
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Conference on Advances in Materials, Computing and Communication Technologies

In Association with International Journal of Scientific Research in Science and Technology

Volume 9 | Issue 1 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

 957

Android Malware Detection
Mrs Hamsareka S1, Krishnamoorthy S2, Prasanth T2, Purusothaman R2, Santhosh Kumar A2

1Assistant Professor, Department of Computer science and engineering, KSR Institute for Engineering and

Technology, Tiruchengode, Tamil Nadu, India
2Department of Computer science and engineering, KSR Institute for Engineering and Technology,

Tiruchengode, Tamil Nadu, India

ABSTRACT

Malicious applications pose a threat to the security of the Android platform. The growing amount and

diversity of these applications render conventional defenses largely ineffective and thus Android smartphones

often remain un-protected from novel malware. In this paper, we propose DREBIN, a lightweight method for

detection of Android malware that enables identifying malicious applications directly on the smartphone. As

the limited resources impede monitoring applications at run-time, DREBIN performs static analysis abroad,

gathering as many features of an application as possible. These features are embedded in a joint vector space,

such that typical patterns indicative for malware can be automatically identified and used for explaining the

decisions of our method. In an evaluation with 123,453 applications and 5,560 malware samples DREBIN

outperforms several related approaches and detects 94% of the malware with few false alarms, where the

explanations provided for each detection reveal relevant properties of the detected malware. On five popular

smartphones, the method requires 10 seconds for an analysis on average, rendering it suitable for checking

downloaded applications directly on the device.

Keywords: Android, Malware, Risk Ranker, mobile security, permissions

I. INTRODUCTION

Android is one of the most popular platforms for

smartphones today. With several hundred thousands

of applications in different markets, it provides a

wealth of functionality to its users. Unfortunately,

smart phones running Android are increasingly

targeted by attackers and infected with malicious

software. In contrast to other platforms, Android

allows for installing applications from unverified

sources, such as third-party markets, which makes

bundling and distributing applications with malware

easy for attackers. According to a recent study over

55,000 malicious applications and 119 new malware

families have been discovered in 2012 alone [18]. It is

evident that there is a need for stopping the

proliferation of malware on the Android market and

smartphones. The Android platform provides several

security measures that harden the installation of

malware, most notably the Android permission

system. To perform certain tasks on the device, such

as sending a SMS message, each application has to

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 957-964

958

explicitly request permission from the user during the

installation. However, many users tend to blindly

grant permissions to unknown applications and

thereby undermine the purpose of the permission

system. As a consequence, malicious applications are

hardly constrained by the Android permission system

in practice.A large body of research has thus studied

methods for analyzing and detecting Android

malware prior to their installation. These methods

can be roughly categorized into approaches using

static and dynamic analysis. For example, TaintDroid

[11], DroidRanger [40] and DroidScope [37] are

methods that can monitor the behavior of

applications at run-time. Although very effective in

identifying malicious activity, run-time monitoring

suffers from a significant over-head and can not be

directly applied on mobile devices. By Contrast, static

analysis methods, such as Kirin [13], Stow-away [15]

and RiskRanker [21], usually induce only a small run-

time overhead. While these approaches are efficient

and scalable, they mainly build on manually crafted

detection patterns which are often not available for

new malware instances. Moreover, most of these

methods do not provide explanations for their

decisions and are thus opaque to thepractitioner.In

this paper, we present DREBIN, a lightweight method

for detection of Android malware that infers

detectionterns automatically and enables identifying

malware directly on the smartphone. DREBIN

performs a broad static analysis, gathering as many

features from an application’s code and manifest as

possible. These features are organized in sets of strings

(such as permissions, API calls and network addresses)

and embedded in a joint vector space. As an example,

an application sending premium SMS messages is cast

to a specific region in the vector space associated with

the corresponding permissions, intents and API calls.

This geometric representation enables DREBIN to

identify combinations and patterns of features

indicative for malware automatically using machine

learning techniques.

For each detected application the respective patterns

can be extracted, mapped to meaningful descriptions

and then provided to the user as explanation for the

detection. Aside from detection, DREBIN can thus

also provide insights into identified malware samples.

