
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi : https://doi.org/10.32628/IJSRST218427

325

Effectual Non-Intrusive Minimum-Process Synchronous Checkpointing

Protocol for Mobile Distributed Systems
Raman Kumar1, Er Jyoti Arora2

1Research Scholar, Desh Bhagat University Mandi Gobindgarh, Punjab, India
2Assistant Professor, Desh Bhagat University Mandi Gobindgarh, Punjab, India

Article Info

Volume 8, Issue 4

Page Number : 325-331

Publication Issue

July-August-2021

Article History

Accepted : 10 July 2021

Published : 20 July 2021

ABSTRACT

While dealing with Mobile Distributed systems, we come across some issues

like: mobility, low bandwidth of wireless channels and dearth of stable storage

on mobile nodes, disconnections, inadequate battery power and high failure rate

of mobile nodes. Minimum-process coordinated checkpointing is considered an

attractive methodology to introduce fault tolerance in mobile systems

transparently. In this paper, we propose a non-blocking coordinated global

state compilation algorithm for mobile computing systems, which requires only

a minimum number of processes to take permanent recovery points. We reduce

the communication complexity as compared to the Cao-Singhal algorithm [4],

while keeping the number of useless recovery points unchanged. Finally, the

paper presents an optimization technique, which significantly reduces the

number of useless recovery points at the cost of minor increase in the

communication complexity. In coordinated global state compilation, if a single

process fails to take its tentative recovery point; all the recovery point effort is

aborted. We try to reduce this effort by taking soft recovery points in the first

phase at Mobile Hosts.

Keywords : Mobile Computing Systems, coordinated checkpointing, Consistent

Checkpoints, Global Snapshot, Recovery.

I. INTRODUCTION

In mobile distributed computing system (MDCS),

some processes are operating on mobile hosts (M_Hs).

An MH is a computer that may retain its connectivity

with the rest of the distributed-system through a

wireless network while on move or it may detach. It

requires integration of portable computers within

existing data network. An MH can join to the network

from diverse sites at dissimilar times. The

infrastructure machines that interconnect directly

with the Mob-Hosts are called Mobile Support

Stations (M_S_Ss). A cell is a logical or geographical

coverage area under an MSS [2, 8, 9, 19, 20].

http://www.ijsrst.com/
https://doi.org/10.32628/IJSRST218427

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Raman Kumar et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 325-331

326

Local checkpoint is the saved state of a process at a

processor at a given instance. Global checkpoint is a

collection of local checkpoints, one from each process.

A global state is said to be “consistent” if it contains no

orphan message; i.e., a message whose receive event is

recorded, but its send event is lost. To recover from a

failure, the system restarts its execution from a

previous consistent global state saved on the stable

storage during fault-free execution. This saves all the

computation done up to the last check pointed state

and only the computation done thereafter needs to be

redone. Processes in a distributed system

communicate by sending and receiving messages [1, 7,

10, 11, 14, 17, 18].

A recovery point algorithm for mobile computing

systems needs to handle many new issues like:

mobility, low bandwidth of wireless channels, lack of

stable storage on mobile nodes, disconnections,

limited battery power and high failure rate of mobile

nodes. These issues make traditional global state

compilation techniques unsuitable for such

environments. Minimum-process coordinated global

state compilation is an attractive approach to

introduce fault tolerance in mobile distributed systems

transparently. This approach is domino-free, requires

at most two recovery points of a process on stable

storage, and forces only a minimum number of

processes to recovery point. But, it requires extra

synchronization communications, blocking of the

underlying computation or taking some useless

recovery points [3, 4, 5, 6, 12, 13, 15, 16].

In this paper, we propose a nonblocking coordinated

global state compilation algorithm for mobile

computing systems, which requires only a minimum

number of processes to take permanent recovery

points. We reduce the communication complexity as

compared to the Cao-Singhal algorithm [4], while

keeping the number of useless recovery points

unchanged. We also address the related issues like:

failures during global state compilation,

disconnections, concurrent initiations of the algorithm

and maintaining exact dependencies among processes.

