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ABSTRACT 

 

Additive manufacturing offers a manufacturing technique to produce complex 

geometry prototypes at a rapid pace and low cost. These advantages advocate 

additive manufacturing for the design and production of cellular structures. 

Cellular structures are interesting because they contain a large amount of 

porosity (void space of air) to manifest a lightweight structure. Designs of 

cellular structures generate a periodic pattern; often of complex geometry, 

called a lattice. The research involves PA2200 (Nylon 12) laser sintered 

diamond lattices with experimental compression testing and direct FEA model 

comparison. A correction factor is applied for a design offset of laser sintered 

lattices. Once applied, the experimental and FEA data agree in validating the 

diamond lattice as a bending-dominated structure. Diamond lattices show a 4th 

order relationship between stiffness and parameters of thickness and unit cell 

length. For density, stiffness maintains a 2nd order relationship, as predicted by 

bending dominated structures. The resulting stiffness can be tuned over a 

stiffness range of four orders of magnitude. Further research shows the results 

for modifying the diamond lattice and scaling stiffness and density using other 

materials (like metals) to expand the range of stiffness and compare diamond 

lattices on material property charts. Lastly, the effective Poisson’s ratio varies 

from 0.5 to 0.4 depending on the (t/L) ratio. 

Keywords : Buzz News, Dropout layer, Fake news, Long Short Term Network 

Model, Social media 

 

 

I. I.INTRODUCTION TO CELLULAR MATERIALS 

BACKGROUND 

Materials containing significant void space –termed 

porosity-throughout a given volume are termed 

cellular solids. It is the dispersion of pores throughout 

a solid that yields a porous material. Cellular solids are 

a sector of materials that is often overlooked for finer 

details in terms of mechanical aspects such as: 

stiffness, density, and strength. However, if one 

observes closely, one finds numerous cellular 

materials such as: meshes, foams, and micro-lattices-
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both natural and synthetic. To the average person, 

cellular materials take the form of foams for 

packaging or cushions that are compliant and energy 

absorbent. In the culinary profession, cellular solids 

present themselves in the form of foods that are not 

fully dense, such as: bread and cakes or even a spongy 

mousse. Cancellous bone and wood are also natural 

cellular materials. Since cellular means a material 

containing porosity, an engineer can take advantage 

of using cellular materials, which present unique 

balances of properties. For example, lightweight 

structural elements having the capabilities of tuning 

stiffness and density while also having potential for 

energy absorbance. Multi-functionality is a potential 

benefit of cellular solids if multiple applications are 

required. 

 

ADDITIVE MANUFACTURING (AM) 

BACKGROUND 

 

AM is defined exactly as the name suggests; primarily 

an additive process as it builds a part by the addition 

of material layer-by-layer. There are a variety of 

production methods of 3D printing using the additive 

term including Fused Deposition Modeling (FDM), 

Laser Sintering or Melting, and even binder jetting 

technologies. All of which start constructing a part 

from a base layer of material and then add layers that 

are combined together by the means tailored to the 

individual AM process (thermoplastic adhesion, laser 

sintering, and binder gluing). 

 

A fundamental advantage of AM is the speed at which 

the process of manufacturing a part occurs relative to 

traditional manufacturing techniques. AM is much 

quicker in generating a part from start to finish, thus 

appropriately nicknamed “rapid prototyping”. The 

quicker process is accelerated by taking a CAD model 

and directly manufacturing a prototype or part. In 

traditional manufacturing methods, often a prototype 

needs several processes to be completed and could go 

through several people each with a different skill to 

implement their manufacturing expertise. 

 

Conventional manufacturing methods such as casting, 

injection molding or machining, etc. entail part-

specific tooling. Part-specific tooling of fixtures and 

other tools specific to the manufacturing of a specific 

prototype or part, generate extra cost for the initial 

build of a part. Since there is an initial cost, the first 

part is much more expensive than the tenth or 

hundredth part. Additive manufacturing doesn’t 

require part specific tooling so the first part costs the 

same as the hundredth part. 

