Navigator are the Console, Errors, and

Warnings panels, which display status messages,

errors, and warnings. To the right is a multi-

document interface (MDI) window referred to as the

Workspace. The Workspace enables you to view

design reports, text files, schematics, and simulation

waveforms. Each window can be resized, undocked

from Project Navigator, moved to a new location

within the main Project Navigator window, tiled,

layered, or closed. You can use the View >Panels

menu commands to open or close panels. You can

use the Layout > Load Default Layout to restore the

default window layout.

Fig.3.1.Project Navigator Interface

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 708-717

716

Design Panel

The Design panel provides access to the

• View pane

• Hierarchy pane

• Processes pane

View Pane

The View pane radio buttons enable you to view the

source modules associated with the implementation

or Simulation Design View in the Hierarchy pane. If

you select Simulation, you must select a simulation

phase from the drop down list.

Hierarchy Pane

The Hierarchy pane displays the project name, the

target device, user documents, and design source files

associated with the selected Design View. The View

pane at the top of the Design panel allows you to view

only those source files associated with the selected

Design View, such as Implementation or Simulation.

Each file in the Hierarchy pane has an associated icon.

The icon indicates the file type (HDL file, schematic,

core, or text file, for example). For a complete list of

possible source types and their associated icons, see

the ―Source File Types‖ topic in the ISE Help.

From Project Navigator, select Help > Help Topics to

view the ISE Help. If a file contains lower levels of

hierarchy, the icon has a plus symbol (+) to the left of

the name. You can expand the hierarchy by clicking

the plus symbol (+). You can open a file for editing by

double-clicking on the filename.

Processes Pane

The Processes pane is context sensitive, and it changes

based upon the source type selected in the Sources

pane and the top-level source in your project. From

the Processes pane, you can run the functions

necessary to define, run, and analyze your design.

3.1 Workspace

The Workspace is where design editors, viewers, and

analysis tools open. These include ISE Text Editor,

Schematic Editor, Constraint Editor, Design

Summary/Report Viewer, RTL and Technology

Viewers, and Timing Analyzer. Other tools such as

the PlanAhead™ tool for I/O planning and

floorplanning, ISim, third- party text editors, XPower

Analyzer, and iMPACT open in separate windows

outside the main Project Navigator environment

when invoked.

The Above mentioned method is applied in Xilinx

and the output are obtained from the simulation

window

IV. CONCLUSION

A double-path based HUB-FP adder to speed up the

computation on FPGA devices is proposed. Compared

to the single-path adder, the cost in area and energy

of the double-path approach is reasonable, giving a

substantial speedup, especially for short bit-width

mantissas. In addition, we analyze the impact of

adding the hardware required to produce unbiased

addition in the proposed architecture. In this case,

with a slight increment in the delay and area, the new

architecture prevents the three sources of bias.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 708-717

717

V. REFERENCES

[1]. J. J. Rodriguez-Andina, M. D. Valdes-Pena, and

M. J. Moure, “Advanced features and industrial

applications of FPGAs: A review,” IEEE Trans.

on Industrial Informatics, vol. 11, no. 4, pp.

853–864, aug 2015.

[2]. L. Zhuo and V. K. Prasanna, “High-performance

designs for linear algebra operations on

reconfigurable hardware,” IEEE Transactions on

Computers, vol. 57, no. 8, pp. 1057–1071, aug

2008.

[3]. C. H. Ho, C. W. Yu, P. Leong, W. Luk, and S. J.

E. Wilton, “Floating point FPGA: Architecture

and modeling,” IEEE Trans. on Very Large Scale

Integration (VLSI) Systems, vol. 17, no. 12, pp.

1709–1718, 2009.

[4]. G. Caffarena and D. Menard, “Quantization

noise power estimation for floating-point dsp

circuits,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 63, no. 6, pp.

593–597, jun 2016.

[5]. J. Hormigo and J. Villalba, “HUB floating point

for improving FPGA implementations of DSP

applications,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 64, no. 3, pp.

319–323, mar 2017.

[6]. B. Catanzaro and B. Nelson, “Higher radix

floating-point representations for FPGA-based

arithmetic,” in 13th IEEE Symposium on Field-

Programmable Custom Computing Machines

(FCCM’05), 2005, pp. 161 – 170.

[7]. A. Ehliar, “Area efficient floating-point adder

and multiplier with IEEE- 754 compatible

semantics,” in Proc. International Conference

on Field- Programmable Technology (FPT’14),

dec 2014, pp. 131– 138.

[8]. M. Langhammer, “Floating point datapath

synthesis for FPGAs,” in Proc. International

Conference on Field Programmable Logic and

Applications (FPL’08), sept 2008, pp. 355–360.

[9]. J. Hormigo and J. Villalba, “Measuring

improvement when using HUB formats to

implement floating-point systems under round-

to- nearest,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 24, no. 6,

pp. 2369–2377, 2016.

[10]. IEEE Standard for Floating-Point Arithmetic,

IEEE Std. 754, 2008.

[11]. J. Villalba, J. Hormigo, and S. Gonzalez-

Navarro, “Unbiased rounding for HUB floating-

point addition,” IEEE Transactions on

Computers, vol. Early access, no. 99, pp. 1–1,

2018.

[12]. Farmwald and P. Michael, “On the design of

high performance digital arithmetic units,”

Ph.D. dissertation, Stanford University, 1981.

[13]. M. D. Ercegovac and T. Lang, Digital

Arithmetic. Morgan Kaufmann, San Francisco,

2004

