

Synthesis and Reactivity of 2-Imino-3-(6-Methyl-1, 3-Benzothiazol-2-Yl)-1, 3-Thiazolidin-4-One

T. M. Bhagat

P.G, Department of Chemistry, G. S. Gawande College, Umarkhed, Dist-Yeotmal, Maharashtra, India

ABSTRACT

4-thiazolidinone has been prepared by the series of reactions. We have synthesized 2-amino-6-methyl benzothiazole from p-toluidine (1) which is then treated with chloro acetyl chloride to form 2-chloro-N-(6-methyl-1,3-benzothiazol-2-yl) acetamide (2). Compound (2) on thiocynation and refluxation with DMF, 2-imino-3-(6-methyl-1,3-benzothiazol-2-yl)-1,3-thiazolidin-4-one is obtained as product(4). This 4-thiazoidinone compound (4) treated with benzaldehyde, 4-methoxy benzaldehyde, 4-chloro benzaldehyde, 2-nitro benzaldehyde and 4-dimethyl amino benzaldehyde in presence of acetic acid and sodium acetate to form corresponding 5-substituted product (5a-5h). The newly synthesized compounds are characterized by spectral analysis.

Keywords : Benzothiazole, Thiazolidinone

I. INTRODUCTION

A survey of literature reveals that large work has been carried out on the synthesis of 4-thiazolidinone and known to exhibits various biological activities as antitubercular¹, antiallergic². 4-thiazolidinone compound are reported to possess different biological activities, such as antimicrobial, anti-inflammatory, antiviral, antiparasitic and antituberculosis³⁻⁹.

4-thiazolidinones are good pharmacological properties¹⁰ and known to exhibits antitubercular¹¹, antibacterial¹², anticonvulsant¹³, antifungal activity¹⁴. Large work has been carried out on 4-thiazolidinone but very less information is available about 3 and 5-substituted 4-thiazolidinone

The starting compound were prepared by the reaction of 2-amino-6-methyl benzothiazole and chloro acetyl chloride to form 2-chloro-*N*-(6-methyl-1,3benzothiazol-2-yl) acetamide which on treatment with potassium thiocynate and DMF, 2-imino-3-(6methyl-1,3-benzothiazol-2-yl)-1,3-thiazolidin-4-one obtained as a product. This thiazolidinone treated with substituted aromatic aldehyde to obtained corresponding 5-substituted 4-thiazolidinone

II. EXPERIMENTAL

All the melting points were determined in open capillary tube and may be uncorrected. The purity of compound was checked by TLC on silica gel coated glass plate. Infra-red spectra were monitored in KBr palates on Bomen 104 FT infra-red spectrophotometer.

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

H1 NMR spectra were obtained on a Gemani 200 Mz spectrometer with tetra methyl silane as an internal standard. Elemental analysis was performed on a Heraeus CHN-O rapid analyzer

2-chloro-N-(6-methyl-1,3-benzothiazol-2yl)acetamide (2)

2-amino 6-methyl benzothiazole (5gm, 0.01M) and100ml of dry benzene is taken in a round bottom flask. 15ml of chloro acetyl chloride added drop wise fashion maintaining temperature 0-5 °C in a reaction mixture. Then reflux the reaction mixture on water bath for 5 hours. The solvent was removed by distillation, the solid product is obtained. The completion of the reaction was monitored by TLC. The solid was recrystallized by using ethanol.

Yield: 5.3 gm,(72%) M.P: 172 °C I.R. (KBr) : 3420 cm⁻¹ (Asymmetric stretching of -NH), 3320 cm⁻¹ (N-H Symmetrical stretching of -NH), 3052 cm⁻¹ (Ar-H stretching), 1630 cm⁻¹ (-C=N stretching), 1750 cm⁻¹ (-C=O stretching); PMR (CDCl₃) δ 2.5 (singlet, 1H, NH), δ 6.8 (singlet, 1H, Ar-H), δ 7.0-7.5 (two doublet, 2H, Ar-H) [Found : C: 49.5 %, H : 3.50%, Cl : 14.5% N : 11.0%, O : 6.5% S: 13.0 %.C10H9ClN2OS required : C: 49.90 %, H : 3.77 %, Cl : 14.73% N : 11.64%, O : 6.65% S: 13.32 %.]

2-[(6-methyl-1,3-benzothiazol-2-yl)amino]-2oxoethyl thiocyanate 9 (3)

3.8gm (0.015M) of compound (2) and 2gm (0.02M) KSCN taken in a round bottom flask. Then 40ml dry acetone was added and refluxed on water bath for 4 hours. The resulting mixture was cooled, excess of acetone was removed by distillation & residue poured into crushed ice, thus solid residue obtained was filtered, washed with cold water, dried & recrystalised from ethanol.

