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ABSTRACT 

 

The prediction of physical phenomenon commonly observed in nature has been a tough challenge before the 

scientists and mathematicians all over the world. A careful mathematical modeling of such events has helped 

us to predict the physical state of a system given the current state. Non-linear dynamical systems like  mass-

spring systems, electrical circuits, chemical reactions, predator-prey models, Lorenz equations, damped 

driven pendulum, Van der Pol oscillator, and many more have been studied by many mathematicians and 

physicists and the strange behavior, so called chaos, has been observed in such systems. As an example of a 

chaotic dynamical system, we have considered the Duffing oscillator, which is an extremely forced and 

damped oscillator. In this paper, we have analyzed the dynamics of the Duffing oscillator. We have 

constructed the differential equation of the motion of the Duffing oscillator, obtained its critical points and 

classified them in reference to their stability. Also, we have obtained the solutions  for different initial 

conditions and different ranges of parameters and concluded that the system exhibits chaotic behavior. 
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I. INTRODUCTION 

 

First we will have a brief discussion and references about the general notions and definitions we will need to 

understand that come across this paper. Among many definitions of a dynamical system, we prefer a general 

definition as suggested by Edward R. Scheinerman. [10] 

 

1.1 Dynamical System [10]:  

A dynamical system is specified by a state vector X ∈ 𝑅𝑛, which is a list of numbers which may change as time 

progresses and a function 𝐹 ∶  𝑅𝑛 → 𝑅𝑛 which describes how the system evolves over time. A continuous time 

dynamical systems has a state vector 𝑋(𝑡)  ∈  𝑅𝑛 and we are given a function 𝐹 ∶  𝑅𝑛 → 𝑅𝑛 which specifies how 

quickly each component of 𝑋(𝑡) is changing, i.e., 𝑋′(𝑡)  =  𝐹(𝑋(𝑡)), or in brief notation, 𝑋′ =  𝐹(𝑋), which is a 

system of differential equations. 
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It is well known that many physical phenomena can be mathematically modeled in terms of differential 

equations and the difference equations and the long term effects can be studied over time. Differential 

equations can be used to describe the motions of objects like satellites, water molecules in a stream, waves on 

strings and surfaces, etc. In this section we will take a review of some basic terminology associated with a 

system of differential equations. 

 

1.2 System of Differential Equations [9]: 

Let 𝑥1,  𝑥2, … , 𝑥𝑛 be differentiable functions of a variable 𝑡, usually called as time, on an interval 𝐼 of 

the real numbers. Let 𝑓1,  𝑓2, … , 𝑓𝑛 be all functions of 𝑥1,  𝑥2, … , 𝑥𝑛 and 𝑡. Then the set of  𝑛 differential 

equations  
𝑑𝑥1

𝑑𝑡
= 𝑓1(𝑥1,  𝑥2, … , 𝑥𝑛, t), 

𝑑𝑥2

𝑑𝑡
= 𝑓2(𝑥1,  𝑥2, … , 𝑥𝑛, 𝑡),    

. 

.                                                                                                                              (1)          

. 
𝑑𝑥𝑛

𝑑𝑡
= 𝑓𝑛(𝑥1,  𝑥2, … , 𝑥𝑛, t)    

is called as a system of differential equations. This system can also be expressed as  𝑋′ = 𝐹(𝑋, 𝑡), where  

𝑋 = [

𝑥1
𝑥2

⋮
𝑥𝑛

], 𝑋′ =

[
 
 
 
𝑥1
′

𝑥2
′

⋮
𝑥𝑛
′ ]
 
 
 

 and 𝐹 = (𝑓1,  𝑓2, … , 𝑓𝑛). 

The system 𝑋′ = 𝐹(𝑋, 𝑡), where 𝐹 can depend on the independent variable 𝑡 is called as a non-autonomous 

system. Any non-autonomous system (1) with 𝑋 ∈ 𝑅𝑛 can be written as an autonomous system  

                                                     𝑋′ = 𝐹(𝑋)                                                         (2) 

with 𝑋 ∈ 𝑅𝑛+1 simply by letting 𝑥𝑛+1 = 𝑡 and 𝑥𝑛+1
′ = 1. The fundamental theory for the systems (1) and (2) 

does not differ significantly. 