 

PREVIOUSLY RESEARCHED FOAMS AND 

LATTICE STRUCTURES 

 

Meta-materials have been investigated in both 

stochastic and periodic, ordered lattice structures. 

Stochastic meta-materials are foams possessing 

unpredictability throughout the interior of the 

structure. The exterior skeleton is often defined by a 

mold to capture the overall shape. However, the 

interior is stochastic as the foam expansion is 

frequently processed by the use of a foaming agent, 

heat, and pressure to expand the material. Since a 

foaming agent is used the interior is unpredictable to 

a certain extent as the interior spacing, size, and 

location of the porous features is not exact. An 

example of a stochastic foam is presented in Figure 

1.3a to show the unpredictability of the interior 

features for the cellular system. 

 

The design and topology of metal foams is presented 

in an extensive design guide by Ashby, in order to 

fabricate and characterize metal foams with open or 

closed cells. To further characterize stochastic foams, 

research has been conducted to analyze the 

deformation characteristics for energy absorbing 

applications  and the cyclic properties of open and 

closed cell foams.  A unique approach to fabricating 

metal foams was done by Murr utilizing conversion of 
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aluminum foam CT scans to create stochastic foams 

by the AM process of Electron Beam Melting (EBM). 

Since foams are highly irregular, the stochastic nature 

will need to be evaluated for the direction of loading 

as the chance of being isotropic is very unlikely. To 

understand this behavior, anisotropy of foams was 

studied by Huber,  

 
Cellular systems: stochastic (a) , periodic (b) and 2D 

extruded prismatic metals: mesh in between outer 

and internal diameter (c) , internal mesh with solid 

outer diameter exoskeleton (d) 

 

Along with the development of AM, the rise of design 

space research for meta-materials in the form of 

repeating lattice structures has also increased. Figure 

1.3b is representative of a 3D cellular structure 

possessing long range, repeated order. As previously 

mentioned, AM provides a production technique to 

fabricate 3D meta-materials allowing lattice 

structures of complex geometry to be prototyped 

allowing the evaluation of mechanical properties. 

Here, a lattice is defined as a network of connected 

struts with a defined periodic geometry. For lattice 

structures, the goal of lattice design is to design 

lightweight structures with valuable combinations of 

properties such as rigidity, flexibility, compliancy, 

and energy absorbance with the capability of tailoring 

mechanical properties such as: elastic modulus, 

density, and Poisson’s ratio. This is achieved across a 

wide range of properties by varying the building 

parameters that directly affect the relative density of 

the lattice. By utilizing a minimal amount of material, 

the lattice structure has low density, thus yielding a 

cellular solid with high porosity. Examples of 

complex geometries manufactured by AM include a 

3D re-entrant dodecahedron with auxetic behavior 

(negative Poisson’s ratio).  In order to investigate 

highly structural efficient stretch dominated lattice 

structures, unit cells in the topology of octet trusses 

and gyroids have been designed and tested to examine 

the effect on mechanical properties by changing unit 

cell length. Octet lattice structures have Face-

Centered-Cubic (FCC) topology resulting in high 

stiffness. Also, the deformation and failure behavior 

of Body-Centered-Cubic (BCC) unit cells was 

characterized by Gorny, Figure 1.4 illustrates the 

complexity of shape for the different cellular lattices 

and why the AM is utilized as the manufacturing 

strategy to research the characteristics of cellular 

systems. The above mentioned unit cells, kagome 

lattices, and pyramidal lattices have had significant 

research to evaluate high elastic modulus lattice 

structures seeking to maximize stiffness; however, 

much less research has been completed on low 

stiffness structures. 

