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ABSTRACT 

 

Big data analytics is becoming more and more popular every day as a tool for 

evaluating large volumes of data on demand. Apache Hadoop, Spark, Storm, and 

Flink are four of the most widely used big data processing frameworks. Although 

all four architectures support big data analysis, they vary in how they are used 

and the infrastructure that supports it. This paper defines a general collection of 

main performance metrics, which include Processing Time, CPU Use, Latency, 

Execution Time, Performance, Scalability, and Fault-tolerance, and contrasting 

the four big data architectures against these KPIs in a literature review. When 

compared to Apache Hadoop and Apache Storm frameworks for non-real-time 

results, Spark was found to be the winner over multiple KPIs, including 

processing time, CPU usage, Latency, Execution time, and Scalability. In terms 

of processing time, CPU consumption, latency, execution time, and 

performance, Flink surpassed Apache Spark and Apache Storm architectures. 

Keywords - Latency, Scalability, Fault-Tolerance 

 

I. INTRODUCTION 

 

Roger Magoulas  was the first to coin the word "big 

data" in 2005. He defines it as a large volume of data 

that conventional data processing methods cannot 

handle or process. This information comes from a 

variety of outlets, including social networking 

platforms, photographs, sensors, laptops, and search 

queries. There are some key characteristics that 

distinguish "large data" from other types of data, 

including its enormous scale and the fact that it is 

made up of diverse and distinct data sets. Furthermore, 

standard data processing methods cannot be used to 

process it. 

 

Big data analysis techniques are now one of the most 

relevant developments as a result of massive data and 

the uncertainty that can occur as data is used for 

analyzing purposes. Rather than using conventional 

databases or programs, these tools allow users to 

organize and access all data. The aim of this literature 

review is to provide an analysis of four big data 

systems and compare them across a range of 

predefined main success metrics. The following 

sections make up this paper: the first part discusses 

the key features of big data, also known as the V's of 

big data  and challenges in handling big data. 

Following that, several big data architectures are 

discussed, including Hadoop, Spark, Storm, and Flink. 
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II. CHARACTERISTICS OF BIG DATA 

 

Big Data is composed of generic  demands (volume, 

variety, and velocity), which are referred to as the 

3Vs. [1]. The attributes of Big Data have recently 

progressed from the 3Vs to the 6Vs, with the addition 

of the features of value, veracity, and variability. 

Since joining the scheme, the last three are referred to 

as acquired Big Data specifications [1]. The 6Vs of Big 

Data are depicted in Figure 1. 

 
 

Figure. 1 6V’s of big data 

A. Volume 

      The amount or scale of the data is referred to as 

volume. Terabytes (TB), Petabytes (PB), Zettabytes 

(ZB), and Exabytes (EB) are the sizes of Big Data [1]. 

Organizations like Facebook, YouTube, Google, and 

NASA have vast volumes of data, posing new 

problems in terms of storing, retrieving, analyzing, 

and processing it. How we transfer and use data has 

evolved as a result of the use of Big Data rather than 

conventional storage [1]. 

B. Variety 

      The various types of data produced are referred to as 

variety. Different measurements may be used to 

quantify variety, such as structure, which allows 

one to distinguish between structured, semi-

structured, and unstructured data, or processing 

volume, as in batch versus stream processing.  

C. Variability 

       Variability applies to data that isn't consistent, can't 

be quickly processed, and is difficult to handle. 

Researchers face a big challenge in explaining 

variable data [1]. 

D. Velocity 

      Velocity indicates the rate at which Big Content is 

generated, transferred, stored, and examined. 

Because of the high prices, Velocity poses new 

testing problems for data scientists . The data is left 

behind when the user has to retrieve or manipulate 

the data and the operation is too slow [1]. 

E. Veracity 

      The consistency of data being analyzed is referred to 

as veracity. The veracity of the data source is 

therefore determined by the precision of the data [1]. 

F. Value  

The intent or business result that the data carries in to 

aid the decision-making process is referred to as value 

[1]. 

III. CHALLENGES IN HANDLING BIG DATA 

 

A. Storage 

 While today's hard drives have capacities in the 

terabytes, the quantity of data created over the 

internet on a daily basis is on the scale of exabytes. 

Though the data created in education is not as vast as 

all of the data generated on the internet, it is 

sufficient and will continue to grow in the future. 

Traditional RDBMS technologies will be unable of 

storing or processing such large amounts of data. 

Databases that don't utilize standard SQL-based 

queries are used to solve this problem. Data is 

compressed at rest and in memory using compression 

technologies [5]. 