 

1.3 Phase-Plane Analysis[11]: 

If 𝑋: 𝐼 → 𝑅𝑛 is defined by  𝑋(𝑡) = [

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛(𝑡)

], and if 𝑋(𝑡) satisfies the system (1), then 𝑋(𝑡) is said to be a solution 

of the system (1). If 𝑡0 ∈ 𝑅 and 𝑋 is s solution for all 𝑡 ≥ 𝑡0, then 𝑋(𝑡0) is an initial condition of a solution 𝑋. As 

𝑥1,  𝑥2, … , 𝑥𝑛 are functions of the variable 𝑡, it follows that as 𝑡 increases, 𝑋(𝑡) traces a curve in 𝑅𝑛 called as the 

trajectory or the orbit and in this case, the space 𝑅𝑛 is called as the phase space of the system. The phase space 

is completely filled with trajectories since each point 𝑋(𝑡0) can serve as an initial point. The system 𝑋′ = 𝐹(𝑋) 

is said to be a linear system if the function 𝐹 is linear. In this case, the system can be expressed as  𝑋′ = 𝐴. 𝑋, 

where 𝐴 is an 𝑛 × 𝑛 matrix. The function 𝐹 is also called as a vector field. The vector field always dictates the 

velocity vector 𝑋′ for each 𝑋. A picture which shows all qualitatively different trajectories of the system is 

called as a phase portrait. A second order differential equation which can be expressed as a system of two 

differential equations can be treated as a vector field on a plane and hence called as a phase plane. The general 

form of a vector field over the plane is  
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   𝑥1′ = 𝑓1(𝑥1,  𝑥2),   

𝑥2′ = 𝑓2(𝑥1,  𝑥2), 

which can be compactly written in vector notations as 𝑋′ = 𝐹(𝑋),where 𝑋 = (𝑥1,  𝑥2) and 

𝐹(𝑋) = (𝑓1(𝑋), 𝑓2(𝑋)). 

For non-linear systems, it is quite difficult to obtain the trajectories by analytical methods and though the 

trajectories are obtained by explicit formulas, they are too complicated to provide some information about the 

solution. Hence qualitative behaviors of the trajectories obtained by numerical solution methods are often 

studied. To obtain a phase portrait, we plot the variable 𝑥1 against the variable 𝑥2 and study the qualitative 

behavior of the solution.   

 

1.4 Fixed Point (or Stationary Point or Equilibrium Point or Critical Point) [2] 

A fixed point or an equilibrium point of a system of differential equations is a constant solution, that is, a 

solution 𝑋 such that  𝑋(𝑡) = 𝑋(𝑡0) for all 𝑡. 

If 𝑋 is an equilibrium point, then we identify the equilibrium point with the vector 𝑋(𝑡0). From the definition, 

it is clear that 𝑋 is a fixed point of the system (1)  if 𝑋′(𝑡) = 0. 

 

1.5 Classification of Fixed Points Depending Upon Their Stability [1] 

Let 𝑋∗ be a fixed point of a system 𝑋′ = 𝐹(𝑋). 

(i) We say that 𝑋∗ is an attracting or stable fixed point if there is a 𝛿 > 0 such that lim
𝑡→∞

𝑋(𝑡) = 𝑋∗ whenever ∥

𝑋(0) − 𝑋∗ ∥< 𝛿.   

This definition implies that any trajectory that starts near 𝑋∗ within a distance 𝛿 is guaranteed to converge to 

𝑋∗eventually. 

(ii) 𝑋∗ is said to be Liapunov stable if for each 𝜖 > 0, there is a 𝛿 > 0 such that ∥ 𝑋(𝑡) − 𝑋∗ ∥< 𝜖 whenever 𝑡 ≥

0 and ∥ 𝑋(0) − 𝑋∗ ∥< 𝛿. 

Thus trajectories that start near 𝑋∗ within 𝛿 remain within 𝜖 for all positive time. Liapunov stability requires 

that the nearby trajectories stay close for all the time. 

(iii) The fixed point 𝑋∗ is said to be asymptotically stable if it is both attracting and Liapunov stable. 

 

II. THE DUFFING OSCILLATOR  

 

In the field of nonlinear equations, van der Pol equation[5] is extensively studied. The equation is a 

mathematical modeling of the oscillating charge of the van der Pol oscillator. A strange dynamical behavior is 

observed in nonlinear oscillators with varying parameters. In this section, we will study the Duffing oscillator. 

