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ABSTRACT 

 

Low contrast, blurring details, colour deviations, non-uniform lighting, and other quality issues are common 

in underwater images. The enhancement of underwater images is a critical problem in image processing and 

computer vision for a variety of practical applications. Underwater enhancement has attracted a growing 

amount of research effort over the last few decades. However, a thorough and in-depth survey of related 

accomplishments and improvements is still lacking, especially a survey of underwater image datasets, which 

is a key issue in underwater image processing and intelligent applications. To promote a thorough 

understanding of underwater image enhancement, this paper examines the contributions and shortcomings of 

current approaches. 
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I. INTRODUCTION 

 

Underwater optical imaging systems usually involve 

an optical camera or employ polarisation, stereo / 

panoramic, and spectral imaging techniques. Other 

than optical cameras, each technique has its own set 

of limitations, such as a small field of view, restricted 

depth, complex and skilled operation, and so on. As 

light travels through water, the absorption and 

scattering caused by the water's internal optical 

property (IOP) affect the underwater imaging process. 

Forward scattering happens as light is transmitted 

from the target objects and then enters the receiver. 

Forward scattering causes a blur circle to form around 

the point light source, resulting in blurred images. In 

an underwater image, backscattering reduces contrast 

and causes foggy veiling. Underwater picture quality 

is also influenced by dissolved organic matter and 

small floating particles known as "sea snow," whose 

concentration and species differ greatly. Depending 

on the wavelengths of light, the colours of light fade 

as the depth of the water increases. While artificial 

lighting may be used to increase the visible distance, 

it results in a bright spot in the image surrounded by a 

dark region, exacerbates the scattering caused by 

suspended matter, and makes the scattering caused by 

suspended matter more severe. Furthermore, the 

inherent noise of underwater imaging systems is a 

significant factor that affects the image quality. As a 

result, to improve the visual quality of the optical 
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images collected from water, additional enhancement 

processing is needed. 

 

II. UNDERWATER IMAGING MODEL 

 

Understanding the underwater optical imaging model 

can aid in the development of more robust and 

effective enhancement strategies. The underwater 

optical imaging method and selective light 

attenuation are depicted in Fig. 1, which was drawn 

and updated using the model proposed by Huang et al. 

[1]. On the right side of Figure. 1, the selective 

attenuation characteristics are shown. When 

travelling through water, red light absorbs faster than 

green and blue wavelengths due to its longer range 

(which are shorter). As a result, underwater pictures 

often have green-bluish colours. 

 
Figure 1: Underwater optical imaging 

Figure 1, shows the interaction between light, 

transmission medium, camera and scene. The camera 

receives three types of light energy in line of sight 

(LOS): the direct transmission light energy reflected 

from the scene captured (direct transmission); the 

light from the scene that is scattered by small 

particles but still reaches the camera (forward 

scattering); and the light coming from atmospheric 

light and reflected by the suspended particles 

(background scattering) . 

Artificial light sources tend to intensify the negative 

impact of background scattering in a real-world 

underwater scene. The particles suspended 

underwater created unnecessary noise and made 

dimming images more visible. This paper categorizes 

the quality improvement methods of IFM-free 

underwater 

Image enhancement methods as shown in figure 2 

 
Figure 2. Categories of quality improvement of single 

underwater image 

 

III. IFM-FREE IMAGE ENHANCEMENT 

 

Without taking into account the basic underwater 

imaging concepts, underwater image enhancement 

methods boost the contrast and colour of images 

primarily by pixel intensity re-distribution. Early 

underwater image enhancement study often applied 

outdoor image enhancement techniques to 

underwater images.  

Later approaches are adapted to the particular charact

eristics of underwater images, such as hazing, colour c

ast, and low contrast.These methods modify the 

values of pixels in the spatial or transformed domains. 

Deep learning models, especially convolutional 

Neural Networks (CNN), have recently been used for 

image enhancement, based on the concept that 

hidden features can be learned to improve image 

quality. The image enhancement approaches are 

classified as spatial-domain image enhancement, 

transform-domain image enhancement, and CNN-

based image enhancement. 
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A. Spatial-Domain Image Enhancement 

 

Underwater image histograms show a more 

concentrated distribution of pixel values than natural 

image histograms. As a result, increasing the dynamic 

range of the image histogram provides a method for 

improving the visibility of underwater images. Based 

on grey mapping theory, spatial-domain image 

enhancement methods complete an intensity 

histogram redistribution by expanding grey levels [2]. 