Yield: 3.5 gm, (80%) M.P: 172 °C I.R. (KBr) : 3420 cm⁻¹ (Asymmetric stretching of -NH), 3320 cm⁻¹ (N-H Symmetrical stretching of -NH), 3052 cm⁻¹ (Ar-H stretching), 1630 cm⁻¹ (-C=N stretching), 1750 cm⁻¹ (-C=O stretching) 2230 cm⁻¹ (-C=N stretching in

cyanide) ; PMR (CDCl₃) δ 2.4 (singlet, 1H, NH), δ 6.8 (singlet, 1H, Ar-H), δ 7.0-7.5 (two doublet, 2H, Ar-H) [Found : C: 49.5 %, H : 3.50%, N : 15.5%, O : 6.0% S: 24.0 %.C₁₁H₉N₃OS₂ required : C: 50.17 %, H : 3.44 %, N : 15.96%, O : 6.08% S: 24.35 %.]

2-imino-3-(6-methyl-1,3-benzothiazol-2-yl)-1,3thiazolidin-4-one (4)

2.63gm (0.01M) of compound (3) in a round bottom flask was refluxed in 30ml DMF (Dimethyl Formamide) in an oil bath by maintaining temperature of 150-160 °C for 6 hours. The solvent removed by distillation under vaccume & the crude product obtained is recrystallized from ethanol. The completion of reaction was monitored by TCL.

Yield: 2.6 gm, (74%) M.P: 162 °C I.R. (KBr) : 3420 cm⁻¹ (Asymmetric stretching of -NH), 3320 cm⁻¹ (N-H Symmetrical stretching of -NH), 3052 cm⁻¹ (Ar-H stretching), 1630 cm⁻¹ (-C=N stretching), 1750 cm⁻¹ (-C=O stretching) ; PMR (CDCl₃) δ 2.6 (singlet, 1H, NH), δ 6.8 (singlet, 1H, Ar-H), δ 7.0-7.5 (two doublet, 2H, Ar-H) [Found : C: 49.5 %, H : 3.50%, N : 15.5%, O : 6.0% S: 24.0 %.C₁₁H₉N₃OS₂ required : C: 50.17 %, H : 3.44 %, N : 15.96%, O : 6.08% S: 24.35 %.]

5-substituted-2-imino-3-(6-methyl-1,3-benzothiazol-2-yl)-1,3-thiazolidin-4-one (5a-5f)

1.3 gm (0.005M) of compound (4) and 0.4 gm (0.005M) of sodium acetate was taken in a 50 ml round bottom flask. Then aromatic aldehyde (a-f) & 10 ml of acetic acid was added, refluxed for 5 hours and allow to cool. This reaction mixture pours on crushed ice. Precipitate once formed. Filtered & washed with cold water & recrystallized from proper solvent.

5a.Yield: 0.8 gm, M.P: 128 °C I.R. (KBr): 3420 cm⁻¹ (Asymmetric stretching of -NH), 3320 cm⁻¹ (N-H Symmetrical stretching of -NH), 3052 cm⁻¹ (Ar-H stretching), 1630 cm⁻¹ (-C=N stretching), 1750 cm⁻¹ (-C=O stretching); [Found C: 61.5 %, H : 3.5 %, N : 11.5%, O : 4.5% S: 18.0 % M.F.-C18H13N3OS2

required : C: 61.52 %, H : 3.73 %, N : 11.96%, O : 4.55% 60.89 %, H : 4.60 %, N : 14.20%, O : 4.06% S: S: 18.25 %.] 16.26 %.]

5b.Yield: 0.6 gm, M.P: 122 °C I.R. (KBr) : 3410 cm⁻¹ (Asymmetric stretching of -NH), 3325 cm⁻¹ (N-H Symmetrical stretching of -NH), 3050 cm⁻¹ (Ar-H stretching), 1620 cm⁻¹ (-C=N stretching), 1760 cm⁻¹ (-C=O stretching); [Found C: 63.5 %, H : 3.8 %, N : 11.0%, O : 4.1% S: 16.80 % M.F.-C₂₀H₁₅N₃OS₂ required : C: 63.64 %, H : 4.0 %, N : 11.13%, O : 4.24% S: 17.0 %.]

5c.Yield: 0.6 gm, M.P: 108 °C I.R. (KBr) : 3430 cm⁻¹ (stretching of -NH), 3050 cm⁻¹ (Ar-H stretching), 1620 cm⁻¹ (-C=N stretching), 1760 cm⁻¹ (-C=O stretching); [Found C: 59.7 %, H : 3.8 %, N : 11.0%, O : 8.2% S: 16.5 % M.F.-C19H15N3OS2 required : C: 59.82 %, H : 3.96 %, N : 11.02%, O : 8.39% S: 16.81 %.]

