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ABSTRACT 

 

In this paper, an attempt has been made to solve the problem of thermo elasticity and determine the 

unknown temperature, displacement and stress components. In this problem the zero temperature is 

maintained on the lower surface and third kind boundary condition is maintained on lower and upper 

surface. The governing heat conduction has been solved by using finite Hankel transform technique 

unknown temperature found on the lower surface of the hollow cylinder.  The results are obtained in series 

form in terms of Bessel’s functions and have been computed numerically and illustrated graphically. 
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I. INTRODUCTION 

 

In 1967, Lord and Shulman [7 ] introduced the theory of generalized thermoelasticity with one relaxation time 

for an isotropic body. This theory corrects the unrealistic conclusions of the older theories (the uncoupled and 

the coupled theories of thermoelasticity) that heat waves travel with infinite speeds. In 1972 Green and 

Lindsay [1] developed the theory of generalized thermoelasticity with two relaxation times, based on a 

generalized inequality of thermodynamics. In this theory both the equations of motion and of heat conduction 

are hyperbolic. The heat conduction law is the same as Fourier’s law when the system has a centre of symmetry. 

Among the contributions to this theory are the works in [8, 9]. 

In view of some experimental evidence available in favour of finiteness of heat propagation speed, generalized 

thermoelasticity theories are considered to be more realistic than the conventional theory in dealing with 

practical problems involving very large heat fluxes at short intervals, like those occurring in laser units and 

energy channels [2].        

Two dimensional transient problems for a thick annular disc in thermoelasticity studied by (Dange et al., 2009). 

An inverse temperature field of theory of thermal stresses investigated by (Grysaet al; 1981) while A note of 

quasi –static thermal stresses in steady state thick annular disc and an inverse quasti-static thermal stresses in 

thick annular disc are studied by (Gaikwad et al; 201s0).  

In this paper, in the first problem, an attempt is made to determine the unknown temperature, displacement 

and stress functions on curved surfaces, where an arbitrary heat is applied on the lower surface (z = -h) and 
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maintained zero on upper surface (z = h) . The governing heat conduction equation has been solved by using 

Hankel transform technique. The results are obtained in series form in terms of Bessel’s functions and 

illustrated graphically.  

This paper contains a new and novel contribution of thermal stresses in an annular disc under steady state. The 

above results were obtained under a steady state field. The results presented here are useful in engineering 

problems particularly in the determination of the state of strain in an annular disc constituting foundations of 

containers for hard gases or liquids, in the foundations for furnaces etc. 

 

II. STATEMENT OF PROBLEM  

 

Consider an annular disc of thickness 2h occupying the space𝐷: 𝑎 ≤ 𝑟 ≤ 𝑏, −ℎ ≤ 𝑧 ≤ ℎ. 

The thermoelastic displacement function as in (Nowacki; 1962) is governed by poison’s equation 

𝛻2𝑈 = (1 + 𝜈)𝑎𝑡𝑇                                                           (2.1)                    

with𝑈𝑟 = 0 at 𝑟 = 𝑎 and𝑟 = 𝑏                                               (2.2) 

where 

𝛻2 =
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
 

𝜈and𝑎𝑡 are the Poisson’s ratio and the linear coefficient of thermal expansion of the material of the disc and T 

is the temperature of the disc satisfying the differential equation 
𝜕2𝑇

𝜕𝑟2 +
1

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2 = 0               (2.3) 

subject to the boundary conditions 

𝑇(𝑟, 𝑧) = 0  at𝑟 = 𝑎, −ℎ ≤ 𝑧 ≤ ℎ                                           (2.4) 

𝑇(𝑟, 𝑧) = 0  at𝑟 = 𝑏, −ℎ ≤ 𝑧 ≤ ℎ            (2.5)  
𝜕𝑇

𝜕𝑧
− 𝑘1𝑇 = 𝑔(𝑟),  at𝑧 = −ℎ, 𝑎 ≤ 𝑟 ≤ 𝑏                                      (2.6) 

𝜕𝑇

𝜕𝑧
+ 𝑘2𝑇 = 0,  at𝑧 = ℎ, 𝑎 ≤ 𝑟 ≤ 𝑏                                         (2.7) 

where 1k
 and 2k

 are the radiation constants on the two plane  surfaces. 

The stress functions  rr
and 

are  given by, 

𝜎𝑟𝑟 = −2𝜇
1

𝑟

𝜕𝑈

𝜕𝑟
                                                                    (2.8) 

𝜎𝜃𝜃 = −2𝜇
𝜕2𝑈

𝜕𝑟2                                                                      (2.9) 

where𝜇𝑖𝑠the Lame’s constant, while each of the stress functions 𝜎𝑟𝑧 ,𝜎𝑧𝑧 and 𝜎𝜃𝑧 are zero within the disc in the 

plane state of stress.  