This can be done in a variety of colour models. Color 

models that are commonly used include Red-Green-

Blue (RBG), Hue-Saturation-Intensity (HSI), Hue-

Saturation-Value (HSV), and CIE-Lab. 

We can divide spatial-domain image enhancement 

methods into SCM-based and MCM-based image 

enhancement based on whether a single colour model 

(SCM) or multiple colour models (MCM) is used in 

the histogram redistribution process. 

 

1) SCM-based image enhancement 

 

The RGB colour model is used by many methods. 

Histogram Equalization (HE) [3], Contrast Limited 

Adaptive Histogram Equalization (CLAHE) [4], 

Gamma Correction, and Generalized Unsharp 

Masking (GUM) [5] are common contrast 

enhancement methods used to improve the overall 

visibility of low-light images. 

Traditional colour correction methods include Gray-

World Assumption (GWA), White Balancing (WB), a

nd Gray-Edge Assumption (GEA). Because of the low 

energy of RGB components of underwater images 

(lack of illumination in underwater environments), it 

is common to introduce serious artefacts and halos, 

amplify image internal noise, and even cause colour 

distortion when HE, GWA, WH, and their variations 

are used directly for underwater image enhancement. 

GEA frequently fails to enhance underwater images 

because the contrast is low and the edge features are 

hazy. Fusion is a powerful underwater image 

enhancement strategy in a single colour model.  

Ancuti et al. [6] proposed a fusion-based method in 

2012. First, two fusion images are created from the 

input image: the first is colour corrected using white 

balance, and the second is contrast enhanced using 

local adaptive histogram equalisation. The contrast, 

salient features, and exposure of the two fused images 

are then used to calculate four fusion weights. 

Finally, using the multi-scale fusion strategy, the two 

fused images and the defined weights are combined to 

produce enhanced images with improved global 

contrast and detail information. Ancuti et al. [7] 

published a new method for colour balance and 

fusion for underwater image enhancement in 2017. 

Taking into account underwater optical imaging 

theory, the proposed underwater white balancing, 

which aims to compensate for colour cast caused by 

light with selective attenuation, is gamma corrected 

and sharpened to generate two fusion images and 

associated weight maps, which are merged using the 

standard multi-scale fusion strategy. Their proposed 

enhanced images and videos are distinguished by 

improved dark region exposure, global contrast, and 

edge sharpness. 

To estimate the illumination of underwater images, 

Liu et al. [8] proposed Deep Sparse Non-negative 

Matrix Factorisation (DSNMF) in 2017. The observed 

images were first segmented into small blocks, then 

each channel of the local block was reconstructed 

into a [R, G, B] matrix, and the depth of each input 

matrix was decomposed into multiple layers by the 

DSNMF method's sparsity constraint. The patch is 

illuminated by the last layer of the factorization 

matrix, and the image is adjusted with sparse 

constraints. To obtain the enhanced image, the local 

block illumination of the original image is estimated 

after factorization. 

 

2)  MCM-based image enhancement 

 

Torres-Méndez et al. used Markov Random Field 

(MRF) to describe the correlation between 

underwater images before and after distortion, and 
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improved the colour of images based on the 

maximum a posteriori in 2005. When calculating 

image patch dissimilarity, the image is transformed to 

CIE-Lab colour space to represent equal perceived 

differences. The experimental data collected from 

various underwater scenes confirmed the method's 

feasibility and effectiveness. In 2007, Iqbal et al. [10] 

proposed an Integrated Color Model-based 

underwater image enhancement algorithm (ICM). To 

begin, the RGB colour model's heavily attenuated GB 

channels are stretched across the entire range [0, 255]. 

The image is then converted to the HSI colour model, 

and the S and I components are finally stretched with 

sliding histogram stretching to improve the output 

image's saturation and brightness. In 2010, Iqbal et al. 

proposed an unsupervised Color correction method 

based on Von Kries hypothesis (VKH) and contrast 

optimization of selective histogram stretching. 