G. Analysis 
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Because the data created by various types of online 

learning sites differs in structure and amount, 

analyzing the data might take a long time and require 

a lot of resources. Scaled out architectures are used to 

process data in a distributed manner to solve this. 

Data is broken down into smaller chunks and 

processed by a large number of computers spread 

throughout the network, then aggregated [5]. 

H. Reporting 

Statistical data is displayed in the form of numbers in 

traditional reports. Traditional reports become 

difficult to comprehend by humans when vast 

amounts of data are involved. In certain instances, the 

reports must be presented in a way that allows them 

to be easily identified by simply glancing at them [5]. 

 

IV. BIG DATA FRAMEWORKS 

 

A. Hadoop 

Apache Hadoop is a well-known Big Data platform 

with a sizeable community of users. It was created to 

prevent the low performance and complexity that 

come with utilizing existing technologies to handle 

and analyze large amounts of data. Because of its 

parallel clusters and distributed file system, Hadoop 

has the ability to process massive data volumes 

quickly. Hadoop,  does not copy the whole remote 

data into memory to do computations. it runs 

operations on stored data. As a result, Hadoop relieves 

the network and servers of a significant amount of 

communication burden. Another feature of Hadoop is 

its ability to run applications in a distributed 

environment while providing fault tolerance. To 

ensure this, it replicates data on servers to prevent 

data loss[4]. 

Hadoop architecture consists of 3 main layers namely 

HDFS, YARN and MAP REDUCE shown in fig. 2 [1]. 

 

Figure. 2 Hadoop architecture 

HDFS: 

Hadoop applications use the Hadoop Distributed File 

Solution (HDFS) as their primary data storage system. 

HDFS implements a distributed file system that 

enables high-performance access to data across highly 

scalable Hadoop clusters using a Name Node and Data 

Node architecture. 

Hadoop is an open source distributed processing 

platform for large data applications that controls data 

processing and storage. HDFS is a vital part of the 

numerous Hadoop ecosystem technologies. It 

provides a dependable method for managing huge 

data pools and supporting related big data analytics 

applications. 

Map Reduce: 

The Apache Hadoop ecosystem includes MapReduce. 

In the Hadoop ecosystem, the MapReduce component 

improves the processing of large amounts of data by 

employing distributed and parallel algorithms. This 

programming approach is used to evaluate massive 

amounts of data gathered from internet users in social 

platforms and e-commerce. 

MapReduce has two basic tasks: map and reduce. We 

complete the first job before moving on to the second. 

We divided the incoming dataset into pieces in the 
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map task. These chunks are processed in parallel by 

the Map job. We utilize outputs as inputs for the 

reduce jobs in the map. Reducers break down the 

intermediate data from the maps into smaller tuples, 

which decreases the number of jobs and leads to the 

framework's ultimate output. 

The MapReduce framework improves job scheduling 

and management. The framework re-executes the 

unsuccessful tasks. This framework is simple to use, 

even for programmers who are unfamiliar with 

distributed processing[1]. 

Yarn: 

Hadoop's cluster resource management mechanism is 

Apache YARN (Yet Another Resource Negotiator). 

YARN was added to Hadoop  to enhance the 

MapReduce implementation, but it's flexible enough 

to accommodate other distributed computing 

paradigms as well. 

YARN provides APIs for obtaining and dealing with 

cluster resources, although user code seldom uses 

these APIs directly. Users instead utilize higher-level 

APIs offered by distributed computing frameworks, 

which are based on YARN and mask resource 

management specifics from the user. 

B. Spark 

Spark , a MapReduce-based project that was first 

created at the University of California, Berkeley  and 

is now an Apache top-level project, is based on 

MapReduce but tackles a lot of the shortcomings.  like 

Hadoop, it allows for iterative computing. It uses in-

memory computing to enhance performance and 

resource use. Both science and industry have adopted 

Spark's processing methodology. Resilient Distributed 

Datasets (RDD), which store data in memory and 

enable fault tolerance without replication , are the 

major abstractions utilized in this research. Read-only 

distributed shared memory  is how RDDs are defined. 

This system, shown in Figure 3 [2], simplifies the 

learning process by storing intermediate results in 

memory, reducing the number of read and write 

operations required substantially. Spark's speed was 

shown when it won the Daytona GraySort 

Benchmark Contest in October 2014 . 

Hadoop/MapReduce previously held the record for 

sorting 102.5 TB on 2100 nodes in 72 minutes. Spark 

sorted 100 TB on 206 nodes in 23 minutes, three 

times quicker with a tenth of the servers.   