5d.Yield: 0.6 gm, M.P: 130 °C I.R. (KBr) : 3400 cm⁻¹ (stretching of -NH), 3070 cm⁻¹ (Ar-H stretching), 1620 cm⁻¹ (-C=N stretching), 1720 cm⁻¹ (-C=O stretching); [Found C: 55.8 %, H : 3.1 %, Cl : 9.1 %, N : 11.8%, O : 4.1% S: 16.5 %; M.F.-C₁₈H₁₂ClN₃OS₂ required : C: 56.02 %, H : 3.13 %, Cl : 9.19 %, N : 11.89%, O : 4.15% S: 16.62 %.]

5e.Yield: 0.7 gm, M.P: 115 °C I.R. (KBr) : 3430 cm⁻¹ (stretching of -NH), 3020 cm⁻¹ (Ar-H stretching), 1630 cm⁻¹ (-C=N stretching), 1730 cm⁻¹ (-C=O stretching); [Found C: 54.5 %, H : 3.0 %, N : 14.1%, O : 12.1% S: 16.1 %.; M.F.-C₁₈H₁₂N₄O₃S₂ required : C: 54.53 %, H : 3.05 %, N : 14.13%, O : 12.11% S: 16.18 %.]

5f.Yield: 0.6 gm, M.P: 125 °C I.R. (KBr) : 3440 cm⁻¹ (stretching of -NH), 3050 cm⁻¹ (Ar-H stretching), 1620 cm⁻¹ (-C=N stretching), 1740 cm⁻¹ (-C=O stretching); [Found C: 60.6 %, H : 4.5 %, N : 14.1%, O : 4.0% S: 16.2 %.; M.F.-C₂₀H₁₈N₄OS₂ required : C:

Scheme

68

III. RESULT AND DISCUSION

The structures of these 3 and 5-substituted thiazolidinone (5a- 5f) were assigned on the basis of their elemental analysis and spectral data

2-chloro-N-(6-methyl-1,3-benzothiazol-2-

yl)acetamide showed stretching absorption bands in IR spectra in the region 3320 cm⁻¹ due to N-H stretching. The presence of broad singlet in their PMR spectra in the region δ 2.5 to δ 4.5 confirmed the presence of -NH proton. The signal at 1750 cm⁻¹ in IR spectra indicates the presence of carbonyl group.

The I. R. spectra of Compound (3) shows absorption signal in the region 2230 cm⁻¹ indicates the presence of cyano grop. While the IR spectra of compound (4) observed the absence of strong bands in the

region 2230 cm^{-1} due to -C-N stretching of cyano group, confirms the formation of cyclised product.

IV. REFERENCES

- [1]. Kasel W, Dolezal M, Sidoova E,Odlerova Z and Drasata, J. Chem. Abstr.,1989,110,128063e.
- [2]. Ronssel U and Jpn Kokai Tokkyo, Chem. Ast.r, 1987, 106, 156494G.
- [3]. Capan, G., Ulusoy N., Ergenc N., Kiraz M. Monatshefte fur Chemie 1999, 130, 1399.
- [4]. Vigorita, M. G., Ottana R., Monforte F., Maccari R., Trivato A., Monforte M. T., Zaviano M. F. Bioorg. Med. Chem. Lett. 2001, 11, 2791.
- [5]. Rawal, R. K.; Prabhakar, Y. S.; Katti, S. B.; Clercq, E. Bioorg. Med. Chem. 2005, 13, 6771.
- [6]. Babaoglu, K.; Page, M. A.; Jones, V. C.; McNeil, M. R.; Dong, C.; Naismith, J. H.; Lee, R. E. Bioorg. Med. Chem. Lett. 2003, 13, 3227.
- [7]. Alves, A. J.; Ramos, S. V. V.; Silva, M. J.;
 Fulcrand, P.; Artis, A. M.; Quero, A. M. Rev.
 Farm. Bioqui 'm. Univ. Sao Paulo 1998, 34, 77.
- [8]. Alves, A. J.; Leite, A. C. L.; Santana, D. P.; Beltrao, T. M.; Coelho, M. R. D. IL Farmaco 1993, 48, 1167.
- [9]. N. C. Desai, H. K Shukla, R. R. Astik and K. A. Thakar, J. Indian Chem. Soc., 61, 238, (1984).
- [10]. L.I. Petlichna, M. M. Turekevich and V. M. Vaedenski, Ukvkhim. Zh., 29, 170, (1963)
- [11]. Raj Singh. J. Indian chem. Soc., 53, 595, (1976).
- [12]. E. Schropal and R. Pohloudek- Febini, Pharmazie, 23, 638, (1968)
- [13]. M. Pargel. K. Popov. Pargel and N. Kobillarov, Synthesis, 11, 190, (1976).
- [14]. J. M. Decazes, J. L. Luche, H. B. Kagam, R. Parthsarathy and J. Ohrt, Tetrahedron Lett. 3633, (1972)