Consider a periodically driven pendulum as shown in the figure 1.  

 
Figure 1. 
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Let 𝑥(𝑡) denote the displacement at time 𝑡 from the rest position of the bob of the pendulum and let 
𝑑𝑥

𝑑𝑡
= 𝑥 ′(𝑡) 

denote the speed. Let 𝑓(𝑡) = 𝛾 cos(𝜔𝑡) represent the driving periodic force, where 𝛾 is the driving amplitude 

and 𝜔  is the frequency of the driving force. Let 𝑞  denote the damping coefficient and assume that the 

pendulum has a cubic restoring force. Then the Duffing equation representing the motion of the oscillator is 

given by 
𝑑2𝑥

𝑑𝑡2 + 𝑞
𝑑𝑥

𝑑𝑡
+ (𝑥3 − 𝑥) = 𝛾 cos(𝜔𝑡)                       (3)  

A wide range of oscillators of this type are extensively studied so far and their behavior in terms of the nature 

of the solutions, their stability, chaotic nature and its control, etc. is examined. The authors Kulkarni P. R. and 

Borkar V. C.[8] have analyzed the oscillations in a damped driven pendulum and proved the chaotic nature of 

the pendulum oscillations. In this paper, we will study the solutions of the equation (3) by varying the damping 

amplitude 𝛾 while keeping the other parameters 𝑞 and 𝜔 constants. For the sake of convenience we will choose 

𝑞 = 0.3 and 𝜔 = 1.25. Despite of the equation (3) being two dimensional, it is not linear as it contains the 

periodic term cos(𝜔𝑡). Such a periodically forced non-autonomous differential equation can be represented by 

an autonomous differential equation by the introduction of a third variable 𝜃 = 𝜔𝑡. In this case, equation (3) 

can be expressed as a system of three first order differential equations given by 
𝑑𝜃

𝑑𝑡
= 𝜔, 

𝑑𝑥

𝑑𝑡
= 𝑦,  

𝑑𝑦

𝑑𝑡
= −𝑘𝑦 + 𝑥(1 − 𝑥2) + 𝛾 cos(𝜔𝑡).   

The theory for autonomous and non-autonomous systems with reference to the nature of the solutions and 

their long term effect, the stability of fixed points, the nature of the trajectories and the phase portraits, etc. 

does not differ on a large scale. We will consider only the non-autonomous system. 

Defining 𝑥(𝑡) = 𝑥1(𝑡), 
𝑑𝑥

𝑑𝑡
= 𝑥1′ = 𝑥2 = 𝑦, equation (3) can be expressed as a system of differential equations 

                     𝑥1′ = 𝑥2                                                                                                       (4) 

                        𝑥2′ = −0.3𝑥2 + 𝑥1 − 𝑥1
3 + 𝛾 cos(1.25𝑡)                                                             (5) 

 

This system can be expressed in the form 𝑋′(𝑡) = 𝐹(𝑋, 𝑡), where 

 𝑋′(𝑡) = [
𝑓1(𝑥1, 𝑥2, 𝑡 )
𝑓2(𝑥1, 𝑥2, 𝑡 )

] = [
𝑥2

 (1 − 𝑥1
2)𝑥1−0.3𝑥2 + 𝛾 cos(1.25𝑡)  

]                     (6) 

The system (6) is a nonlinear nonautonomous system.  

Taking 𝛾 = 0, the system of equations (4)-(5) can be expressed as 

 𝑋′(𝑡) = 𝐹(𝑋) = [
𝑓1(𝑥1, 𝑥2)
𝑓2(𝑥1, 𝑥2)

],                                       (7) 

where 𝑓1(𝑥1, 𝑥2) = 𝑥2 and 𝑓2(𝑥1, 𝑥2) = (1 − 𝑥1
2)𝑥1−0.3𝑥2.   