The equations (2.1) to (2.9) constitute the mathematical formulation of the problem under consideration. 

  

III. SOLUTION OF PROBLEM 

 

 On applying the finite Hankel transform defined in (Sneddon; 1972) to Eq. (2.3), one obtain 
2

2

2
0n

d T
T

dz
− =

                                                                     (3.1) 

whereT is the Hankel transform of T. 
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On applying Eq. (3.1) under the conditions given in Eq. (2.6) and Eq. (2.7), one obtains       

   

( )
2

2
1 1 2 1 2

cosh ( ) sinh ( )
( )

sinh(2 ) ( )cosh(2 )

n n n

n

n n n n n

z h k z h
T f

k k h k k h
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

   



=

 + + +
 =

+ + +  


                                (3.2) 

On applying the inverse Hankel transform to Eq. (3.2), one obtain the expression for the temperature as 

𝑇(𝑟, 𝑧) = ∑∞
𝑛=1 𝑓(𝜉𝑛)[𝐽0(𝑟𝜉𝑛)𝐺0(𝑏𝜉𝑛) − 𝐽0(𝑏𝜉𝑛)𝐺0(𝑟𝜉𝑛)] 

                                                × [
𝜉𝑛𝑐𝑜𝑠ℎ[𝜉𝑛(𝑧 + ℎ)] − 𝑘2𝑠𝑖𝑛ℎ[𝜉𝑛(𝑧 + ℎ)]

(𝜉𝑛
2 + 𝑘1𝑘2)𝑠𝑖𝑛ℎ(2𝜉𝑛ℎ) + 𝜉𝑛(𝑘1 + 𝑘2)𝑐𝑜𝑠ℎ(2𝜉𝑛ℎ)

]                                 (3.3) 

 

where𝑓(𝜉𝑛) = ∫
𝑏

𝑎
𝑓(𝑟)𝑟[𝐽0(𝑟𝜉𝑛)𝐺0(𝑏𝜉𝑛) − 𝐽0(𝑏𝜉𝑛)𝐺0(𝑟𝜉𝑛)]                              (3.4) 

Equation (3.3) is the desired solution of the given problem. 

 

DETERMINATION OF THERMOELASTIC DISPLACEMENT  

Substituting the value T(r, z) from Eq. (3.3) in Eq. (2.1) one obtains the thermoelastic displacement function 

U(r, z) as, 

𝑈(𝑟, 𝑧) =  −(1 + 𝜈)𝑎𝑡 ∑

∞

𝑛=1

(
𝑓(𝜉𝑛)

𝜉𝑛
2 ) [𝐽0(𝑟𝜉𝑛)𝐺0(𝑏𝜉𝑛) − 𝐽0(𝑏𝜉𝑛)𝐺0(𝑟𝜉𝑛)] 

                                       × [
𝜉𝑛𝑐𝑜𝑠ℎ[𝜉𝑛(𝑧 + ℎ)] − 𝑘2𝑠𝑖𝑛ℎ[𝜉𝑛(𝑧 + ℎ)]

(𝜉𝑛
2 + 𝑘1𝑘2)𝑠𝑖𝑛ℎ(2𝜉𝑛ℎ) + 𝜉𝑛(𝑘1 + 𝑘2)𝑐𝑜𝑠ℎ(2𝜉𝑛ℎ)

]                       (3.5) 

 

DETERMINATION OF STRESSES 

Using Eq. (3.5) in Eq. (2.8) and Eq. (2.9), one obtains the stress functions  𝜎𝑟𝑟 and 𝜎𝜃𝜃 as, 

𝜎𝑟𝑟 = −
2𝜇

𝑟
(1 + 𝜈)𝑎𝑡 ∑

∞

𝑛=1

(
𝑓(𝜉𝑛)

𝜉𝑛
) [𝐽1(𝑟𝜉𝑛)𝐺0(𝑏𝜉𝑛) − 𝐽0(𝑏𝜉𝑛)𝐺1(𝑟𝜉𝑛)] 

                               × [
𝜉𝑛𝑐𝑜𝑠ℎ[𝜉𝑛(𝑧 + ℎ)]  − 𝑘2𝑠𝑖𝑛ℎ[𝜉𝑛(𝑧 + ℎ)]

(𝜉𝑛
2 + 𝑘1𝑘2)𝑠𝑖𝑛ℎ(2𝜉𝑛ℎ) + 𝜉𝑛(𝑘1 + 𝑘2)𝑐𝑜𝑠ℎ(2𝜉𝑛ℎ)

]                               (3.6) 