Finally, the paper presents an optimization technique,

which significantly reduces the number of useless

recovery points at the cost of minor increase in the

communication complexity. In coordinated global

state compilation, if a single process fails to take its

tentative recovery point; all the recovery point effort

is aborted. We try to reduce this effort by taking soft

recovery points in the first phase at Mobile Hosts.

In the present study, we propose a nonblocking

coordinated global state compilation algorithm for

mobile computing systems, which requires only a

minimum number of processes to take permanent

recovery points. We reduce the communication

complexity as compared to [4], while keeping the

number of useless recovery points unchanged.

II. The Proposed Checkpointing Algorithm

2.1 Basic Idea

The proposed global state compilation algorithm is

based on keeping track of direct dependencies of

processes. The initiator M_S_S computes minset

[subset of the minimum set] on the basis of

dependencies maintained locally; and sends the

recovery point request along with the minset[] to the

relevant M_S_Ss. On receiving recovery point request,

an M_S_S asks concerned processes to recovery point

and computes new processes for the minimum set. By

using this technique, we have tried to optimize the

number of communications between M_S_Ss. In case

of example, given in Section 2, point (i), M_S_S1 will

send just one c_req to M_S_S2 to recovery point P3 and

P4.

When the initiator M_S_S commits the global state

compilation process, it sends the commit request along

with the exact minimum set to all M_S_Ss and every

M_S_S maintains up-to-date csn[]. This enables us to

maintain exact dependencies among processes. In our

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Raman Kumar et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 325-331

327

protocol, ddvi[j]=1 only if Pi is directly dependent

upon Pj in the current CI. Therefore, useless recovery

point requests, are not sent in our algorithm.

When Pi sends c_req to Pj, it also piggybacks csni[j] [4].

When Pj receives c_req, it decides, on the basis of

piggybacked csni[j], whether c_req is useful. In our

protocol, no useless c_req is sent, therefore, csni[j] is

not piggybacked onto c_req.

In algorithm [4], when a process, say Pj, takes its

tentative recovery point, it also finds the processes Pk

such that Pj has received m from Pk in the current CI.

On the basis of MR, received with the recovery point

request, Pj decides the following: (i) whether any

process has already sent the recovery point request to

Pk (ii) whether the earlier recovery point request to Pk

is useless. In our protocol, no useless recovery point

request is sent, therefore, data structures MR[] is not

piggybacked onto recovery point requests. The

decision (i) is taken on the basis of tminset,

maintained at every M_S_S. tminset maintains the

local knowledge about the minimum set. In our case,

instead of MR[], tminset is piggybacked onto recovery

point requests. The size of the tminset is negligibly

small as compared to MR[].

In the first phase, all the M_Hs take induced recovery

points. When the initiator M_S_S comes to know that

all the processes in the minimum set have taken their

mutable recovery points successfully, it sends the

request to all concerned processes to convert their

mutable recovery points into tentative ones. Finally,

when initiator M_S_S comes to know that all

concerned processes have taken their tentative

recovery points successfully, it issues commit request.

In this way, if a process fails to take mutable recovery

point in the first phase, then the loss of global state

compilation effort is low. If all concerned M_Hs take

tentative recovery points in the first phase and some

process fails to take its recovery point, then the loss of

global state compilation effort will be exceedingly

high.

2.2 The Proposed Global state compilation Algorithm

When an M_H sends an application communication,

it needs to first send to its local M_S_S over the

wireless cell. The M_S_S can piggyback appropriate

information onto the application communication, and

then route it to the appropriate destination.

Conversely, when the M_S_S receives an application

communication to be forwarded to a local M_H, it

first updates the relevant vectors that it maintains for

the M_H, strips all piggybacked information from the

communication, and then forwards it to the M_H.

Thus, an M_H sends and receives application

communications that do not contain any additional

information; it is only responsible for global state

compilation its local state appropriately and

transferring it to the M_S_S.

Each process Pi can initiate the global state

compilation process. Initiator M_S_S initiates and

coordinates global state compilation process on behalf

of M_Hi. It computes minset; and sends c_req along

with minset to an M_S_S if the later supports at least

one process in the minset. It also updates its tminset

on the basis of minset. We assume that concurrent

invocations of the algorithm do not occur.

