
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi : https://doi.org/10.32628/IJSRST218475

491

Study on Big Data Frameworks
Adriano Fernandes*, Jonathan Barretto, Jonas Fernandes

Department of Computer Science, Don Bosco College of Engineering, Goa, India

Article Info

Volume 8, Issue 4

Page Number : 491-499

Publication Issue

July-August-2021

Article History

Accepted : 02 Aug 2021

Published : 08 Aug 2021

ABSTRACT

Big data analytics is becoming more and more popular every day as a tool for

evaluating large volumes of data on demand. Apache Hadoop, Spark, Storm, and

Flink are four of the most widely used big data processing frameworks. Although

all four architectures support big data analysis, they vary in how they are used

and the infrastructure that supports it. This paper defines a general collection of

main performance metrics, which include Processing Time, CPU Use, Latency,

Execution Time, Performance, Scalability, and Fault-tolerance, and contrasting

the four big data architectures against these KPIs in a literature review. When

compared to Apache Hadoop and Apache Storm frameworks for non-real-time

results, Spark was found to be the winner over multiple KPIs, including

processing time, CPU usage, Latency, Execution time, and Scalability. In terms

of processing time, CPU consumption, latency, execution time, and

performance, Flink surpassed Apache Spark and Apache Storm architectures.

Keywords - Latency, Scalability, Fault-Tolerance

I. INTRODUCTION

Roger Magoulas was the first to coin the word "big

data" in 2005. He defines it as a large volume of data

that conventional data processing methods cannot

handle or process. This information comes from a

variety of outlets, including social networking

platforms, photographs, sensors, laptops, and search

queries. There are some key characteristics that

distinguish "large data" from other types of data,

including its enormous scale and the fact that it is

made up of diverse and distinct data sets. Furthermore,

standard data processing methods cannot be used to

process it.

Big data analysis techniques are now one of the most

relevant developments as a result of massive data and

the uncertainty that can occur as data is used for

analyzing purposes. Rather than using conventional

databases or programs, these tools allow users to

organize and access all data. The aim of this literature

review is to provide an analysis of four big data

systems and compare them across a range of

predefined main success metrics. The following

sections make up this paper: the first part discusses

the key features of big data, also known as the V's of

big data and challenges in handling big data.

Following that, several big data architectures are

discussed, including Hadoop, Spark, Storm, and Flink.

http://www.ijsrst.com/
https://doi.org/10.32628/IJSRST218475

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Adriano Fernandes et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 491-499

492

II. CHARACTERISTICS OF BIG DATA

Big Data is composed of generic demands (volume,

variety, and velocity), which are referred to as the

3Vs. [1]. The attributes of Big Data have recently

progressed from the 3Vs to the 6Vs, with the addition

of the features of value, veracity, and variability.

Since joining the scheme, the last three are referred to

as acquired Big Data specifications [1]. The 6Vs of Big

Data are depicted in Figure 1.

Figure. 1 6V’s of big data

A. Volume

 The amount or scale of the data is referred to as

volume. Terabytes (TB), Petabytes (PB), Zettabytes

(ZB), and Exabytes (EB) are the sizes of Big Data [1].

Organizations like Facebook, YouTube, Google, and

NASA have vast volumes of data, posing new

problems in terms of storing, retrieving, analyzing,

and processing it. How we transfer and use data has

evolved as a result of the use of Big Data rather than

conventional storage [1].

B. Variety

 The various types of data produced are referred to as

variety. Different measurements may be used to

quantify variety, such as structure, which allows

one to distinguish between structured, semi-

structured, and unstructured data, or processing

volume, as in batch versus stream processing.

C. Variability

 Variability applies to data that isn't consistent, can't

be quickly processed, and is difficult to handle.

Researchers face a big challenge in explaining

variable data [1].

D. Velocity

 Velocity indicates the rate at which Big Content is

generated, transferred, stored, and examined.

Because of the high prices, Velocity poses new

testing problems for data scientists . The data is left

behind when the user has to retrieve or manipulate

the data and the operation is too slow [1].