Experiments with 123,453 applications from different

markets and 5,560 recent malware samples

demonstrate the efficacy of our method: DREBIN

outperforms related approaches [13, 26, 33] as well as

9 out of 10 popular anti-virus scanners. The method

detects 94% of the malware samples with a false-

positive rate of 1%, corresponding to one false alarm

in 100 installed applications. On average the analysis

of an application requires less than a second on a

regular computer and 10 seconds on popular

smartphone models. To the best of our knowledge,

DREBIN is the first method which provides effective

and explainable detection of Android malware

directly on smart phone devices .In summary, we

make the following contributions to the detection of

Android malware in this paper:

• Effective detection.

We introduce a method combining static analysis and

machine learning that is capable of identifying

Android malware with high accuracy and few false

alarms, independent of manually crafted detection

patterns.

• Explainable results.

The proposed method provides an explainable

detection. Patterns of features indicative for a

detected malware instance can be traced back

• Lightweight analysis.

For efficiency we apply linear time analysis and

learning techniques that enable detecting malware on

the smart phone as well as analyzing large sets of

applications in reasonable time.We need to note here

that DREBIN builds on concepts of static analysis and

thus cannot rule out the presence of obfuscated or

dynamically loaded malware on mobile devices. We

specifically discuss this limitation of our approach in

Section 4. Due to the broad analysis of features

however, our method raises the bar for attackers to

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 957-964

959

infect smartphones with malicious applications and

strengthens the security of the Android platform, as

demonstrated in our evaluation .The rest of this paper

is organized as follows: DREBINand its detection

methodology are introduced in Section 2.Experiments

and a comparison with related approaches are

presented in Section 3. Limitations and related work

are discussed in Section 4 and Section 5, respectively.

Section 6 concludes the paper.

II. RELATED WORK:

The analysis and detection of Android malware has

been a vivid area of research in the last years. Several

concepts and techniques have been proposed to

counter the growing amount and sophistication of

this malware. An overview of the current malware

landscape is provided in the studies of Felt et al. [16]

and Zhou & Jiang [39].(1)

Detection using Static Analysis The first approaches

for detecting Android malware have been inspired by

concepts from static program analysis.Several

methods have been proposed that statically inspect

applications and disassemble their code [e.g., 12, 13,

15,21]. For example, the method Kirin [13] checks the

permission of applications for indications of malicious

activity. Similarly, Stowaway [15] analyzes API calls

to detect overprivileged applications and RiskRanker

[21] statically identifies applications with different

security risks. Common open-source tools for static

analysis are Smali [17] andAndroguard [10], which

enable dissecting the content of applications with

little effort.Our method DREBIN is related to these

approaches and employs similar features for

identifying malicious applications, such as

permissions, network addresses and API calls.

However, it differs in two central aspects from

previous work: First, we abstain from crafting

detection patterns manually and instead apply

machine learning to analyze information extracted

from static analysis. Second,the analysis of DREBIN is

optimized for effectivity and efficiency, which

enables us to inspect application directly on the

smartphone.(2)

Detection using Dynamic Analysis

A second branch of research has studied the detection

of Android malware at run-time. Most notably, are

the analysis system TaintDroid [11] and DroidScope

[37] that enable dynamically monitoring applications

in a protected environment, where the first focuses

on taint analysis and the later enables introspection at

different layers of the platform.While both systems

provide detailed information about the behavior of

applications, they are technically too involved to be

deployed on smartphones and detect malicious

software directly. As a consequence, dynamic analysis

is mainly applied for offline detection of malware,

such as scanning and analyzing large collections of

Android applications. For example, the methods

DroidRanger [40], AppsPlayground [29], and

CopperDroid [31] have been successfully applied

toStudy applications with malicious behavior in

different Android markets. A similar detection system

called Bouncer Is currently operated by Google. Such

dynamic analysis systems are suitable for filtering

malicious applications from Android markets. Due to

the openness of theAndroid platform, however,

applications may also be installed from other sources,

such as web pages and memory sticks, which requires

detection mechanisms operating on the

smartphone.ParanoidAndroid [28] is one of the few

detection systems that employs dynamic analysis and

can spot malicious activity on the smartphone. To this

end, a virtual clone ofthe smartphone is run in

parallel on a dedicated server and synchronized with

the activities of the device. This setting allows for

monitoring the behavior of applications on the clone

without disrupting the functionality of the real

device.The duplication of functionality, however, is

involved with millions of smartphones in practice

operating ParanoidAndroid at large scale is

technically not feasible.(3)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 957-964

960

Detection using Machine Learning

The difficulty of manually crafting and updating

detection patterns for Android malware has

motivated the application of machine learning.

