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ABSTRACT 

 

Malicious applications pose a threat to the security of the Android platform. The growing amount and 

diversity of these applications render conventional defenses largely ineffective and thus Android smartphones 

often remain un-protected from novel malware. In this paper, we propose DREBIN, a lightweight method for 

detection of Android malware that enables identifying malicious applications directly on the smartphone. As 

the limited resources impede monitoring applications at run-time, DREBIN performs static analysis abroad, 

gathering as many features of an application as possible. These features are embedded in a joint vector space, 

such that typical patterns indicative for malware can be automatically identified and used for explaining the 

decisions of our method. In an evaluation with 123,453 applications and 5,560 malware samples DREBIN 

outperforms several related approaches and detects 94% of the malware with few false alarms, where the 

explanations provided for each detection reveal relevant properties of the detected malware. On five popular 

smartphones, the method requires 10 seconds for an analysis on average, rendering it suitable for checking 

downloaded applications directly on the device. 
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I. INTRODUCTION 

 

Android is one of the most popular platforms for 

smartphones today. With several hundred thousands 

of applications in different markets, it provides a 

wealth of functionality to its users. Unfortunately, 

smart phones running Android are increasingly 

targeted by attackers and infected with malicious 

software. In contrast to other platforms, Android 

allows for installing applications from unverified 

sources, such as third-party markets, which makes 

bundling and distributing applications with malware 

easy for attackers. According to a recent study over 

55,000 malicious applications and 119 new malware 

families have been discovered in 2012 alone [18]. It is 

evident that there is a need for stopping the 

proliferation of malware on the Android market and 

smartphones. The Android platform provides several 

security measures that harden the installation of 

malware, most notably the Android permission 

system. To perform certain tasks on the device, such 

as sending a SMS message, each application has to 
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explicitly request permission from the user during the 

installation. However, many users tend to blindly 

grant permissions to unknown applications and 

thereby undermine the purpose of the permission 

system. As a consequence, malicious applications are 

hardly constrained by the Android permission system 

in practice.A large body of research has thus studied 

methods for analyzing and detecting Android 

malware prior to their installation. These methods 

can be roughly categorized into approaches using 

static and dynamic analysis. For example, TaintDroid 

[11], DroidRanger [40] and DroidScope [37] are 

methods that can monitor the behavior of 

applications at run-time. Although very effective in 

identifying malicious activity, run-time monitoring 

suffers from a significant over-head and can not be 

directly applied on mobile devices. By Contrast, static 

analysis methods, such as Kirin [13], Stow-away [15] 

and RiskRanker [21], usually induce only a small run-

time overhead. While these approaches are efficient 

and scalable, they mainly build on manually crafted 

detection patterns which are often not available for 

new malware instances. Moreover, most of these 

methods do not provide explanations for their 

decisions and are thus opaque to thepractitioner.In 

this paper, we present DREBIN, a lightweight method 

for detection of Android malware that infers 

detectionterns automatically and enables identifying 

malware directly on the smartphone. DREBIN 

performs a broad static analysis, gathering as many 

features from an application’s code and manifest as 

possible. These features are organized in sets of strings 

(such as permissions, API calls and network addresses) 

and embedded in a joint vector space. As an example, 

an application sending premium SMS messages is cast 

to a specific region in the vector space associated with 

the corresponding permissions, intents and API calls. 

This geometric representation enables DREBIN to 

identify combinations and patterns of features 

indicative for malware automatically using machine 

learning techniques. 

For each detected application the respective patterns 

can be extracted, mapped to meaningful descriptions 

and then provided to the user as explanation for the 

detection. Aside from detection, DREBIN can thus 

also provide insights into identified malware samples. 