E. Veracity

 The consistency of data being analyzed is referred to

as veracity. The veracity of the data source is

therefore determined by the precision of the data [1].

F. Value

The intent or business result that the data carries in to

aid the decision-making process is referred to as value

[1].

III. CHALLENGES IN HANDLING BIG DATA

A. Storage

 While today's hard drives have capacities in the

terabytes, the quantity of data created over the

internet on a daily basis is on the scale of exabytes.

Though the data created in education is not as vast as

all of the data generated on the internet, it is

sufficient and will continue to grow in the future.

Traditional RDBMS technologies will be unable of

storing or processing such large amounts of data.

Databases that don't utilize standard SQL-based

queries are used to solve this problem. Data is

compressed at rest and in memory using compression

technologies [5].

G. Analysis

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Adriano Fernandes et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 491-499

493

Because the data created by various types of online

learning sites differs in structure and amount,

analyzing the data might take a long time and require

a lot of resources. Scaled out architectures are used to

process data in a distributed manner to solve this.

Data is broken down into smaller chunks and

processed by a large number of computers spread

throughout the network, then aggregated [5].

H. Reporting

Statistical data is displayed in the form of numbers in

traditional reports. Traditional reports become

difficult to comprehend by humans when vast

amounts of data are involved. In certain instances, the

reports must be presented in a way that allows them

to be easily identified by simply glancing at them [5].

IV. BIG DATA FRAMEWORKS

A. Hadoop

Apache Hadoop is a well-known Big Data platform

with a sizeable community of users. It was created to

prevent the low performance and complexity that

come with utilizing existing technologies to handle

and analyze large amounts of data. Because of its

parallel clusters and distributed file system, Hadoop

has the ability to process massive data volumes

quickly. Hadoop, does not copy the whole remote

data into memory to do computations. it runs

operations on stored data. As a result, Hadoop relieves

the network and servers of a significant amount of

communication burden. Another feature of Hadoop is

its ability to run applications in a distributed

environment while providing fault tolerance. To

ensure this, it replicates data on servers to prevent

data loss[4].

Hadoop architecture consists of 3 main layers namely

HDFS, YARN and MAP REDUCE shown in fig. 2 [1].

Figure. 2 Hadoop architecture

HDFS:

Hadoop applications use the Hadoop Distributed File

Solution (HDFS) as their primary data storage system.

HDFS implements a distributed file system that

enables high-performance access to data across highly

scalable Hadoop clusters using a Name Node and Data

Node architecture.

Hadoop is an open source distributed processing

platform for large data applications that controls data

processing and storage. HDFS is a vital part of the

numerous Hadoop ecosystem technologies. It

provides a dependable method for managing huge

data pools and supporting related big data analytics

applications.

Map Reduce:

The Apache Hadoop ecosystem includes MapReduce.

In the Hadoop ecosystem, the MapReduce component

improves the processing of large amounts of data by

employing distributed and parallel algorithms. This

programming approach is used to evaluate massive

amounts of data gathered from internet users in social

platforms and e-commerce.

MapReduce has two basic tasks: map and reduce. We

complete the first job before moving on to the second.

We divided the incoming dataset into pieces in the

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Adriano Fernandes et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 491-499

494

map task. These chunks are processed in parallel by

the Map job. We utilize outputs as inputs for the

reduce jobs in the map. Reducers break down the

intermediate data from the maps into smaller tuples,

which decreases the number of jobs and leads to the

framework's ultimate output.

The MapReduce framework improves job scheduling

and management. The framework re-executes the

unsuccessful tasks. This framework is simple to use,

even for programmers who are unfamiliar with

distributed processing[1].

Yarn:

Hadoop's cluster resource management mechanism is

Apache YARN (Yet Another Resource Negotiator).

YARN was added to Hadoop to enhance the

MapReduce implementation, but it's flexible enough

to accommodate other distributed computing

paradigms as well.