On receiving the c-req, along with the minset from

the initiator M_S_S, an M_S_S, say M_S_Si, takes the

following actions. It updates its tminset on the basis of

minset. It sends the c_req to Pi if the following

conditions are met: (i) Pi is running in its cell (ii) Pi is

a member of the minset and (iii) c_req has not been

sent to Pi. If no such process is found, M_S_Si ignores

the c_req. Otherwise, on the basis of tminset, ddv

vectors of processes in its cell, initial ddv vectors of

other processes, it computes tnp_minset. If tnp_minset

is not empty, M_S_Si sends c_req along with tminset,

tnp_minset to an M_S_S, if the later supports at least

one process in the tnp_minset. M_S_Si updates

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Raman Kumar et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 325-331

328

np_minset, tminset on the basis of tnp_minset and

initializes tnp_minset.

On receiving c_req along with tminset, tnp_minset

from some M_S_S, an M_S_S, say M_S_Sj, takes the

following actions. It updates its own tminset on the

basis of received tminset, tnp_minset and finds any

process Pk such that Pk is running in its cell, Pk has not

been sent c_req and Pk is in tnp_minset. If no such

process exists, it simply ignores this request.

Otherwise, it sends the recovery point request to Pk.

On the basis of tminset, ddv[] of its processes and

initial ddv[] of other processes, it computes

tnp_minset. If tnp_minset is not empty, M_S_Sj sends

the recovery point request along with tminset,

tnp_minset to an M_S_S, which supports at least one

process in the tnp_minset. M_S_Sj updates np_minset,

tminset on the basis of tnp_minset. It also initializes

tnp_minset.

For a disconnected M_H, that is a member of

minimum set, the M_S_S that has its disconnected

recovery point, converts its disconnected recovery

point into tentative one. Algorithm executed at a

process on the receipt of a computation

communication is given in Section 3.4.

When an M_S_S learns that all of its relevant

processes have taken their tentative recovery points

successfully or at least one of its processes has failed to

take its tentative recovery point, it sends the response

communication along with the np_minset to the

initiator M_S_S. If, after sending the response

communication, an M_S_S receives the recovery point

request along with the tnp_minset, and learns that

there is at least one process in tnp_minset running in

its cell and it has not taken its tentative recovery

point, then the M_S_S requests such process to take

recovery point. It again sends the response

communication to the initiator M_S_S.

When the initiator M_S_S receives a response from

some M_S_S, it updates its minset on the basis of

np_minset, received along with the response. Finally,

initiator M_S_S sends commit/abort to all the

processes. When a process in the minimum set

receives the commit request, it converts its tentative

recovery point into permanent one and discards its

earlier permanent recovery point, if any. On receiving

commit, a process discards its mutable recovery point,

if it is not a member of the minimum set.

An Example of the Proposed Algorithm

Figure 1

We explain our global state compilation algorithm

with the help of an example. In Figure 1, at time t1, P2

initiates global state compilation process. ddv2[1]=1

due to m1; and ddv1[4]=1 due to m2. On the receipt of

m0, P2 does not set ddv2 [3] =1, because, P3 has taken

permanent recovery point after sending m0. We

assume that P1 and P2 are in the cell of the same M_S_S,

say M_S_Sin. M_S_Sin computes minset (subset of

minimum set) on the basis of ddv vectors maintained

at M_S_Sin, which in case of figure 1 is {P1, P2, P4}.

Therefore, P2 sends recovery point request to P1 and P4.

After taking its tentative recovery point, P1 sends m4 to

P3. P3 takes mutable recovery point before processing

m4. Similarly, P4 takes mutable recovery point before

processing m5. When P4 receives the recovery point

request, it finds that it has already taken the mutable

recovery point; therefore, it converts its mutable

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Raman Kumar et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 325-331

329

recovery point into tentative one. P4 also finds that it

was dependent upon P5 before taking its mutable

recovery point and P5 is not in the minimum set.

Therefore, P4 sends recovery point request to P5. At

time t2, P2 receives responses from all relevant

processes and sends the commit request along with the

minimum set [{P1, P2, P4, P5}] to all processes. When a

process, in the minimum set, receives the commit

communication, converts its tentative recovery point

into permanent one. When a process, not in the

minimum set, receives the commit communication, it

discards its mutable recovery point, if any. For the

sake of simplicity, we have explained our algorithm

with two-phase scheme.