Experiments with 123,453 applications from different 

markets and 5,560 recent malware samples 

demonstrate the efficacy of our method: DREBIN 

outperforms related approaches [13, 26, 33] as well as 

9 out of 10 popular anti-virus scanners. The method 

detects 94% of the malware samples with a false-

positive rate of 1%, corresponding to one false alarm 

in 100 installed applications. On average the analysis 

of an application requires less than a second on a 

regular computer and 10 seconds on popular 

smartphone models. To the best of our knowledge, 

DREBIN is the first method which provides effective 

and explainable detection of Android malware 

directly on smart phone devices .In summary, we 

make the following contributions to the detection of 

Android malware in this paper: 

• Effective detection.  

We introduce a method combining static analysis and 

machine learning that is capable of identifying 

Android malware with high accuracy and few false 

alarms, independent of manually crafted detection 

patterns. 

• Explainable results.  

The proposed method provides an explainable 

detection. Patterns of features indicative for a 

detected malware instance can be traced back 

• Lightweight analysis.  

For efficiency we apply linear time analysis and 

learning techniques that enable detecting malware on 

the smart phone as well as analyzing large sets of 

applications in reasonable time.We need to note here 

that DREBIN builds on concepts of static analysis and 

thus cannot rule out the presence of obfuscated or 

dynamically loaded malware on mobile devices. We 

specifically discuss this limitation of our approach in 

Section 4. Due to the broad analysis of features 

however, our method raises the bar for attackers to 
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infect smartphones with malicious applications and 

strengthens the security of the Android platform, as 

demonstrated in our evaluation .The rest of this paper 

is organized as follows: DREBINand its detection 

methodology are introduced in Section 2.Experiments 

and a comparison with related approaches are 

presented in Section 3. Limitations and related work 

are discussed in Section 4 and Section 5, respectively. 

Section 6 concludes the paper. 

 

II. RELATED WORK: 

 

The analysis and detection of Android malware has 

been a vivid area of research in the last years. Several 

concepts and techniques have been proposed to 

counter the growing amount and sophistication of 

this malware. An overview of the current malware 

landscape is provided in the studies of Felt et al. [16] 

and Zhou & Jiang [39].(1) 

Detection using Static Analysis The first approaches 

for detecting Android malware have been inspired by 

concepts from static program analysis.Several 

methods have been proposed that statically inspect 

applications and disassemble their code [e.g., 12, 13, 

15,21]. For example, the method Kirin [13] checks the 

permission of applications for indications of malicious 

activity. Similarly, Stowaway [15] analyzes API calls 

to detect overprivileged applications and RiskRanker 

[21] statically identifies applications with different 

security risks. Common open-source tools for static 

analysis are Smali [17] andAndroguard [10], which 

enable dissecting the content of applications with 

little effort.Our method DREBIN is related to these 

approaches and employs similar features for 

identifying malicious applications, such as 

permissions, network addresses and API calls. 

However, it differs in two central aspects from 

previous work: First, we abstain from crafting 

detection patterns manually and instead apply 

machine learning to analyze information extracted 

from static analysis. Second,the analysis of DREBIN is 

optimized for effectivity and efficiency, which 

enables us to inspect application directly on the 

smartphone.(2) 

 