Furthermore, it has been highlighted that Spark is 

easier to program, with part of the rationale being 

that it can be programmed in Java, R, Python, or Scala. 

Spark includes the MLlib  and GraphX  libraries for 

machine learning tasks, as well as a number of Spark 

implementations in the current version of the Mahout  

library[2]. 

 

Figure. 3 processing model of spark 

C.   Storm 

Storm  is a real-time data processor that was designed 

to solve the shortcomings of existing processors in 

gathering and analyzing social media streams. Storm 

development began at BackType, a social media 

analytics firm, and was continued by Twitter 

following a 2011 acquisition. In September 2014, the 

project was open sourced and became an Apache top-

level project . Real-time processing is becoming 

increasingly important in the machine learning field , 

and as a result, Storm is seeing greater use in both 

commercial and research contexts. Spouts and bolts 

make up the Storm's architecture. Topologies are 

networks of spouts and bolts that are represented as 

directed graphs. Figure 4 [2] shows an example of 

this. The project is largely written in Clojure, 
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however all APIs were initially written in Java to 

encourage wider adoption. It now incorporates Thrift 

, a cross-language development framework that 

enables topologies to be created and submitted in any 

programming language . Storm employs real-time 

streaming but also provides micro-batch via its 

Trident API [2]. 

Storm was designed to be a stand-alone system 

independent of Hadoop, however since Hadoop's 

migration to YARN, effort has been done to connect 

the two projects[2].  

 

Figure 4. processing model of storm 

D. Flink 

Flink  is a free and open source framework for batch 

and real-time data processing. It has numerous 

advantages, including fault tolerance and large-scale 

computing. Flink uses a programming approach 

similar to MapReduce. Flink, unlike MapReduce, 

provides extra high-level operations including join, 

filter, and aggregate. On a more abstract level, it 

provides many APIs that allow users to begin 

distributed computation in a transparent and simple 

manner. Flink ML is a machine learning package that 

includes a variety of learning algorithms for building 

scalable and quick Big Data applications [6]. Flink's 

architecture is depicted in Figure 5 [3]. The base 

layer's storage layer will read and write data from 

various sources like HDFS, local files, and so on. The 

cluster manager is located in the deployment and 

resource management layer, and it is responsible for 

handling the tasks of planning, tracking, and 

managing resources. This layer also includes the 

program's execution environment, which is made up 

of clusters or cloud environments. It has a distributed 

stream data flow engine with a kernel layer for real-

time processing. Interface layers for batch and 

streaming operations are included in the framework 

software. In the top layer, which is a library, the 

system is developed in Java or Scala programming 

language. It is then submitted to the compiler for 

conversion using the Flink optimizer to improve its 

performance [1].  

 

Figure. 5. Flink architecture 

 

V. ANALYSIS OF BIG DATA FRAMEWORKS 

A. Scalability 

The capacity of a system to react to increasing loads is 

known as scalability. Scale up (vertically) and scale 

out are the two styles (horizontally). Scale up refers to 

upgrading the hardware setup, while scale out refers 

to adding additional hardware. Our study's four 

systems are all horizontally scalable. It implies that 
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we can add as many nodes to the cluster as required 

[1]. 

B. Data delivery guarantee 

In the case of a malfunction, message transmission 

assurances are used. It can be divided into two forms 

based on the four frameworks listed above: exactly 

once delivery and at-least-once delivery. The term 

"precisely once delivery" suggests that the 

information will not be duplicated or misplaced, and 

will only be sent to the intended recipient once. At-

least-once delivery, on the other hand, means that the 

message is delivered several times and at least one of 

them is successful. Furthermore, the message can be 

duplicated without losing its integrity[1]. 

C. Computation mode 

In-memory computing or the more "traditional" mode, 

where computation results are written back to the 

disc, are two options for computation mode. In-

memory computing is quicker, but it has the 

drawback of causing the contents to be lost if the 

computer is switched off [1]. 

D. Auto scaling 

Auto-scaling is the process of automatically scaling 

cloud services up or down depending on the situation 

[1]. 

E. Iterative computation 

In the absence of a real solution or where the expense 

of a real solution is prohibitively high, iterative 

computation refers to the use of an iterative approach 

to estimate an estimated solution [1]. 