UCM can effectively remove blue-greenish cast and 

improve the brightness of low components. Ghani et 

al.  used the Rayleigh distribution function in 2015 to 

redistribute the input image in conjunction with the 

variation of ICM and UCM, improving image contrast 

and reducing over-enhancement, over-saturation 

region, and noise introduction. 

The Retinex theory models the mechanism by which 

the human vision system perceives the world. The 

term Retinex is derived from the words "retina" and 

"cortex." It tries to achieve colour constancy when the 

scene is dominated by a specific illumination, which 

is similar to the situation in the underwater 

environment.Fu et al.  were the first to propose a 

simple RGB colour cast correction algorithm for 

underwater images in 2014. Then, in the CIE-Lab 

colour model, a new frame was proposed based on 

retina cortex theory to separate direct light from 

reflected light. Finally, various strategies were 

employed to highlight the separated light components 

in order to improve the contrast of underwater 

images. 

Zhang et al.  improved the aforementioned methods 

and extended the Retinex framework for underwater 

image enhancement in 2017. To remove luminance in 

the Lab colour model and suppress halo artefacts, the 

brightness L and colour a, b components are filtered 

by bilateral and trilateral filters. 

In 2013, Hitam et al. improved the visibility of 

underwater images by adjusting CLAHE and 

developing the mixture contrast limited adaptive 

histogram equalisation (Mix-CLAHE). The CLAHE 

was applied to the RGB and HSV colour models to 

generate two images, which were then combined 

using the Euclidean norm. The results of the 

experiments show that Mix-CLAHE can significantly 

improve the visual quality of underwater images by 

increasing contrast and decreasing noise and artefacts.  

Huang et al. introduced relative global histogram 

stretching (RGHS) in the RGB and CIE-Lab colour 

models in 2018. The pre-processed image, based on 

Gray-World theory, used adaptive histogram 

stretching in the RGB colour model based on RGB 

channel distribution characteristics and selective 

attenuation of light propagating under water. Finally, 

in the CIE-Lab colour space, the brightness L and 

colour a, b components are optimised as linear and 

curve adaptive stretching, respectively. 

By avoiding blind enhancement due to underwater 

image characteristics, RGHS can improve the visual 

effect of the image and retain available information. 

 

B.  Transform-Domain Image Enhancement 

 

In the frequency domain, the high-frequency image 

component usually corresponds to the edge region 

where the pixel values change a lot, whereas the low-

frequency component represents the image's flat 

background. Transform-domain image enhancement 

methods commonly transform the spatial domain 

image into the frequency domain (e.g., using the 

Fourier Transform) [9], and improve the quality of 

underwater images by simultaneously amplifying the 

high-frequency component and suppressing the low-

frequency component [10]. The difference between 

the high-frequency component of the edge region and 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1 

Volume 9  -  Issue 1  - Published :      April 10, 2021      Page No : 1077-1086 

 

 

 1081 

the low-frequency component of the background 

region is often small in hazed underwater images [11]. 

As a result, underwater image quality can be 

improved by employing transformdomain methods 

[12], such as the homomorphic filter, highboost filter, 

wavelet-transform, and so on. Prabhakar et al. used a 

homomorphic and an anisotropic filter to correct 

non-uniform illumination and smooth the image in 

2010. Finally, to implement de-noising, they used 

adaptive wavelet sub-band thresholding with a 

modified BayesShrink function. Underwater image 

enhancement methods based on Wavelet 

transformation have recently become more popular. 

Amjad et al. proposed a wavelet-based fusion method 

in 2016 to improve the contrast and colour alteration 

of hazy underwater images. First, two fusion images 

are created from the original image by stretching the 

value component of the original image across the 

entire range in the HSV colour model and then 

enhancing them with CLAHE. The wavelet-based 

fusion method then consists of a series of low-pass 

and high-pass filters to eliminate unwanted low and 

high frequencies in the image, as well as separately 

acquiring details of approximation coefficients to 

make the fusing process more convenient. 

Vasamsetti et al.  proposed a wavelet-based 

perspective enhancement technique for underwater 

images in 2017. Because changing the sign of a 

wavelet coefficient can cause unwanted image 

changes, they used the discrete wavelet transform 

(DWT) on the RGB channels to generate two 

decomposition levels and collect the approximation 

and detailed responses for these parts to reconstruct 

the grey scale images for R-G-B channels. 