Several methods have been proposed that analyze

applications automatically using learning methods

[e.g., 2, 26, 33]. As an example,the method of Peng et

al. [26] applies probabilistic learning methods to the

permissions of applications for detecting malware.

Similarly, the methods Crowdroid [4], DroidMat [36],

Adagio [20], MAST [5], android DroidAPIMiner

[1]analyze features statically extracted from Android

applications using machine learning techniques.

Closest to our work is DroidAPIMiner [1] which

provides a similar detection performance to DREBIN

on recent malware. However, DroidAPIMiner builds

on a k-nearest neighbor classifier that induces a

significant runtime overhead and impedes operating

the method on a smartphone.

Moreover,DroidAPIMiner is not designed to provide

explanations for its detections and therefore is opaque

to the practitioner.Overall, previous work using

machine learning mainly focuses on an accurate

detection of malware. Additionalaspects, such as the

efficiency and the explainability of the detection, are

not considered. We address these aspects and propose

a method that provides an effective, efficient and

explainable detection of malicious applications.(4)

System Call Monitoring. Systems such as [30,33,34]

detect malware by monitoring and analysis of system

calls. A fundamental shortcoming of such approaches

is the semantic gap between the system calls and

specific behaviors. DroidScope [37] is designed to

reconstruct both OS-level and Java-level semantics.

Their dynamic analysis approach is limited by path

exploration challenges.(5)

Android Permission Monitoring studied security of

Android apps by analyzing the permissions registered

in the top official Market apps [21]. Stowaway [23]

and COPES [16] are designed to find those apps that

request more permissions than they need. PScout [15]

analyzes the usage trend of permissions in Android

apps. Kirin [22] detected malicious Android apps by

finding permissions declared in Android apps that

break “predefined” security rules. More recent work

also detected malicious Android apps by designing

several classifiers, whose features were built primarily

on the application categories and permissions [29]. A

concern with these approaches is false positives

stemming from the coarse-grained nature of

permissions and the highly common nature of benign

apps to over-claim their set of required permissions.

Mario etal. [24] presented their studies of permission

request patterns of Android and Facebook

applications.Framework API Monitoring.

DroidRanger [41] and Pegasus [18] detect malicious

Android apps by statically matching against “pre-

defined” signatures (permissions and Android

Framework API calls) of well-known malware

families. Such approaches require semi-manual

analysis of suspicious system calls and manual

selection of heuristics (or detection patterns). Thus,

they are not systematic and not robust to the

evolution of malware. In [36,14] the frequencies of

API calls were used as detection features,and more

recently in [12], the names and parameters of APIs

and packages were used as detection features.

Online Malware Detection Service. We intend to

make DroidMiner available as a public web service for

Android malware analysis and detection. Similar

public services include AndroTotal [27] which allows

users to submit applications and have them

simultaneously analyzed by various mobile antivirus

systems and CopperDroid [32] which performs

system-call centric dynamic analysis.Due to space

limit, we leave more detailed comparisons and

discussions in [38].(6)

Android Platform Security Defense and Analysis

Existing studies have also developed several security

extensions to defend against specific types of attacks.

TaintDroid [20] detects those apps that may leak users’

privacy information. However, it is not designed to

detect other types of malicious behaviors such as

stealthily sending SMS. RiskRanker[42] detects

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 957-964

961

malicious apps based on the knowledge of known

Android system vulnerabilities, which could be

utilized by malicious apps, and several heuristics.

Dendroid [35] is a static analysis tool which

specializes in text mining of android malware code.

Quire [19] prevents confused deputy attacks. Bugiel et

al. [17] proposed a security framework to prevent

both confused deputy attacks and collusion attacks.