TABLE 1.  BIG DATA FRAMEWORK FEATURES 

OVERVIEW 

Features Hado

op 

Spark Storm Flink 

Processin

g mode 

Batch Batch 

and 

stream 

Stream Batch 

and 

stream 

Scalability Horiz

ontal 

Horizon

tal 

Horizon

tal 

Horizon

tal 

Data 

delivery 

guarantee 

precis

ely 

once 

Precisel

y once 

At least 

once 

Precisel

y once 

Computat

ion mode 

Drive 

based 

In 

memory 

In 

memory 

In 

memory 

Auto 

scaling 

Yes Yes No No  

Supported 

programi

ng 

languages 

Java  Java, 

Scala, 

python 

Java  Java  

 

VI. LITERATURE REVIEW OF BIG DATA 

FRAMEWORKS 

A.  Spark vs Storm  

Spark and Storm both have fault tolerance and 

scalability, but they use different processing models. 

Spark processes events in micro-batches, whereas 

Storm processes them one by one. Because of this 

disparity in process management, Spark has a latency 

of seconds whereas Storm has a latency of 

milliseconds. 

The Spark method allows you to build streaming tasks 

in the same manner that batch jobs are written, 

allowing you to reuse the majority of the code and 

business logic. Storm focuses on stream processing. 

This framework employs a fault-tolerant method to 

finish calculations or pipeline multiple computations 

on an event as it enters the system. 

  

B. Hadoop vs Spark vs Flink 

 

1) Data Processing: 

Apache Hadoop is a batch processing framework. It 

takes a big data collection as input, processes it all at 

once, and outputs the result. Batch processing is 

highly efficient when dealing with large amounts of 

data. Because of the quantity of the data and the 
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computing capability of the system, an output is 

delayed. Apache Spark is a Hadoop Ecosystem 

component. It's mostly a batch processing system, 

although it can also handle stream processing. Apache 

Flink is a single runtime that can handle both 

streaming and batch processing. 

2) Streaming engine: 

 Map-reduce is a batch-oriented processing 

technology used by Hadoop. It accepts a huge data 

collection as input, processes it, and outputs the result 

all at once. Apache Spark Streaming is a micro-batch 

processing system for data streams. Each batch is made 

up of events that occurred within the batch period. 

However, for use cases where we need to analyze 

massive amounts of live data and give results in real 

time, this is insufficient. Flink  is a streaming engine 

that supports streaming, SQL, micro-batch, and batch 

workloads . A batch is a collection of streaming data 

that has been limited in size. 

 

3) Computation Model: 

Hadoop’s MapReduce uses a batch-oriented approach. 

Batch is a method of processing data while it is still in 

motion. It takes a vast quantity of data, processes it, 

and then outputs the results. Spark supports  Micro-

batching . Micro-batches are a type of computer 

model that essentially collects and then processes data. 

Flink uses an operator-based streaming paradigm with 

a continuous flow. A continuous flow operator 

processes data as soon as it enters, without having to 

wait for it to be collected or processed. 

4) Performance: 

Hadoop Only supports batch processing . Because it 

does not handle streaming data, it performs slower 

than Spark, and Flink. Apache Spark is  regarded as 

the most developed community. However, because it 

employs micro-batch processing, its stream processing 

is less efficient than Apache Flink. When compared to 

other data processing systems, Apache Flink performs 

quite well. When comparing Hadoop versus Spark 

versus Flink, Apache Flink employs native closed loop 

iteration operators, which makes machine learning 

and graph processing quicker. 

5) Fault tolerance: 

Hadoop’s MapReduce is a fault-tolerant programming 

model. In the event of a Hadoop failure, there is no 

need to restart the programme from the beginning. 

Apache Spark recovers lost work and provides 

exactly-once semantics out of the box with no 

additional code or setup. Apache Flink's failure 

tolerance technique is based on Chandy-Lamport 

distributed snapshots. Because the method is 

lightweight, it can sustain high throughput rates 

while also providing excellent consistency guarantees. 

6) Iterative Processing: 

In Hadoop Iterative processing is not supported. Spark 

iterates data in bunches. Each iteration must be 

scheduled and executed independently in Spark. Flink 

uses a streaming design to iterate data. Flink may be 

told to process only the sections of the data that have 

changed, resulting in a substantial increase in work 

performance. 

7) Latency: 

Hadoop's MapReduce architecture is slower than 

others since it is designed to accommodate a wide 

range of data formats, structures, and volumes. As a 

result, Hadoop has a longer latency than Spark and 

Flink. Spark is also a batch processing system, but it is 

quicker than Hadoop’s MapReduce since it caches 

much of the input data in memory through RDD and 

maintains intermediate data in memory, finally 

writing the data to disc upon completion or whenever 

needed. Apache Flink's data streaming runtime 

delivers low latency and high throughput with 

minimal setup work. 