Solving the equation 𝑋′(𝑡) = 0 we get three equilibrium points 𝑂 = (0, 0), 𝑃 = (1, 0) and 𝑄 = (−1, 0). We will 

verify the nature of these equilibrium points in reference to their stability. The derivative 𝐷𝐹(𝑋) of the 

function 𝐹 at 𝑋 = (𝑥1, 𝑥2) is given by 

𝐷𝐹(𝑋) =

[
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2]

 
 
 

= [
0 1

1 − 3𝑥1
2 −0.3

] 

The linearized form of the system near the origin 𝑂 = (0, 0) takes the form  𝑋′ = 𝐴𝑋, where 𝐴 = 𝐷𝐹(𝑂) =

[
0 1
1 −0.3

]. The eigenvalues of the matrix 𝐴  are −1.1611 and 0.8611 . Since the eigenvalues are real with 
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opposite signs, the equilibrium point 𝑂 = (0, 0) is a saddle point of the linearized system 𝑋′ = 𝐴𝑋. Similarly the 

matrices 𝐷𝐹(𝑃) = 𝐷𝐹(𝑄) = [
0 1

−2 −0.3
] have eigenvalues −0.15± 1.40𝑖. As all the eigenvalues of both the 

matrices have negative real part, it follows that the equilibrium points 𝑃 = (1, 0) and 𝑄 = (−1, 0) are both 

sinks for the linearized system 𝑋′ = 𝐴𝑋. As the fundamental theory for a linearized and a nonlinear system are 

qualitatively the same, by the Hartman-Grobman theorem, the origin 𝑂 = (0, 0) is a saddle point and the points 

𝑃 and 𝑄 are the sinks for the system (7).    

The solutions for different initial conditions near the origin is as shown in Figure 2 and the phase plane portrait 

is as shown in the Figure 3. It can be observed that the orbits near the origin are moving away from the origin, 

in fact they are converging to the other two fixed points 𝑃 = (1, 0) and 𝑄 = (−1, 0). 

 
Figure 3. Trajectories starting at (𝑥, 𝑦) = (±0.1,±0.1) and (𝑥, 𝑦) = (±0.3,±0.3) 

 

 
Figure 4. Phase plane portrait with initial conditions (𝑥, 𝑦) = (2, 2), (−2,− 2), (3, 3), (−3,−3)  

In search of chaos, let us keep varying 𝛾. We will now study the behavior of the system for 𝛾 = 0.2. In this case, 

solving the system of equations (4)-(5), after the initial transient is settled, it can be observed from Figure 4 and 

Figure 5 that the solution curves are harmonic with period equal to that of the driven force i.e.
2𝜋

𝜔
≅ 5.026. 

Figure 4 and Figure 5 are obtained by using different mathematical softwares. 
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Figure 4: period-one harmonic solution for 𝛾 = 0.2  

 

 
Figure 5: t v/s x(t) 

For non-linear systems, sometimes exact solutions may not exist, and so we use numerical methods to obtain 

the solutions. It is quite difficult to obtain the trajectories by analytical methods, and though the trajectories are 

obtained by explicit formulas, they are too complicated to provide any kind of information about the solution 

itself. Hence qualitative behaviors of the trajectories obtained by numerical solution methods are often studied. 

To study the qualitative behavior of the solution, we obtain a phase portrait in which we plot the variable 𝑥1 

against the variable 𝑥2 as the time 𝑡 varies. The phase portrait and the vector field for 𝛾 = 0.2, 𝑥1 = 1.7, 𝑥2 =

1.2 is as shown in the Figure 6. The period-one harmonic solution can be verified by means of a closed curve in 

the phase portrait.   

 

 
Figure 6: The phase portrait and the vector field for 𝛾 = 0.2, 𝑥1 = 1.7, 𝑥2 = 1.2 
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When we plot solution curves of some nonlinear system, the trajectories may cross each other and it becomes 

very difficult to draw any conclusions from them. Poincare sections of the phase portraits are often used in 

such situations. Poincare sections help us to observe the flow under consideration is a better way. The Poincare 

section in this case is as shown in the Figure 6a. A single point can be observed in the Poincare section. 

 
Figure 6a 

For 𝛾 = 0.3, solutions harmonic with period equal twice the period of the driven force i.e.2.
2𝜋

𝜔
≅ 10.0531 as 

can be observed from the Figure 7. A period two cycle can be observed in the phase portrait in this case as can 

be observed from the Figure 8. Note that the two trajectories crosses itself. The Figure 8a shows the Poincare 

section in which two points can be observed. 