YARN provides APIs for obtaining and dealing with

cluster resources, although user code seldom uses

these APIs directly. Users instead utilize higher-level

APIs offered by distributed computing frameworks,

which are based on YARN and mask resource

management specifics from the user.

B. Spark

Spark , a MapReduce-based project that was first

created at the University of California, Berkeley and

is now an Apache top-level project, is based on

MapReduce but tackles a lot of the shortcomings. like

Hadoop, it allows for iterative computing. It uses in-

memory computing to enhance performance and

resource use. Both science and industry have adopted

Spark's processing methodology. Resilient Distributed

Datasets (RDD), which store data in memory and

enable fault tolerance without replication , are the

major abstractions utilized in this research. Read-only

distributed shared memory is how RDDs are defined.

This system, shown in Figure 3 [2], simplifies the

learning process by storing intermediate results in

memory, reducing the number of read and write

operations required substantially. Spark's speed was

shown when it won the Daytona GraySort

Benchmark Contest in October 2014 .

Hadoop/MapReduce previously held the record for

sorting 102.5 TB on 2100 nodes in 72 minutes. Spark

sorted 100 TB on 206 nodes in 23 minutes, three

times quicker with a tenth of the servers.

Furthermore, it has been highlighted that Spark is

easier to program, with part of the rationale being

that it can be programmed in Java, R, Python, or Scala.

Spark includes the MLlib and GraphX libraries for

machine learning tasks, as well as a number of Spark

implementations in the current version of the Mahout

library[2].

Figure. 3 processing model of spark

C. Storm

Storm is a real-time data processor that was designed

to solve the shortcomings of existing processors in

gathering and analyzing social media streams. Storm

development began at BackType, a social media

analytics firm, and was continued by Twitter

following a 2011 acquisition. In September 2014, the

project was open sourced and became an Apache top-

level project . Real-time processing is becoming

increasingly important in the machine learning field ,

and as a result, Storm is seeing greater use in both

commercial and research contexts. Spouts and bolts

make up the Storm's architecture. Topologies are

networks of spouts and bolts that are represented as

directed graphs. Figure 4 [2] shows an example of

this. The project is largely written in Clojure,

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Adriano Fernandes et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 491-499

495

however all APIs were initially written in Java to

encourage wider adoption. It now incorporates Thrift

, a cross-language development framework that

enables topologies to be created and submitted in any

programming language . Storm employs real-time

streaming but also provides micro-batch via its

Trident API [2].

Storm was designed to be a stand-alone system

independent of Hadoop, however since Hadoop's

migration to YARN, effort has been done to connect

the two projects[2].

Figure 4. processing model of storm

D. Flink

Flink is a free and open source framework for batch

and real-time data processing. It has numerous

advantages, including fault tolerance and large-scale

computing. Flink uses a programming approach

similar to MapReduce. Flink, unlike MapReduce,

provides extra high-level operations including join,

filter, and aggregate. On a more abstract level, it

provides many APIs that allow users to begin

distributed computation in a transparent and simple

manner. Flink ML is a machine learning package that

includes a variety of learning algorithms for building

scalable and quick Big Data applications [6]. Flink's

architecture is depicted in Figure 5 [3]. The base

layer's storage layer will read and write data from

various sources like HDFS, local files, and so on. The

cluster manager is located in the deployment and

resource management layer, and it is responsible for

handling the tasks of planning, tracking, and

managing resources. This layer also includes the

program's execution environment, which is made up

of clusters or cloud environments. It has a distributed

stream data flow engine with a kernel layer for real-

time processing. Interface layers for batch and

streaming operations are included in the framework

software. In the top layer, which is a library, the

system is developed in Java or Scala programming

language. It is then submitted to the compiler for

conversion using the Flink optimizer to improve its

performance [1].