8) Processing Speed: 

MapReduce is slower than Spark and Flink in 

Hadoop. The slowness is due to the nature of 

MapReduce-based processing, which creates a lot of 

intermediate data and a lot of data transferred 

between nodes, resulting in a lot of disc IO delay. In 

addition, it must store a large amount of data on disc 

for synchronization between stages in order to allow 
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Job recovery from errors. In addition, MapReduce 

does not support caching all subsets of data in 

memory.  Apache Spark is quicker than MapReduce 

because it caches much of the input data in memory 

using RDDs and maintains intermediate data in 

memory before writing it to disc when it's done or 

when it's needed. Spark is 100 times quicker than 

MapReduce, demonstrating the superiority of Spark 

over Hadoop MapReduce. Because of its streaming 

nature, Flink  analyses data quicker than Spark. Flink 

improves the job's performance by telling it to only 

process the data that has changed. 

 

9) Easy to use: 

Hadoop’s MapReduce developers must manually code 

each action, making it extremely difficult to work 

with. In Spark It's simple to programme thanks to its 

large number of high-level operators. Flink has high-

level operators as well. 

 

10) Cost: 

In Hadoop since MapReduce does not seek to keep 

everything in memory, it may generally run on less 

costly hardware than other competitors. Since  Spark 

requires a lot of RAM to function in-memory, 

increasing the amount of RAM in the cluster 

gradually raises the cost. Because Apache Flink takes a 

lot of RAM to function in-memory, its price 

progressively rises. 

 

11) Scalability: 

In  Hadoop MapReduce offers tremendous scalability 

potential and has been deployed on tens of thousands 

of nodes in production. Spark is very scalable; we can 

keep adding nodes to the cluster indefinitely. Apache 

Flink is likewise very scalable; we can keep adding 

nodes to the cluster indefinitely. 

 

12) Real time analysis: 

In Hadoop, MapReduce fails when it comes to real-

time data processing since it was built to process large 

volumes of data in batches. Spark is capable of 

processing real-time data, such as data from real-time 

event streams, at a pace of millions of events per 

second. Flink is mostly used for real-time data 

analysis, although it can also handle bulk data 

processing . 

 

13) Caching: 

In Hadoop MapReduce is unable to cache data in 

memory for future needs. Spark has the ability to 

store data in memory for future iterations, which 

improves performance. To improve performance, 

Flink can store data in memory for future iterations . 

 

14) Duplication elimination: 

Hadoop does not support duplicate removal. 

Spark  processes each record just once, preventing 

duplication. Apache Flink processes each record 

precisely once, preventing duplication. Streaming 

programmes have the ability to keep a custom state 

throughout computation. In the event of a failure, 

Flink's checkpointing system ensures that the state is 

only updated once. 

TABLE 2. Comparing The Four Big Data Frameworks  

 Hadoop  Spark  Flink storm 

Cost  Cost 

efficient  

Expensiv

e  

Expensiv

e  

Not 

compa

red 

Performa

nce  

Less 

efficient 

Efficient  Most 

efficient 

Not 

compa

red 

Processi

ng time 

Slower  Faster 

than 

Hadoop 

Faster 

than 

spark 

Not 

compa

red 

CPU 

consump

tion 

CPU 

consump

tion is 

high 

CPU 

consump

tion is 

high 

CPU 

consump

tion is 

low 

Not 

compa

red 
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Iterative 

processin

g 

Does not 

support 

Supports  Supports  Not 

compa

red 

latency Latency 

is high 

Latency 

is large 

Latency 

is low 

Latenc

y is 

low 

Executio

n time 

Executio

n time is 

high 

Executio

n time is 

low 

Executio

n time is 

low 

Not 

compa

red 

Duplicat

e 

eliminati

on 

Does not 

support 

supports supports Not 

compa

red 

Supports 

real time 

analysis 

No  Yes  Yes  Not 

compa

red 

 

VII. CONCLUSION 

 

In this article, we examined and compared the 

efficiency of four frameworks: Hadoop, Flink, Spark, 

and Storm, using various primary performance 

indicators. The findings of this analysis indicate that 

Flink outperformed the other structures indicating 

that it is the strongest. Finally, they can achieve high 

computational efficiency (HPC). In the future, by 

taking these metrics into account while evaluating 

the efficiency of the four structures, each system will 

be able to improve on any metric that has a low 

impact on obtaining HPC. As such, we aspire to 

seeing enhancements in some of these frameworks. 
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