 

 
3D cellular structure unit cells: re-entrant 

dodecahedron (a), octet (b), gyroid (c), BCC (d) 

 

DIAMOND LATTICE STRUCTURE AND 

TOPOLOGY 

Molecular configuration of diamond has a unique 

FCC unit cell encompassing eight carbon atoms. To 

understand the topology of the diamond unit cell, 

Figure 1.5  illustrates the molecular structure for a 

diamond unit cell where two interpenetrating FCC 

lattices are offset by a quarter diagonal from the 

coordinates (0,0,0,) to (1/4, ¼, 1/4). Another 

noteworthy characteristic pertaining to Figure 1.5 is 

all inter atomic connections are of equal length in 

every direction. 
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Diamond lattice molecular unit cell  

 

In designing an additive manufactured lattice 

structure based on the diamond lattice configuration, 

the atom centers become lattice nodes. Each node is 

connected to four other struts that connect to the 

other nodes within the unit cell, Figure 1.6 displays 

Finite Element Analysis (FEA) models of the unit cell 

configuration for diamond. An aspect to observe in 

Figure 1.6 is the wide, sweeping tetrahedral angles of 

109.5°. These obtuse angles are the core indication to 

hypothesize the lattice structure to be flexible and 

compliant. This is derived from the reasoning that as a 

compressive force is applied to the diamond lattice, 

the broad angles will allow bending between 

tetrahedral struts producing a flexible and compliant 

structure. Having properties of flexibility implies 

energy can be absorbed and suggests the topology of 

diamond has potential to fill meta-material design 

space with bending dominated, low stiffness 

structures of low density. 

 

To describe the diamond lattice, build parameters are 

introduced in Figure 1.6. The unit cell length (L) is 

the dimension from the top to bottom surface of the 

unit cell. The thickness (t) is the cross section 

thickness considering the primary bending direction 

of a vertical load. The other cross section thickness (w) 

was set to 1.25t to strengthen the lattice in the 

horizontal orientation to assure bending to be 

consistent about the vertical axis. 

 

 
Model for the unit cell structure of diamond 

 

II. FOUNDATION OF CELLULAR MATERIALS 

 

An broad foundation has been provided by Ashby for 

characterizing cellular materials as meta-materials. 

The goal of creating meta-materials is to provide a 

lattice structure that is a lightweight, load bearing 

structure with potential secondary functions of 

energy absorbance, thermal dissipation, etc.  

 

Here, it is important to differentiate between open 

and closed cell lattices. Open cell lattices like those of 

Figure 2.1 have an open faces for the boundary of the 

unit cell. Closed cell lattices similar to Figure 2.2 have 

a sheath or a film that encloses the unit cell of the 

structure. With this sheath sealing the unit cell of the 

lattice, the complexity of closed cell mechanical 

property equations increases. Stretching of the sheath 

(face stretching) and compression of the gas/liquid 

within the unit cell complicates the mechanics of 

closed cell lattices. Imagine as the closed cell lattice is 

compressed, the face sheath is stretched in the 

direction perpendicular to the applied force. Upon 

stretching the sheath, the reaction must be accounted 

for in the property equations. Since the closed cell 

lattice has a gas or liquid trapped in the unit cell, 

compression of the enclosed fluid should also be 

accounted for when deriving the equations. However, 

if the thickness of the sheath ( ) is much less than the 

thickness of the strut and also a material with less 

mechanical strength or the surrounding pressure is 

equal to atmospheric pressure, then both effects can 

be regarded as negligible. Typically most lattice 

structures researched are open cell as they are simpler 

to 14 manufacture and analyze. Throughout the 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 6 

G. Purna Chandar Rao  et al  Int J Sci Res Sci & Technol. November-December-2021, 8 (6) : 178-199 

 

 

 
182 

remainder of the thesis all following equations and 

analysis are for open cell lattices. 

 
Figure 2.1: Open cell lattice 

 
Closed cell lattice 

 

GOVERNING PRINCIPLES OF CELLULAR 

LATTICE MATERIALS 

 

There are three principles that govern the properties 

of cellular lattice materials. Figure 2.3 below 

illustrates the governing principles of cell topology 

and shape, material, and relative density in a 

flowchart. Each principle is then broken down into 

sub-categories to describe each principle in further 

detail.  