Meanwhile, this method can be used to improve the 

accuracy of high-level underwater computer vision 

tasks by pre-processing underwater detection and 

tracking techniques. Although transform-domain 

underwater image enhancement methods can 

improve visibility and contrast in hazy images, they 

have a tendency to over-amplify noise and cause 

colour distortion. 

C. CNN based Image Enhancement  

 

Many studies in recent years have demonstrated the 

effectiveness of deep learning methods in various 

application fields, such as image segmentation and 

speech recognition. 

Convolutional neural networks (CNN) perform 

particularly well in image-based tasks; indeed, CNN is 

the foundation of several advanced deep learning 

models. Many results have been obtained using 

various CNNs on low-level vision tasks , such as 

image de-blurring, image de-raining, image de-

noising, low-light image enhancement, and image 

dehazing. However, only a few methods are effective 

for improving underwater images. 

 In 2017, Perez et al. [13] proposed a CNN-based 

underwater image enhancement method that uses 

pairs of degraded and recovered underwater images to 

train an end-to-end transformation model between 

the hazed images and the corresponding clear images. 

Meanwhile, Wang et al. proposed UIE-net 

(Underwater Image Enhancement-net), an end-to-

end CNN-based underwater image enhancement 

framework for colour correction and haze removal. 

To extract the inherent features of local patches of the 

image, the UIE-net employs a pixel disrupting 

strategy, which greatly accelerates model 

convergence and improves accuracy. 

In 2018, Anwar et al. [14] trained a convolutional 

neural network (UWCNN) on a database of synthetic 

underwater images created in an indoor environment, 

and then used the UWCNN to directly reconstruct 

the clear underwater latent image. This model's 

generality was validated using real and synthetic 

underwater images from a variety of underwater 

scenes. However, in deep sea environments, a large 

amount of training data is difficult to compile, so 

researchers used generative adversarial networks 

(GANs) [15] to generate realistic underwater images 

in an unsupervised pipeline. WaterGAN was proposed 

by Li et al. to generate synthetic real-world images 

from in-air image and depth maps, and then both raw 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1 

Volume 9  -  Issue 1  - Published :      April 10, 2021      Page No : 1077-1086 

 

 

 1082 

underwater and true colour in-air, as well as depth 

data, were used to feed a two-stage deep learning 

network for color-cast underwater image correction. 

Fabbri et al. like waterGAN, used GANs to improve 

underwater image. They first used CycleGAN to 

reconstruct distorted images based on undistorted 

images, and then the pairs of underwater images were 

fed into the training of a novel Underwater-GAN, 

which can transform hazy underwater images into 

clear and high-resolution images. Li et al. proposed a 

weakly supervised underwater colour correction 

model that primarily consists of adversarial networks 

and a multi-term loss function that includes 

adversarial loss, cycle consistency loss, and SSIM loss 

to alleviate the need for paired underwater images for 

network training and allow the use of unknown 

underwater images. This method preserves the 

content and structure of the input underwater image 

while correcting the colour distortion. Yu et al. 

proposed Wasserstein GAN with gradient penalty 

term as the backbone network in 2019, designed the 

loss function as the sum of generative adversarial 

network loss and perceptual loss, and used a 

convolution patchGAN classifier as the discriminator 

of Underwater-GAN. Uplavikar et al. proposed a 

domain-Adversarial learning-based underwater image 

enhancement method in 2019 that can handle 

multiple types of underwater images and generate 

clear images by learning domain-agnostic features. 

So far, the reality of the generated underwater images

 has received little scrutiny.  

To address the difficulty in developing CNN-based 

underwater image enhancement, Li et al.  created a 

large-scale and real-world underwater image 

enhancement benchmark dataset (UIEBD) in 2019, 

which was used to train a DUIENet that uses a gated 

fusion network architecture to learn three confidence 

maps. 

 

 

 

IV. QUALITY IMPROVEMENT METHODS FOR 

UNDERWATER IMAGES:EXPERIMENTAL 

COMPARISONS 

 

To investigate the current state of quality 

improvement methods for underwater images, we 

first introduce image quality assessment metrics 

before conducting comprehensive comparisons on 

mainstream IFM-free underwater image 

enhancement methods from both subjective and 

objective perspectives. 