AppFence [25] protects sensitive data by either

feeding fake data or blocking the leakage path. Apex

[28] allows for the selection of grantedpermissions,

and Kirin [22] performs lightweight certification of

applications. Paranoid Android [30], L4Android [26]

and Cells [13] utilize the virtual environment to

secure smartphone OS. SmartDroid [39] automatically

finds UI triggers that result in sensitive information

leakage.(7)

III. PROPOSED SYSTEM

The proposed system also focuses on Significant

Permission Identification (SIGPOD). In addition

identification of dangerous, benign as well as

shutdown enabled permission list is also carried out.

Feature reduction is also carried out. SVM

classification for both all permission lists as well as

feature reduced data sets is include.

MODULES:

The following modules are present in the proposed

application.

1. Data set collection

2. Finding dangerous permissions list

3. Finding benign permissions list

4. Permission ranking with negative rate

5. Permission mining with association rule

6. Svm classification

7. Features reduction

8. Svm classification in features reduced data set

9. Association rule mining

10. Mutual information

11. Pearson correlation coefficient.

Data set collection:

All permission details of the app are saved in a single

Excel workbook as records. This is the input for the

project.

Finding dangerous permissions list:

Certain permission values such as READ_SMS,

WRITE_SMS and the like are checked for values with

‘1’ so that the apps are declared as dangerous and

listed.

Finding benign permissions list:

Certain permission values such as BIND_SERVICE,

and the like are checked for values with ‘1’ so that the

apps are declared as benign and listed.

Permission ranking with negative rate:

This module referred to as PRNR, provides a concise

ranking and comprehensible result. The approach

operates on two matrices, M and B. M represents a list

of permissions used by malware samples and B

represents a list of permissions used by benign apps.

Mij represents whether the jth permission is

requested by the ith malware sample, while “1”

indicates yes and `0”indicatesno. Bij represents

whether the jth permission is requested by the ith

benign app sample.

Before computing the support of permissions from

matrices M and B, it first checks their sizes. Typically,

the number of benign tends to be much larger than

number malicious apps; therefore, the size of B is

much larger than the size of M. With this ranking

scheme, it prefers the dataset on the two matrices to

be balanced.The PNR algorithm is used to perform

ranking of the datasets.In the formula above, R(Pj)

represents the rate of the jth permission. The result of

R(Pj) has a value ranging between [−1, 1]. If R(Pj)=1,

this means that permission Pj is only used in the

malicious dataset, which is a high-risk permission. If

R(Pj) =−1, this means that permission Pj is only used

in the benign dataset, which is a low-risk permission.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 957-964

962

If R(Pj)=0, this means that Pj has a very little impact

on malware detection effectiveness.

Permission mining with association rule:

In this module, after pruning some permission by

using PNR and SPR with the PIS, it can remove non-

influential permissions even more. By inspecting the

reduced permission list that contains some significant

permissions, it finds three pairs of permissions that

always appear to get her in an app. For example,

permission WRITE_SMS and permission READ_SMS

are always used together. They also both belong to

Google's “dangerous” permission list. Yet, it is

unnecessary to consider both permissions, as one of

them is sufficient to characterize certain behaviors. As

a result, we can associate one, which has a higher

support, to its partner. In this example, we can

remove permission WRITE_SMS. In order to find

permissions that occur together, it proposes a PMAR

mechanism using the association rule mining

algorithm.

Svm classification:

In this module, 70% of the data in the given data set is

taken as training data and 30% of the data is taken as

test data. The model is trained with training data and

then predicted with test data. Of which, most of the

apps are classified as Benign and fewer apps are

classified as Suspicious.

Features reduction :

In this module, each column values are taken and find

the number of ‘1’s and ‘0’ and their percentage is

calculated. If any one of the percentages is above 95%,

then the column is treated as non-sensitive and can

be eliminated.

Svm classification in features reduced data set:

In this module, 70% of the data in the given data set is

taken as training data and 30% of the data is taken as

test data but with the columns after feature reduction.

The model is trained with training data and then

predicted with test data. Of which, most of the apps

are classified as Benign and fewer apps are classified

as Suspicious.