 

Cell Topology and Shape 

Upon designing a lattice topology and shape, many 

aspects of the structural behavior are set. Cellular 

lattices are categorized into either stretch or bending 

dominated structures. Bending dominated lattices are 

distinguished by properties of flexibility and 

compliance for energy absorbance, yet a lower to 

moderate strength. Stretch dominated lattices are 

much more structural efficient but sacrifice any sort 

of compliance. As compliance is diminished, the 

lattice can no longer absorb energy. 

 

Maxwell’s criterion relates the geometric connections 

of the structure to the mechanical behavior of the 

lattice as being more stretch-dominated or bending-

dominated. Maxwell’s criterion  is given by: 

 

 
where (b) represents the number of struts and (j) 

being the number of joints. Therefore lattice 

structures are split up in two divisions: one being 

bending dominated behavior and the other stretch 

dominated. If M < 0; the lattice structure will be 

governed by bending dominated behavior. 

Conversely, when M ≥ 0; the meta-material lies in the 

stretch dominated regime. 

 

Figure 2.4a below displays a bending dominated 

mechanism if the joints are bonded together. When a 

compressive force is applied the struts endure 

deformation and deflection and yield by bending. Its 

counterpart Figure 2.4b, however, will not bend 

because it has a support strut across the middle of the 

mechanism. Now when a compressive force is applied 

to the mechanism, the center crossbar is “stretched”. 

This enables stretch dominated lattices to be much 

stiffer as the elements now bear tensile loads, thus 

increasing the strength. A stretch dominated lattice is 

presented in Figure 2.5. Since there are multiple struts 

combining into one joint, Maxwell’s equation 

calculates to M = 18  to clearly define Figure 2.5 as a 

stretch dominated lattice. When a compressive force 

is applied to the lattice in Figure 2.5, the struts will be 

in either tension or compression creating a high 

strength lattice. This lattice also characterizes meta-

material structures precisely as the mechanical 

response will be unique when placed in loading 

conditions. 
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Example of bending (a) vs stretch (b) dominated 

behavior with deformation after compressive force 

 
Example of stretch dominated lattice  

 

Relative Density 

The relative density is a key principle because it has a 

major influence on effective mechanical properties of 

a lattice structure through the determination of 

thickness (t) and repeating unit cell length (L) seen in 

the open cell lattice of Figure 2.1. Thickness (t) is 

defined by the width of the struts and unit cell length 

(L) characterized by the distance from the top to 

bottom strut of the unit cell As the thickness (t) is 

increased or the unit cell length (L) is decreased, the 

lattice material will occupy an increased amount of 

volume within the unit cell of a lattice structure. As 

the volume of material increases within a unit cell, 

the density will also increase. Oppositely, if the 

thickness (t) is decreased or the unit cell length (L) is 

increased, the material will occupy a decreased 

amount of volume thus decreasing the density of the 

lattice structure. Manipulation of the density directly 

effects the mechanical properties, these relationships 

will be derived and analyzed in later sections. 

 

BENDING DOMINATED BEHAVIOR 

 

As mentioned previously, bending dominated lattices 

have mechanical properties consisting of compliance 

and flexibility, yet a moderate to low stiffness. The 

structure in Figure 2.4a can only resist deflection due 

to the fact that the actual parts do not have pin joints 

but rigid bonds. When a force is applied, the members 

bend. This is advantageous in applications especially 

requiring energy absorbance where flexibility and 

compliance are crucial. 