𝜎𝜃𝜃 = −2𝜇(1 + 𝜈)𝑎𝑡 ∑

∞

𝑛=1

𝑓(𝜉𝑛)[𝐽1
′ (𝑟𝜉𝑛)𝐺0(𝑏𝜉𝑛) − 𝐽0(𝑏𝜉𝑛)𝐺1

′ (𝑟𝜉𝑛)] 

                                  × [
𝜉𝑛𝑐𝑜𝑠ℎ[𝜉𝑛(𝑧 + ℎ)] − 𝑠𝑖𝑛ℎ[𝜉𝑛(𝑧 + ℎ)]

(𝜉𝑛
2 + 𝑘1𝑘2)𝑠𝑖𝑛ℎ(2𝜉𝑛ℎ) + 𝜉𝑛(𝑘1 + 𝑘2)𝑐𝑜𝑠ℎ(2𝜉𝑛ℎ)

]                             (3.7) 

 

SPECIAL CASE AND NUMERICAL RESULTS 

Set 

𝑓(𝑟) = (𝑟 + 𝑎)(𝑟 + 𝑏)𝑒ℎ, 𝛼 = (1 − 𝑎 − 𝑏) in (3.3) one obtains 

𝑇(𝑟, 𝑧)

𝛼
= ∑

∞

𝑛=1

𝑒ℎ(𝐺0(𝑏𝜉𝑛) − 𝐽0(𝑏𝜉𝑛)){
𝑏2

𝜉𝑛
2 [2𝐽0(𝑏𝜉𝑛) + (𝑏𝜉𝑛 −

4

𝑏𝜉𝑛
) 𝐽1(𝑏𝜉𝑛)]  

−
𝑎2

𝜉𝑛
2 [2𝐽0(𝑎𝜉𝑛) − (𝑎𝜉𝑛 −

4

𝑏𝜉𝑛
) 𝐽1(𝑎𝜉𝑛)] +

𝑎𝑏

(1 − 𝑎 − 𝑏)
[𝑏𝐽1(𝑏𝜉𝑛)

− 𝑎𝐽1(𝑎𝜉𝑛)]}[𝐽0(𝑟𝜉𝑛)𝐺0(𝑏𝜉𝑛) − 𝐽0(𝑏𝜉𝑛)𝐺0(𝑟𝜉𝑛)] 

                                 × [
𝜉𝑛𝑐𝑜𝑠ℎ[𝜉𝑛(𝑧 + ℎ)]  −  𝑘2𝑠𝑖𝑛ℎ[𝜉𝑛(𝑧 + ℎ)]

(𝜉𝑛
2 + 𝑘1𝑘2)𝑠𝑖𝑛ℎ(2𝜉𝑛ℎ) + 𝜉𝑛(𝑘1 + 𝑘2)𝑐𝑜𝑠ℎ(2𝜉𝑛ℎ)

]                    (3.8) 
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The numerical calculation have been carried out for steel (SN 50 C) plate with parameters𝑎 = 1𝑚,𝑏 = 2𝑚,ℎ =

0.5𝑚.thermal diffusivity𝑘 = 15.9 × 10−6(𝑚2𝑠−1) and poisons ratio 𝜈 = 0.281, while 𝜉1 = 5.95,𝜉2 = 7.23,𝜉3 =

9.45 , 𝜉4 = 11.52 , 𝜉5 = 13.79  being the positive roots of transcendental equation [𝐽0(𝑟𝜉𝑛)𝐺0(𝑏𝜉𝑛) −

𝐽0(𝑏𝜉𝑛)𝐺0(𝑟𝜉𝑛)] = 0 as in (Ozisik;1968). 

 

IV. DISCUSSION 

 

In this paper, equation (3.8) have been calculated and shown graphically by using MATLAB, and the 

conclusion is as under: 

Initially the temperature of the Hollow cylinder has been determined by using the conditions given in both the 

problems and applying finite Hankel transform technique and its inverse. 

Thus the value of stress function of the material of annular disc is found using temperature T, linear coefficients 

of the thermal expansion𝑎𝑡, and Poisson’s ratio of the material. Finally, the displacement component has been 

arrived at using the stress function; and lastly, the stress component in terms of U has been found. Now, 

thermal diffusivity and thermal conductivity are two important thermal properties that enter the differential 

equation of heat conduction. Therefore accuracy of the value chosen for these properties affects the accuracy of 

the results in heat conduction problems. 

In first problem of a certain steady-state problems of temperature and thermal stresses of an hollow cylinder , 

the condition that has been given kept at zero on the curved surfaces and third kind boundary condition is 

maintained on the lower surfaces and while temperature of the cylinder  has been kept at zero on the upper  

boundary surface. 

  

 
Fig1. The temperature distribution T(r, z)in axial directionFig2. The temperature distribution T(r, z)in axial 

direction 
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