III. General Comparison of the Proposed Algorithm

with the Cao-Singhal Algorithm [4]

Some useless recovery point requests are sent in the

algorithm [4]; whereas, in the proposed protocol, no

such useless recovery point requests are sent. In

algorithm [4], when Pi sends recovery point request to

Pj, it also piggybacks csni [j] and a data structure MR.

MR is an array of n pairs and each pair contains two

fields: csn and r, where csn contains the csn number

and r is a bit vector of length n. MR provides

information to the request receivers on recovery point

request propagation decision-making. csni[j] enables Pj

to decide whether Pj inherits the request. These data

structures are piggybacked onto recovery point

requests to handle useless recovery point requests. In

the proposed protocol, no useless recovery point

request is sent; therefore, there is no need to

piggyback these data structures onto recovery point

requests. The csni[j] is integer; its size is 4 bytes. In

worst case the size of MR[] is (4n +n/8) bytes (n is the

number of processes in the distributed system). In the

proposed protocol, tminset and tnp_minset are

piggybacked onto recovery point requests. Size of each

data structure is: n/8 bytes. The extra bytes

piggybacked onto each recovery point request in the

algorithm [4] as compared to the proposed one are:

(29n+32)/8. The number of useless recovery point

requests in [18] depends upon the number of processes,

communication sending rate, dependency pattern of

processes etc. In some cases, the number of useless

recovery point requests in [4] may be exceedingly

high. The useless recovery point requests further

increase the communication complexity of the

algorithm [4]. In the proposed protocol, the exact

minimum set is broadcasted on the static network

along with commit request, whereas in the Cao-

Singhal [4] algorithm, only commit request is

broadcasted. The size of the minimum set is n/8 bytes.

Conclusions

We have proposed a nonblocking coordinated global

state compilation protocol for mobile distributed

systems, where only minimum number of processes

takes permanent recovery points. We have reduced

the communication complexity as compared to Cao-

Singhal algorithm [4], while keeping the number of

useless recovery points unchanged. The proposed

algorithm is designed to impose low memory and

computation overheads on M_Hs and low

communication overheads on wireless channels. An

M_H can remain disconnected for an arbitrary period

of time without affecting global state compilation

activity. We address the issues like: failures during

global state compilation, disconnections, maintaining

exact dependencies among processes, and concurrent

initiations. We also devise an optimization, which

leads to significant reduction in the number of useless

recovery points at the cost of a slight increase in the

communication overhead.

IV. REFERENCES

[1]. K.M. Chandy and L.Lamport. “Distributed

Snapshots: Determining Global States of

Distributed Systems” ACM Transactions

Computer systems vol. 3, no.1.pp.63- 75,

Feb.1985

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Raman Kumar et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 325-331

330

[2]. Prakash R. and Singhal M., “Low-Cost

Checkpointing and Failure Recovery in

Mobile Computing Systems” ,IEEE Transaction

On Parallel and Distributed Systems, vol. 7, no.

10, pp. 1035-1048, October1996.

[3]. Guohong Cao and Mukesh Singhal, “On

Coordinated Checkpointing in Distributed

Systems” IEEE Transaction On Parallel and

Distributed Systems, vol. 9, no. 12, pp. 1213-

1224, December 1998.

[4]. Guohong Cao and Mukesh Singhal, “Mutable

Checkpoints: A New Checkpointing Approach

for Mobile Computing Systems”, IEEE

Transaction On Parallel and Distributed

Systems, vol. 12, no. 2, pp. 157- 171, February

2001.

[5]. Weigang Ni, Susan V. Vrbsky and Sibabrata Ray

“Pitfalls in Distributed Non blocking

Checkpointing”, University of Alabama

[6]. Prakash R. and Singhal M. “Maximal Global

Snapshot with concurrent initiators,” Proc.

Sixth IEEE Symp. Parallel and Distributed

Processing, pp.344-351, Oct.1994.