Figure. 5. Flink architecture

V. ANALYSIS OF BIG DATA FRAMEWORKS

A. Scalability

The capacity of a system to react to increasing loads is

known as scalability. Scale up (vertically) and scale

out are the two styles (horizontally). Scale up refers to

upgrading the hardware setup, while scale out refers

to adding additional hardware. Our study's four

systems are all horizontally scalable. It implies that

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Adriano Fernandes et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 491-499

496

we can add as many nodes to the cluster as required

[1].

B. Data delivery guarantee

In the case of a malfunction, message transmission

assurances are used. It can be divided into two forms

based on the four frameworks listed above: exactly

once delivery and at-least-once delivery. The term

"precisely once delivery" suggests that the

information will not be duplicated or misplaced, and

will only be sent to the intended recipient once. At-

least-once delivery, on the other hand, means that the

message is delivered several times and at least one of

them is successful. Furthermore, the message can be

duplicated without losing its integrity[1].

C. Computation mode

In-memory computing or the more "traditional" mode,

where computation results are written back to the

disc, are two options for computation mode. In-

memory computing is quicker, but it has the

drawback of causing the contents to be lost if the

computer is switched off [1].

D. Auto scaling

Auto-scaling is the process of automatically scaling

cloud services up or down depending on the situation

[1].

E. Iterative computation

In the absence of a real solution or where the expense

of a real solution is prohibitively high, iterative

computation refers to the use of an iterative approach

to estimate an estimated solution [1].

TABLE 1. BIG DATA FRAMEWORK FEATURES

OVERVIEW

Features Hado

op

Spark Storm Flink

Processin

g mode

Batch Batch

and

stream

Stream Batch

and

stream

Scalability Horiz

ontal

Horizon

tal

Horizon

tal

Horizon

tal

Data

delivery

guarantee

precis

ely

once

Precisel

y once

At least

once

Precisel

y once

Computat

ion mode

Drive

based

In

memory

In

memory

In

memory

Auto

scaling

Yes Yes No No

Supported

programi

ng

languages

Java Java,

Scala,

python

Java Java

VI. LITERATURE REVIEW OF BIG DATA

FRAMEWORKS

A. Spark vs Storm

Spark and Storm both have fault tolerance and

scalability, but they use different processing models.

Spark processes events in micro-batches, whereas

Storm processes them one by one. Because of this

disparity in process management, Spark has a latency

of seconds whereas Storm has a latency of

milliseconds.

The Spark method allows you to build streaming tasks

in the same manner that batch jobs are written,

allowing you to reuse the majority of the code and

business logic. Storm focuses on stream processing.

This framework employs a fault-tolerant method to

finish calculations or pipeline multiple computations

on an event as it enters the system.

B. Hadoop vs Spark vs Flink

1) Data Processing:

Apache Hadoop is a batch processing framework. It

takes a big data collection as input, processes it all at

once, and outputs the result. Batch processing is

highly efficient when dealing with large amounts of

data. Because of the quantity of the data and the

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Adriano Fernandes et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 491-499

497

computing capability of the system, an output is

delayed. Apache Spark is a Hadoop Ecosystem

component. It's mostly a batch processing system,

although it can also handle stream processing. Apache

Flink is a single runtime that can handle both

streaming and batch processing.

2) Streaming engine:

 Map-reduce is a batch-oriented processing

technology used by Hadoop. It accepts a huge data

collection as input, processes it, and outputs the result

all at once. Apache Spark Streaming is a micro-batch

processing system for data streams. Each batch is made

up of events that occurred within the batch period.

However, for use cases where we need to analyze

massive amounts of live data and give results in real

time, this is insufficient. Flink is a streaming engine

that supports streaming, SQL, micro-batch, and batch

workloads . A batch is a collection of streaming data

that has been limited in size.

3) Computation Model:

Hadoop’s MapReduce uses a batch-oriented approach.

Batch is a method of processing data while it is still in

motion. It takes a vast quantity of data, processes it,

and then outputs the results. Spark supports Micro-

batching . Micro-batches are a type of computer

model that essentially collects and then processes data.

Flink uses an operator-based streaming paradigm with

a continuous flow. A continuous flow operator

processes data as soon as it enters, without having to

wait for it to be collected or processed.