Detection using Dynamic Analysis 

A second branch of research has studied the detection 

of Android malware at run-time. Most notably, are 

the analysis system TaintDroid [11] and DroidScope 

[37] that enable dynamically monitoring applications 

in a protected environment, where the first focuses 

on taint analysis and the later enables introspection at 

different layers of the platform.While both systems 

provide detailed information about the behavior of 

applications, they are technically too involved to be 

deployed on smartphones and detect malicious 

software directly. As a consequence, dynamic analysis 

is mainly applied for offline detection of malware, 

such as scanning and analyzing large collections of 

Android applications. For example, the methods 

DroidRanger [40], AppsPlayground [29], and 

CopperDroid [31] have been successfully applied 

toStudy applications with malicious behavior in 

different Android markets. A similar detection system 

called Bouncer Is currently operated by Google. Such 

dynamic analysis systems are suitable for filtering 

malicious applications from Android markets. Due to 

the openness of theAndroid platform, however, 

applications may also be installed from other sources, 

such as web pages and memory sticks, which requires 

detection mechanisms operating on the 

smartphone.ParanoidAndroid [28] is one of the few 

detection systems that employs dynamic analysis and 

can spot malicious activity on the smartphone. To this 

end, a virtual clone ofthe smartphone is run in 

parallel on a dedicated server and synchronized with 

the activities of the device. This setting allows for 

monitoring the behavior of applications on the clone 

without disrupting the functionality of the real 

device.The duplication of functionality, however, is 

involved with millions of smartphones in practice 

operating ParanoidAndroid at large scale is 

technically not feasible.(3) 

 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1 

Volume 9  -  Issue 1  - Published :      April 10, 2021      Page No : 957-964 

 

 

 
960 

Detection using Machine Learning 

The difficulty of manually crafting and updating 

detection patterns for Android malware has 

motivated the application of machine learning. 

Several methods have been proposed that analyze 

applications automatically using learning methods 

[e.g., 2, 26, 33]. As an example,the method of Peng et 

al. [26] applies probabilistic learning methods to the 

permissions of applications for detecting malware. 

Similarly, the methods Crowdroid [4], DroidMat [36], 

Adagio [20], MAST [5], android DroidAPIMiner 

[1]analyze features statically extracted from Android 

applications using machine learning techniques. 

Closest to our work is DroidAPIMiner [1] which 

provides a similar detection performance to DREBIN 

on recent malware. However, DroidAPIMiner builds 

on a k-nearest neighbor classifier that induces a 

significant runtime overhead and impedes operating 

the method on a smartphone. 

Moreover,DroidAPIMiner is not designed to provide 

explanations for its detections and therefore is opaque 

to the practitioner.Overall, previous work using 

machine learning mainly focuses on an accurate 

detection of malware. Additionalaspects, such as the 

efficiency and the explainability of the detection, are 

not considered. We address these aspects and propose 

a method that provides an effective, efficient and 

explainable detection of malicious applications.(4) 

System Call Monitoring. Systems such as [30,33,34] 

detect malware by monitoring and analysis of system 

calls. A fundamental shortcoming of such approaches 

is the semantic gap between the system calls and 

specific behaviors. DroidScope [37] is designed to 

reconstruct both OS-level and Java-level semantics. 

Their dynamic analysis approach is limited by path 

exploration challenges.(5) 

Android Permission Monitoring studied security of 

Android apps by analyzing the permissions registered 

in the top official Market apps [21]. Stowaway [23] 

and COPES [16] are designed to find those apps that 

request more permissions than they need. PScout [15] 

analyzes the usage trend of permissions in Android 

apps. Kirin [22] detected malicious Android apps by 

finding permissions declared in Android apps that 

break “predefined” security rules. More recent work 

also detected malicious Android apps by designing 

several classifiers, whose features were built primarily 

on the application categories and permissions [29]. A 

concern with these approaches is false positives 

stemming from the coarse-grained nature of 

permissions and the highly common nature of benign 

apps to over-claim their set of required permissions. 

Mario etal. [24] presented their studies of permission 

request patterns of Android and Facebook 

applications.Framework API Monitoring. 

DroidRanger [41] and Pegasus [18] detect malicious 

Android apps by statically matching against “pre-

defined” signatures (permissions and Android 

Framework API calls) of well-known malware 

families. Such approaches require semi-manual 

analysis of suspicious system calls and manual 

selection of heuristics (or detection patterns). Thus, 

they are not systematic and not robust to the 

evolution of malware. In [36,14] the frequencies of 

API calls were used as detection features,and more 

recently in [12], the names and parameters of APIs 

and packages were used as detection features.  