[7]. Koo. R. and S.Toueg. “Checkpointing and

Rollback- Recovery for Distributed Systems”

.IEEE Transactions on Software Engineering,

SE-13(1):23-31, January 1987.

[8]. Bidyut Gupta, S.Rahimi and Z.Lui. “A New High

Performance Checkpointing Approach for

Mobile Computing Systems”. IJCSNS

International Journal of Computer Science and

Network Security, Vol.6 No.5B, May 2006.

[9]. Acharya A. and Badrinath B. R., “Checkpointing

Distributed Applications on Mobile Computers,”

Proceedings of the 3rd International Conference

on Parallel and Distributed Information

Systems, pp. 73-80, September,1994.

[10]. Ch.D.V. Subba Rao and M.M.Naidu. “A New,

Efficient Coordinated Checkpointing Protocol

Combined with Selective Sender-Based Message

Logging”.

[11]. Nuno Neves and W. Kent Fuchs. “Adaptive

Recovery for Mobile Environments”,in

Proc.IEEE High-Assurance Systems Engineering

Workshop,October 21- 22,1996,pp.134-141.

[12]. Y.Manable. “A Distributed Consistent Global

Checkpoint Algorithm With minimum number

of Checkpoints”. Technical Report of IEICE,

COMP97-6(April1997).

[13]. J.L.Kim and T.Park. “An efficient protocol for

checkpointing recovery in Distributed Systems”

IEEE Transaction On Parallel and Distributed

Systems,4(8):pp.955-960, Aug 1993.

[14]. Elnozahy E.N., Alvisi L., Wang Y.M. and

Johnson D.B., “Survey of Rollback-Recovery

Protocols in Message- Passing Systems,” ACM

Computing Surveys, vol. 34, no. 3, pp. 375-408,

2002.

[15]. S.Venkatesan and T.T.-Y.Juang , “ Low

Overhead Optimistic Crash Recovery:”,

Preliminary version appears in Proc. 11th Int’l

Conf. Distributed Computing Systems as “Crash

Recovery with Little Overhead,”pp.454- 461,

1991.

[16]. Parveen Kumar, Lalit Kumar, R K Chauhan, “A

Non-intrusive Hybrid Synchronous

Checkpointing Protocol for Mobile Systems”,

IETE Journal of Research, Vol. 52 No. 2&3,

2006.

[17]. J.L. Kim, T. Park, “ An efficient Protocol for

checkpointing Recovery in Distributed

Systems,” IEEE Trans. Parallel and Distributed

Systems, pp.955-960,Aug.1993.

[18]. Mansouri, H., Pathan, A-S.K.: Review of

checkpointing and rollback recovery protocols

for mobile distributed computing systems. In:

Ghosh, U., Rawat D.B., Datta, R., Pathan, A-S.K

(eds.) Internet of Things and Secure Smart

Environments: Successes and Pitfalls, CRC

Press, Taylor & Francis Group (2020).

[19]. Mansouri, H., Pathan, A.-S.K.: Checkpointing

distributed application running on mobile Ad

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Raman Kumar et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 325-331

331

Hoc networks. Int. J. High Perform. Comput.

Networking 11(2), 95–107 (2018).

[20]. Mansouri, H., Pathan, A.-S.: A resilient

hierarchical checkpointing algorithm for

distributed systems running on cluster

federation. In: Thampi, S.M., Martinez Perez,

G., Ko, R., Rawat, D.B. (eds.) SSCC 2019. CCIS,

vol. 1208, pp. 99–110. Springer, Singapore

(2020).

Cite this article as :

Raman Kumar, Er Jyoti Arora , "Effectual Non-

Intrusive Minimum-Process Synchronous

Checkpointing Protocol for Mobile Distributed

Systems", International Journal of Scientific Research

in Science and Technology (IJSRST), Online ISSN :

2395-602X, Print ISSN : 2395-6011, Volume 8 Issue 4,

pp. 325-331, July-August 2021. Available at

doi : https://doi.org/10.32628/IJSRST218427

Journal URL : https://ijsrst.com/IJSRST218427

https://doi.org/10.32628/IJSRST218427
https://search.crossref.org/?q=10.32628/IJSRST218427&from_ui=yes
https://ijsrst.com/IJSRST218427