4) Performance:

Hadoop Only supports batch processing . Because it

does not handle streaming data, it performs slower

than Spark, and Flink. Apache Spark is regarded as

the most developed community. However, because it

employs micro-batch processing, its stream processing

is less efficient than Apache Flink. When compared to

other data processing systems, Apache Flink performs

quite well. When comparing Hadoop versus Spark

versus Flink, Apache Flink employs native closed loop

iteration operators, which makes machine learning

and graph processing quicker.

5) Fault tolerance:

Hadoop’s MapReduce is a fault-tolerant programming

model. In the event of a Hadoop failure, there is no

need to restart the programme from the beginning.

Apache Spark recovers lost work and provides

exactly-once semantics out of the box with no

additional code or setup. Apache Flink's failure

tolerance technique is based on Chandy-Lamport

distributed snapshots. Because the method is

lightweight, it can sustain high throughput rates

while also providing excellent consistency guarantees.

6) Iterative Processing:

In Hadoop Iterative processing is not supported. Spark

iterates data in bunches. Each iteration must be

scheduled and executed independently in Spark. Flink

uses a streaming design to iterate data. Flink may be

told to process only the sections of the data that have

changed, resulting in a substantial increase in work

performance.

7) Latency:

Hadoop's MapReduce architecture is slower than

others since it is designed to accommodate a wide

range of data formats, structures, and volumes. As a

result, Hadoop has a longer latency than Spark and

Flink. Spark is also a batch processing system, but it is

quicker than Hadoop’s MapReduce since it caches

much of the input data in memory through RDD and

maintains intermediate data in memory, finally

writing the data to disc upon completion or whenever

needed. Apache Flink's data streaming runtime

delivers low latency and high throughput with

minimal setup work.

8) Processing Speed:

MapReduce is slower than Spark and Flink in

Hadoop. The slowness is due to the nature of

MapReduce-based processing, which creates a lot of

intermediate data and a lot of data transferred

between nodes, resulting in a lot of disc IO delay. In

addition, it must store a large amount of data on disc

for synchronization between stages in order to allow

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Adriano Fernandes et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 491-499

498

Job recovery from errors. In addition, MapReduce

does not support caching all subsets of data in

memory. Apache Spark is quicker than MapReduce

because it caches much of the input data in memory

using RDDs and maintains intermediate data in

memory before writing it to disc when it's done or

when it's needed. Spark is 100 times quicker than

MapReduce, demonstrating the superiority of Spark

over Hadoop MapReduce. Because of its streaming

nature, Flink analyses data quicker than Spark. Flink

improves the job's performance by telling it to only

process the data that has changed.

9) Easy to use:

Hadoop’s MapReduce developers must manually code

each action, making it extremely difficult to work

with. In Spark It's simple to programme thanks to its

large number of high-level operators. Flink has high-

level operators as well.

10) Cost:

In Hadoop since MapReduce does not seek to keep

everything in memory, it may generally run on less

costly hardware than other competitors. Since Spark

requires a lot of RAM to function in-memory,

increasing the amount of RAM in the cluster

gradually raises the cost. Because Apache Flink takes a

lot of RAM to function in-memory, its price

progressively rises.

11) Scalability:

In Hadoop MapReduce offers tremendous scalability

potential and has been deployed on tens of thousands

of nodes in production. Spark is very scalable; we can

keep adding nodes to the cluster indefinitely. Apache

Flink is likewise very scalable; we can keep adding

nodes to the cluster indefinitely.

12) Real time analysis:

In Hadoop, MapReduce fails when it comes to real-

time data processing since it was built to process large

volumes of data in batches. Spark is capable of

processing real-time data, such as data from real-time

event streams, at a pace of millions of events per

second. Flink is mostly used for real-time data

analysis, although it can also handle bulk data

processing .

13) Caching:

In Hadoop MapReduce is unable to cache data in

memory for future needs. Spark has the ability to

store data in memory for future iterations, which

improves performance. To improve performance,

Flink can store data in memory for future iterations .