 
Figure 7: t v/s x(t) 

 
Figure 8: The phase portrait and the vector field for 𝛾 = 0.3, 𝑥1 = 1.7, 𝑥2 = 1.2 
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Figure 8a 

Considering the value 𝛾 = 0.31, a period four cycle of period 4.
2𝜋

𝜔
≅ 20.106  is observed as can be verified from 

the Figure 9. The phase portrait is shown by the Figure 10, where we can see a period four loop. Figure 11 

shows the zoom in picture in this case. The Figure 11a shows the Poincare section in which four  points can be 

observed. 

 
Figure 9: time 𝑡 v/s 𝑥 for 𝛾 = 0.31, 𝑥1 = 1.8, 𝑥2 = 1.5 

 

 
Figure 10: The phase portrait and the vector field for 𝛾 = 0.31, 𝑥1 = 1.8, 𝑥2 = 1.5 
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Figure 11: Zoom in on the phase portrait for 𝛾 = 0.31, 𝑥1 = 1.8, 𝑥2 = 1.5 

 
 

III. RESULTS 

 

The term chaos[6,7] is used when there is predictability in a system, but a kind of randomness or uncertainty 

for certain parameter ranges also. Chaotic behavior is quite observed in so many nonlinear systems representing 

a natural phenomenon. There are many definitions of chaos given by different authors including measure 

theoretic notions, topological concepts, etc. However, in accordance with the definition given by Devaney R. L. 

[3], the concepts involved in its definition are sensitive dependence on initial conditions, topological 

transitivity, and the denseness of the periodic orbits. One of the major characteristics of a chaotic system is the 

so called period doubling phenomenon[8] for certain range of the parameter. Note that for 𝛾 = 0, the solution 

curves are quite predictable. There are three equilibrium points and all the trajectories converge to only two 

equilibrium points 𝑃 = (1, 0) and 𝑄 = (−1, 0) without crossings between them. For 𝛾 = 0.2, solution curves 

are harmonic with period equal to that of the driven force i.e.
2𝜋

𝜔
, 𝛾 = 0.3, solutions harmonic with period equal 

twice the period of the driven force i.e.2.
2𝜋

𝜔
. Thus there is a period doubling of the cycles. For  𝛾 = 0.31, there 

is a period four cycle, again a period doubling! As we go on increasing the values of the parameter 𝛾, this period 

doubling phenomenon is not observed and the system enters in the chaotic regime. For 𝛾 = 0.5, the system 

becomes chaotic and a solution curve intersects itself many times. This can be observed from the phase portrait 

for as shown by Figure 12. However, this phase portrait is not the actual portrait as the system is 
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nonautonomous. The actual phase portrait should be three dimensional depending on (𝑥, 𝑦, 𝑡) co-ordinates and 

not only upon (𝑥, 𝑦) co-ordinates. In fact, the Figure 12 is a projection of the actual phase portrait on the xy-

plane.  

   

 
Figure 12: Phase portrait of the chaotic system 

The Poincare section of the phase portrait is as shown in the following Figure 13. This section has fractal 

dimension which is a cross section of the strange attractor. 

 
Figure 13: Poincare section of the strange attractor 

The period doubling phenomenon can also be observed by means of the bifurcation diagram. By means of a  

bifurcation diagram, we can observe the values of the parameter 𝛾 at which the dynamical system bifurcates. 

This kind of diagram enables us to understand the behavior of the system at higher iterates at arbitrary initial 

conditions for all values of the parameter. In such a diagram, the values of the parameter 𝛾 are plotted on the 

horizontal axis and the higher iterates are plotted on the vertical axis. The bifurcation diagram of the system of 

equations (4)-(5) is as shown in the Figure 14. 
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Figure 14: Bifurcation diagram 

 

IV. CONCLUSIONS 

 

From the bifurcation diagram, we can observe that there is a period-1 harmonic solution in the approximate 

range 0 < 𝛾 < 0.27 and a period-2 harmonic solution in the approximate range 0.27 < 𝛾 < 0.32. As 𝛾 increases 

further, an unpredictable behavior and then again, a periodic behavior is observed. It is very difficult to have 

predictions about the state of the system at a particular instant in case of such dynamical systems in chaotic 

region as there is a sensitive dependence on the initial conditions.    
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