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ABSTRACT

In this paper we use the mittag leffler function of real variable x which is special case of mittag leffler
function of complex variable zZAnd we can add some factor to mittag leffler function of real variable And
represents the two series in (1 4+ x)~* and paper (1 — x)~! this series converges for |x| < 1,in this mittag
leffler function which is generalization of mittag leffler function.i.e mittage leffler function is special case of

this generalized function.
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I. INTRODUCTION

n
Fractional derivative is as old as calculus. L’Hospital in 1695 asked what does it meanif %.if nzé Since then,

manyresearchers tried to put a definition of a fractional derivative. Most of them used an integral form for the
fractional derivative.
Two of which are the most popular ones.
1) Riemann liouville definition. For @ € [n — 1,n) the a derivative of f is
pa__ 1 a1 @

" Tn—a)dt" ), (t —x)en+t
2) Coputo definition. For @ € [n — 1,n) the a derivative of fis
1 ff f(x)

a (

- I'(n—a) t —x)entl

dx

D, dx

II. METHODS AND MATERIAL

One parameter mittage leffler function
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E,(z) = Z— >0
a(2) £, T(ak + D~

Two parameter mittage leffler function

e K
Ea,ﬁ(Z) = ;ma >0,>0

Eia(2) = me Zk'

e -1
E12(2) = Z Tk+1) 2

et—1—-z

zk
Ei3(2) = kZOF(k 1) = 72

It follows from definition

In general
m-2
z
Evm(2) = { Z F}
=0
Ey1(2?) = Z 2 Cosha)
21 T LiTQRk+1)
z?*1 sinh (2)
b =)
22(2%) T2k+2) =z
The generalized
E( 8 (Z12Za. . Zm) = z (sl by e L) T 2,1
A107...0m),F\E142........ mJ/ — m .l.
k=014l +..lim=k,li50,l250......lm>0 F(ﬁ + Zl:l alll)
Where (k; 14,15 ... ... l,) are multinomial coefficient.

III. RESULTS AND DISCUSSION

In this paper generalization of mittage leffler function is derive and acommoded two imp series in this paper
(1 4+ x)~1 and paper (1 — x)~?! this series converges for |x| < 1,
So main aim is to accomoded this two series in the generalied mittage leffler function

The two series is given by
A+x)t=1—-x+x2—x3+- .. ... (D)™™ ... ... converges for ...|x| <1...

A=-x)t=1+x+x2+x3+ ...+ x"........converges for|x| < 1

The mittage leffler function for real variable x is

E,(x) = kZ_O—F(ak n 1),a >0

The generalized mittag leffler function.
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§Ea(X) = kzzom (F(ak + 1))5

Where 6 € N; = {0,1}

Case I.when § = 0 then original mittage leffler function of one parameter of real variable x is obtained i.e

Fa(2) = kzzor(ak 1)

Casell:- When 6§ = 1 then mittage leffler function of parameter family reduces to

o Zk
1Ea(Z) = ;m (F((Zk + 1))1

1E,(z) = Z z¥

k=0
Therefore
1E,(2) = sz =1+4+x+x2+x3+-.. .. +x"+ =1 —-x)t
k=0
In a similar manner,
1E,(-2) =Z(—z)k =1—-x+x2—x3+- ... + (—1)™x™ + =(1-x)"1
k=0

IV. CONCLUSION
One can also generalize mittage leffler function.
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