14) Duplication elimination:

Hadoop does not support duplicate removal.

Spark processes each record just once, preventing

duplication. Apache Flink processes each record

precisely once, preventing duplication. Streaming

programmes have the ability to keep a custom state

throughout computation. In the event of a failure,

Flink's checkpointing system ensures that the state is

only updated once.

TABLE 2. Comparing The Four Big Data Frameworks

 Hadoop Spark Flink storm

Cost Cost

efficient

Expensiv

e

Expensiv

e

Not

compa

red

Performa

nce

Less

efficient

Efficient Most

efficient

Not

compa

red

Processi

ng time

Slower Faster

than

Hadoop

Faster

than

spark

Not

compa

red

CPU

consump

tion

CPU

consump

tion is

high

CPU

consump

tion is

high

CPU

consump

tion is

low

Not

compa

red

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 4

Adriano Fernandes et al Int J Sci Res Sci & Technol. July-August-2021, 8 (4) : 491-499

499

Iterative

processin

g

Does not

support

Supports Supports Not

compa

red

latency Latency

is high

Latency

is large

Latency

is low

Latenc

y is

low

Executio

n time

Executio

n time is

high

Executio

n time is

low

Executio

n time is

low

Not

compa

red

Duplicat

e

eliminati

on

Does not

support

supports supports Not

compa

red

Supports

real time

analysis

No Yes Yes Not

compa

red

VII. CONCLUSION

In this article, we examined and compared the

efficiency of four frameworks: Hadoop, Flink, Spark,

and Storm, using various primary performance

indicators. The findings of this analysis indicate that

Flink outperformed the other structures indicating

that it is the strongest. Finally, they can achieve high

computational efficiency (HPC). In the future, by

taking these metrics into account while evaluating

the efficiency of the four structures, each system will

be able to improve on any metric that has a low

impact on obtaining HPC. As such, we aspire to

seeing enhancements in some of these frameworks.

VIII. REFERENCES

[1]. Safaa Alkatheri,Samah Abbas,Muazzam Siddiqui

"A comparative study of big data frameworks”

International Journal of Computer Science and

Information Security, Vol 17,No.1,pp. 66-71

2019.

[2]. Sara Landset, Taghi M. Khoshgoftaar, Aaron N.

Richter* and Tawfiq Hasanin “A survey of open

source tools for machine learning with big data

in the Hadoop ecosystem” pp. 13-16 ,2015

[3]. P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,

S. Haridi, and K. Tzoumas, “Apache flink: Stream

and batch processing in a single engine,” Bull.

IEEE Comput. Soc. Tech. Comm. Data Eng., vol.

36, no. 4, pp. 30, 2015.

[4]. Ahmed Oussous , Fatima-Zahra Benjelloun ,

Ayoub Ait Lahcen , Samir Belfkih , “Big Data

technologies: A survey” , pp.437-438,2018.

[5]. Katrina Sin , Loganathan Muthu “Application of

big data in education data mining and learning

analytics – a literature review” Vol. 5, No. 4, pp.

1035-1036 , 2015.

[6]. Wissem Inoubli,Haithem Mezni,Sabeur

Aridhi,Alexander Jung “Big Data Frameworks:A

Comparitive Study” ,Future Generation

Computer Systems, pp. 6-7, 2018.

Cite this article as :

Adriano Fernandes, Jonathan Barretto, Jonas

Fernandes "Study on Big Data Frameworks",

International Journal of Scientific Research in Science

and Technology (IJSRST), Online ISSN : 2395-602X,

Print ISSN : 2395-6011, Volume 8 Issue 4, pp. 491-499,

July-August 2021. Available at

doi : https://doi.org/10.32628/IJSRST218475

Journal URL : https://ijsrst.com/IJSRST218475

https://doi.org/10.32628/IJSRST218475
https://search.crossref.org/?q=10.32628/IJSRST218475&from_ui=yes
https://ijsrst.com/IJSRST218475