 

A. The Methods to be included 

 

HE, CLAHE , integrated colour model (ICM), 

unsupervised colour correction method (UCM), 

Fusion-based underwater image enhancement method 

(Fusion-based, FB), underwater image enhancement 

method based on Rayleigh distribution (RD)and 

relative global histogram stretching (RGHS) are among 

the IFM-free image enhancement methods compared. 

 

B. Metrics for Image Evaluation  

 

The optical performance of imaging equipment, 

instrument noise, imaging conditions, image 

processing, and other factors can all have an impact 

on image quality. 

Image quality assessment (IQA) is frequently divided 

into two categories: subjective qualitative assessment 

(SQA) and objective quantitative assessment (IQA) 

(OQA). SQA relies heavily on the human visual 

system (HVS) to obtain subjective impressions of 

images. A proper SQA necessitates repeating a 

number of experiments (varying the factors that affect 

image quality) to generate a dataset, which is then 

scored by human observers in order to achieve 

statistical significance. Due to the low efficiency and 

complicated operation of SQA, we simply present 

representative results from various image 

enhancement/restoration methods as the basis for 

subjective analysis in this paper. OQA develops a 
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mathematical model based on the HSV in order to 

calculate a quality index. This method is significantly 

more efficient than SQA if accurate models are used, 

because a larger dataset can be automatically 

scrutinised. 

OQA methods are commonly classified into three 

types: fullreference (FR), reduced-reference (RR), and 

nonreference (NR). FR and RR image quality metrics 

require or partially require a high-quality reference 

image when evaluating image quality. Unfortunately, 

in a complex underwater environment, a dehazed and 

natural reference image cannot be obtained unless 

synthetic images or colour boards from the terrestrial 

scene are brought into the underwater scene. 

Furthermore, due to the complex underwater 

environment and optical imaging mechanism, 

underwater image evaluation metrics are limited. To 

fully comprehend the performance of the compared 

underwater image quality improvement methods, we 

selected multiple NR metrics developed for both 

specific underwater images and general images, taking 

into account aspects such as information richness, 

naturalness, sharpness, and the overall index of 

contrast, chroma, and saturation. 

Entropy is defined as the average degree of 

uncertainty in information. Entropy, when applied to 

images, represents the abundance of information 

observed in the image. When the image's contrast is 

more uniform, the entropy is relatively higher; the 

higher the entropy, the better the image's quality and 

clarity; otherwise, an image with low contrast, whose 

pixel values are distributed within a narrow range, 

has a lower entropy and appears hazy. The natural 

image quality evaluator (NIQE) was developed based 

on human vision sensitivity to high-contrast areas in 

images. It establishes the feature model of sensitive 

areas using multivariate gaussian (MVG), with the 

larger the values of these parameters, the higher the 

image quality. A lower NIQE score indicates better 

perceptual quality.  

Image with no context/reference The Spatial Quality 

Evaluator (BRISQUE) assesses image naturalness by 

measuring deviations from a natural image model 

based on natural scene statistics. BRISQUE can 

represent the potential loss of image naturalness 

caused by distortion, with a value ranging from 0 to 

100, and the higher the value, the poorer the image 

quality. 

Yang et al.discovered a relationship between image 

sharpness and colour and subjective image quality 

perception in 2015 and proposed an image quality 

evaluation method specifically for underwater images, 

the underwater colour image quality evaluation 

(UCIQE). In CIELab colour space, UCIQE is a linear 

model of contrast, chroma, and saturation that can be 

expressed as: 

𝑈𝐶𝐼𝑄𝐸 = 𝑐1×𝜎c + 𝑐2×𝑐𝑜𝑛l + 𝑐3×𝜇s. 

where 𝜎c, 𝑐𝑜𝑛l, 𝜇s represents the standard deviation of 

image chromaticity, con represents the contrast of 

image brightness, and c represents the average of 

image saturation, and 𝑐1, 𝑐2, 𝑐3 represents the weights 

of these parameters. Underwater image quality 

measure (UIQM) is similar to UCIQE in that it is a 

linear combination of underwater image colorfulness 

measure (UICM), underwater image sharpness 

measure (UISM), and underwater image contrast 

measure (UIConM). As a result, the larger the UCIQE 

and UIQM, the better the underwater colour image 

quality. 