Online Malware Detection Service. We intend to 

make DroidMiner available as a public web service for 

Android malware analysis and detection. Similar 

public services include AndroTotal [27] which allows 

users to submit applications and have them 

simultaneously analyzed by various mobile antivirus 

systems and CopperDroid [32] which performs 

system-call centric dynamic analysis.Due to space 

limit, we leave more detailed comparisons and 

discussions in [38].(6) 

Android Platform Security Defense and Analysis 

Existing studies have also developed several security 

extensions to defend against specific types of attacks. 

TaintDroid [20] detects those apps that may leak users’ 

privacy information. However, it is not designed to 

detect other types of malicious behaviors such as 

stealthily sending SMS. RiskRanker[42] detects 
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malicious apps based on the knowledge of known 

Android system vulnerabilities, which could be 

utilized by malicious apps, and several heuristics. 

Dendroid [35] is a static analysis tool which 

specializes in text mining of android malware code. 

Quire [19] prevents confused deputy attacks. Bugiel et 

al. [17] proposed a security framework to prevent 

both confused deputy attacks and collusion attacks. 

AppFence [25] protects sensitive data by either 

feeding fake data or blocking the leakage path. Apex 

[28] allows for the selection of grantedpermissions, 

and Kirin [22] performs lightweight certification of 

applications. Paranoid Android [30], L4Android [26] 

and Cells [13] utilize the virtual environment to 

secure smartphone OS. SmartDroid [39] automatically 

finds UI triggers that result in sensitive information 

leakage.(7) 

 

III. PROPOSED SYSTEM   

 

The proposed system also focuses on Significant 

Permission Identification (SIGPOD). In addition 

identification of dangerous, benign as well as 

shutdown enabled permission list is also carried out. 

Feature reduction is also carried out. SVM 

classification for both all permission lists as well as 

feature reduced data sets is include. 

 

MODULES: 

The following modules are present in the proposed 

application. 

1. Data set collection 

2. Finding dangerous permissions list 

3. Finding benign permissions list 

4. Permission ranking with negative rate 

5. Permission mining with association rule 

6. Svm classification 

7. Features reduction 

8. Svm classification in features reduced data set 

9. Association rule mining 

10. Mutual information 

11. Pearson correlation coefficient. 

Data set collection: 

All permission details of the app are saved in a single 

Excel workbook as records. This is the input for the 

project. 

 

Finding dangerous permissions list: 

Certain permission values such as READ_SMS, 

WRITE_SMS and the like are checked for values with 

‘1’ so that the apps are declared as dangerous and 

listed. 

 

Finding benign permissions list: 

Certain permission values such as BIND_SERVICE, 

and the like are checked for values with ‘1’ so that the 

apps are declared as benign and listed. 

 

Permission ranking with negative rate: 

This module referred to as PRNR, provides a concise 

ranking and comprehensible result. The approach 

operates on two matrices, M and B. M represents a list 

of permissions used by malware samples and B 

represents a list of permissions used by benign apps. 

Mij represents whether the jth permission is 

requested by the ith malware sample, while “1” 

indicates yes and `0”indicatesno. Bij represents 

whether the jth permission is requested by the ith 

benign app sample. 

Before computing the support of permissions from 

matrices M and B, it first checks their sizes. Typically, 

the number of benign tends to be much larger than 

number malicious apps; therefore, the size of B is 

much larger than the size of M. With this ranking 

scheme, it prefers the dataset on the two matrices to 

be balanced.The PNR algorithm is used to perform 

ranking of the datasets.In the formula above, R(Pj) 

represents the rate of the jth permission. The result of 

R(Pj) has a value ranging between [−1, 1]. If R(Pj)=1, 

this means that permission Pj is only used in the 

malicious dataset, which is a high-risk permission. If 

R(Pj) =−1, this means that permission Pj is only used 

in the benign dataset, which is a low-risk permission. 
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If R(Pj)=0, this means that Pj has a very little impact 

on malware detection effectiveness. 