Association rule mining:

In this module, all the permissions are iterated in for

loop and three columns are taken to find permission

value ‘1’ along with the next fourth column with

permission value ‘1’. If the count of three columns

values matched with the count of the fourth column

then it is found out there is an association rule and

printed out. The iteration continues for all 216

permissions.

Mutual information

In this module, mutual information is found out as

follows: Let X denote a permission variable and C be

the class variable. The relevance of X and C can be

measured by mutual information of them as

where P(C = cj) is the frequency count of class C with

value cj, P(X = xi) is the frequency count of

permission X with value xi, and P(X = xi,C = cj) is the

frequency count of X with value xi in class cj. In this

paper, the class C has binary values, c0 for benign

apps and c1 for malicious apps. Each permission X is a

boolean variable with value 1 or 0. I(X, C) is

nonnegative in [0, 1]. I(X, C) = 0 indicates no

correlation, while I(X,C) = 1 means that C is

completely inferable by knowing X.

Pearson correlation coefficient:

In this module, pearson correlation coefficient is

found out as follows: Pearson Correlation Coefficient

measures the relevance of X and C by

where ¯ X (resp. ¯ C) is the average of all sample

values of X (resp. C), Xn (resp. Cn), n = 1...N. R(X,C)

has a value in [−1, 1], where R(X,C) = 0 indicates the

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 957-964

963

independency of X and C, R(X,C) = 1 indicates the

strongest positive correlation of them and R(X,C) = −1

indicates the strongest negative correlation. R(X,C) =

1 means that permission request of X makes apps

highest risky, while R(X,C) = −1 means that

permission request of X makes apps lowest risky.

ARCHITECTURE:

IV. CONCLUSION

This proposed framework demonstrated how it is

possible to reduce the number of permissions to be

analyzed for mobile malware detection, while

maintaining high effectiveness and accuracy. It has

been designed to extract only significant permissions

through a systematic three-level pruning approach.

The existing system considers 22 permissions for

malware apps but the proposed system analyzes 47

permissions are malware apps for the given data set.

The difference is due to the non-sensitive permission

features reduction. By adjusting the unique

percentage in values of particular permission, the

malware surety would be raised or lowered.

There are several directions for future research. The

current investigation of classification is still

preliminary. Furthermore, the algorithm consistently

outperformed all the tested classification and methods

under different conditions.The future enhancements

can be made with still more permission sets.

V. REFERENCES

[1]. M.Grace, Y.Zhou, Q.Zhang, S.Zou and X.Jiang,

“RiskRanker: Scalable and accurate zero-day

android malware detection,” inProc.10thInt.Conf.

Mobile Syst., Appl., Services, 2012, pp. 281–294.

[2]. A. P. Felt, E. Chin, S. Hanna, D. Song, and D.

Wagner, “Android permissions demystified,” in

Proc. 18th ACM Conf. Comput. Commun.

Security, 2011, pp. 627–638.

[3]. W. Enck et al., “TaintDroid: An information-flow

tracking system for realtime privacy monitoring

on smartphones, ”ACMTrans. Comput.Syst., vol.

32, no. 2, 2014, Art. no. 5.

[4]. D. Arp, M. Spreitzenbarth, M. H¨ubner, H.

Gascon, K. Rieck, and C. Siemens, “DREBIN:

Effective and explainable detection of android

malware in your pocket,” presented at Annu.

Symp. Netw. Distrib. Syst. Security, 2014.

[5]. C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P.

Porras, “DroidMiner: Automated mining and

characterization of fine-grained malicious

behaviors android

applications,”inProc.Eur.Symp.Res.Comput.Securi

ty,2014, pp. 163–182.

[6]. Gartner Says Sales of Mobile Devices Grew 5.6

Percent in Third Quarter of 2011; Smartphone

Sales Increased 42 Percent.

http://www.gartner.com/it/ page.jsp?id=1848514.

[7]. Android Market.

http://www.android.com/market/.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1

Volume 9 - Issue 1 - Published : April 10, 2021 Page No : 957-964

964

[8]. Amazon Appstore for Android.

http://www.amazon. com/mobile-

apps/b?ie=UTF8&node=2350149011.

[9]. APPLE,INC. Apple's App Store Downloads Top

Three Billion.

http://www.apple.com/pr/library/2010/

01/05appstore.html, January2010.