 

C. Evaluation and Discussion Of the Overall 

Performance Of Underwater Image Enhancement  

 

As a baseline, we used a dataset with four types of un

derwater images that is commonly used in the literatu

re. This includes one relatively clear scene and three 

difficult underwater images in a greenish, turbid, and 

low-visibility scene (Figure. 3).  
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Figure 3: Comparisons on results of IFM-free image 

enhancement methods. 

 

1) Subjective Analysis 

 

The results of IFM-free image enhancement methods 

are shown in Figure. 3 (b-h). The HE-enhanced 

images (Figure. 3 (b)) have an overwhelming red tone 

and amplify the noises in the original image. Both 

CLAHE and RGHS use adaptive parameters to avoid 

global histogram stretching or blind pixel 

redistribution, both of which reduce sharpness. 

As a result, their results in Figure. 3 (c) and Figure. 3 

(h) are not exaggerated. RGHS outperforms CLAHE 

in terms of dehazing. As shown in Figure. 3, ICM and 

UCM redistribute the S and I components in HSI 

colour space, which can result in under- and over-

saturated images (d-e). In the HSV colour model, RD 

combined ICM and UCM with Rayleigh distribution 

to minimise under- and over-enhanced areas of 

output images. However, RD conceals the enhanced 

images' local detailed information. Although the 

Fusion-based (FB) image enhancement method can 

significantly improve image contrast and 

chromaticity, noise is unavoidably introduced into 

the enhanced images. 

 

2) Objective Analysis 

 

The goal of underwater image 

restoration/enhancement is to improve the visibility, 

colour, and saturation of images while also revealing 

detailed information for feature extraction and 

computer vision analysis. Because reference 

underwater images (ground truth) are not available, 

this review selects five types of non-reference image 

quality metrics to quantify information entropy, 

distortion, and the balance of brightness, contrast, 

and colour for underwater images. ENTROPY, 

BRISQUE, NIQE, UIQM, and UCIQE are the five 

metrics.  
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TABLE 1. QUANTITATIVE ANALYSIS OF 

ENHANCED RESULTS BASED ON DIFFERENT 

METHODS 

Comp

ared 

metho

ds 

Image Quality Assessment Metrics 

ENTR

OPY  

BRISQ

UE  

NIQE  UIQ

M  

UCIQ

E 

HE  7.813

9  

28.607

9  

3.965

4  

4.039

9  

0.681

8 

CLAH

E  

7.113

2  

27.344

5  

3.633

8  

2.064

4  

0.656

7 

ICM  6.911

7  

33.175

8  

3.425

3  

2.299

9  

0.587

2 

UCM  7.264

3  

28.242

4  

3.633

9  

3.322

8  

0.613

1 

FB  7.526

9  

32.973

0  

3.917

6  

2.756

7  

0.668

4 

RD  7.748

7  

29.028

6  

3.763

1  

3.265

4  

0.672

1 

RGHS  7.475

9  

28.317

8  

3.516

1  

2.011

6  

0.617

6 

Avg 

(Var)  

7.04 

(0.09)  

29.67 

(4.86)  

3.69 

(0.03)  

2.82 

(0.49)  

0.64 

(0.001

) 

 

Table 1, shows the average values of the five 

quantitative evaluations of the enhanced images, 

highlighting the best results in bold.  

 

V. CONCLUSION 

 

To assist researchers in better exploring this unknown 

underwater world, quality improvement methods for 

single underwater images based on image 

enhancement are thoroughly reviewed. In this review, 

we will first discuss the fundamental principles of 

underwater imaging models and selective light 

absorption characteristics under water. This paper 

presents an experimental comparison of state-of-the-

art quality improvement methods using multiple 

quality assessment metrics, which leads to a 

discussion of the problems encountered by current 

IFMfree underwater image quality improvement 

methods. Overall, it provides a comprehensive 

overview of the progress and challenges of single 

underwater image quality improvement, which can 

aid researchers in the future development of this field. 
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