 

Permission mining with association rule: 

In this module, after pruning some permission by 

using PNR and SPR with the PIS, it can remove non-

influential permissions even more. By inspecting the 

reduced permission list that contains some significant 

permissions, it finds three pairs of permissions that 

always appear to get her in an app. For example, 

permission WRITE_SMS and permission READ_SMS 

are always used together. They also both belong to 

Google's “dangerous” permission list. Yet, it is 

unnecessary to consider both permissions, as one of 

them is sufficient to characterize certain behaviors. As 

a result, we can associate one, which has a higher 

support, to its partner. In this example, we can 

remove permission WRITE_SMS. In order to find 

permissions that occur together, it proposes a PMAR 

mechanism using the association rule mining 

algorithm. 

 

Svm classification: 

In this module, 70% of the data in the given data set is 

taken as training data and 30% of the data is taken as 

test data. The model is trained with training data and 

then predicted with test data. Of which, most of the 

apps are classified as Benign and fewer apps are 

classified as Suspicious. 

 

Features reduction : 

In this module, each column values are taken and find 

the number of ‘1’s and ‘0’ and their percentage is 

calculated. If any one of the percentages is above 95%, 

then the column is treated as non-sensitive and can 

be eliminated. 

 

Svm classification in features reduced data set: 

In this module, 70% of the data in the given data set is 

taken as training data and 30% of the data is taken as 

test data but with the columns after feature reduction. 

The model is trained with training data and then 

predicted with test data. Of which, most of the apps 

are classified as Benign and fewer apps are classified 

as Suspicious. 

 

Association rule mining: 

In this module, all the permissions are iterated in for 

loop and three columns are taken to find permission 

value ‘1’ along with the next fourth column with 

permission value ‘1’. If the count of three columns 

values matched with the count of the fourth column 

then it is found out there is an association rule and 

printed out. The iteration continues for all 216 

permissions. 

 

Mutual information 

In this module, mutual information is found out as 

follows: Let X denote a permission variable and C be 

the class variable. The relevance of X and C can be 

measured by mutual information of them as 

 
where P(C = cj) is the frequency count of class C with 

value cj, P(X = xi) is the frequency count of 

permission X with value xi, and P(X = xi,C = cj) is the 

frequency count of X with value xi in class cj. In this 

paper, the class C has binary values, c0 for benign 

apps and c1 for malicious apps. Each permission X is a 

boolean variable with value 1 or 0. I(X, C) is 

nonnegative in [0, 1]. I(X, C) = 0 indicates no 

correlation, while I(X,C) = 1 means that C is 

completely inferable by knowing X. 

 

Pearson correlation coefficient: 

In this module, pearson correlation coefficient is 

found out as follows: Pearson Correlation Coefficient 

measures the relevance of X and C by 

  
where ¯ X (resp. ¯ C) is the average of all sample 

values of X (resp. C), Xn (resp. Cn), n = 1...N. R(X,C) 

has a value in [−1, 1], where R(X,C) = 0 indicates the 
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independency of X and C, R(X,C) = 1 indicates the 

strongest positive correlation of them and R(X,C) = −1 

indicates the strongest negative correlation. R(X,C) = 

1 means that permission request of X makes apps 

highest risky, while R(X,C) = −1 means that 

permission request of X makes apps lowest risky. 

 

ARCHITECTURE: 

 

 
 

 

IV. CONCLUSION 

 

This proposed framework demonstrated how it is 

possible to reduce the number of permissions to be 

analyzed for mobile malware detection, while 

maintaining high effectiveness and accuracy. It has 

been designed to extract only significant permissions 

through a systematic three-level pruning approach. 

The existing system considers 22 permissions for 

malware apps but the proposed system analyzes 47 

permissions are malware apps for the given data set. 

The difference is due to the non-sensitive permission 

features reduction. By adjusting the unique 

percentage in values of particular permission, the 

malware surety would be raised or lowered. 

There are several directions for future research. The 

current investigation of classification is still 

preliminary. Furthermore, the algorithm consistently 

outperformed all the tested classification and methods 

under different conditions.The future enhancements 

can be made with still more permission sets. 
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