Bending Dominated Relative Density vs Relative 

Elastic Modulus Derivation 

Most open cell lattice structures will have more 

complex topology than the simple example in Figure 

2.1. However, if the lattices deform and fail by the 

same mechanisms, then the mechanical properties 

can be understood using dimensional arguments 

which omit all constants arising from the specific cell 

geometry. For bending dominated structures, the 

relative density is defined by a squared relationship of 

t/L below in Equation 2 : 

 
The relative density is termed the effective density of 

the lattice (ρ*) divided by the bulk material density 

(ρ𝒃𝒖𝒍𝒌). If the cross section is scaled uniformly, the 

second moment of area is proportional to the 

characteristic cross section dimension t raised to the 

fourth power, (𝐼 ∝ 𝑡4). Moreover, standard beam 

theory suggest that deflection (δ) is proportional to 

properties of Equation 3, where elastic modulus (𝐸 ) is 

the modulus of bulk material. Deflection (δ) is 

demonstrated in Figure 2.6 to illustrate how the 

lattice will deflect. 

 
Also considering the conventional stress and strain 

relationships of: σ ∝ 𝐹⁄𝐿2 and 𝜀 ∝ 𝛿⁄𝐿 to combine with 

Equation 3 yields Equation 4. 

 
By substituting the second moment of area equation 

(𝐼 ∝ 𝑡4) into Equation 4, Equation 5 is derived to 

directly relate relative elastic modulus and relative 

density for bending dominated structures where (𝐸∗) 

and (𝜌∗) are effective modulus and density pertaining 

to an individual lattice. 
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Relative stiffness can be represented in another 

equation involving thickness (t) and unit cell length 

(L) by substituting the relative density relation of 

Equation 2 into Equation 5 to give Equation 6 below. 

The relationship of (t/L) to relative stiffness is to the 

fourth power, so modifying (t) or (L) will change 

relative stiffness significantly. 

 

 
Bending dominated structure under applied force (F) 

with deflection (δ)  

 

Bending Dominated Deformation Characteristics and 

Derivation 

As formerly stated, bending dominated lattices have 

flexibility. Thus, bending dominated structures absorb 

energy much more effectively that stretch dominated 

structures. Observing Figure 2.7, a stress-versus-strain 

curve for bending (red) and stretch (blue) dominated 

structures typically shows the following trend of 

stress for increasing strain. 

 
Stress vs strain for bending and stretch dominated 

structures  

 

Three regimes of deformation occur for bending 

dominated structures as illustrated in Figure 2.7. The 

first is the linear elastic portion of the curve. In this 

region the main deformation is concerned with 

bending of the lattice struts. Next is the plateau stress 

of the lattice where the onset of cell collapse by 

yielding, bucking, and crushing will ensue. Following 

the plateau stress is the last region of densification 

where a sharp increase in stress takes place as the 

lattice structure is collapsed so that the cell struts are 

now in contact with each other. The feature to be 

highlighted from this curve is the plateau stress at 

which as the stress is nearly constant for a wide range 

of increased strain. Over this strain area, the lattice is 

bending and collapsing to absorb the energy applied 

to the lattice. The area under the stress-vs-strain 

curve is significantly greater for bending dominated 

lattices, thus permitting much more energy 

absorbance. Bending dominated lattices excel in 

energy absorbance and impact resistant structures. 

The plateau stress (𝜎𝑝𝑙𝑎𝑡) can be derived in the 

following manner: cell walls start to yield when the 

force exerted on them exceeds their fully plastic 

moment of Equation 7 below with being the yield 

strength of bulk material the lattice is constructed of.  

 
The moment from Equation 7 is related to stress in 

the conventional form of Equation 8: 

 
By inserting Equation 7 into Equation 8, and 

remembering Equation 2 is the thickness divided by 

unit cell length (t/L) proportional to the square root 

of relative density derives Equation 9 for the relative 

strength of a bending dominated lattice, where the 

plateau stress (  ) level can be found. 

 
At the point of the plateau stress(𝜎𝑝𝑙𝑎𝑡), three failure 

modes of: plastic yielding/bending, elastic buckling, 

or collapse by brittle fracture compete. The failure 

mechanism that requires the lowest stress will prevail 

in failure. For bending dominated lattices made of 
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ductile materials, the most likely mode of failure will 

be the onset of plastic yielding and bending at the 

unit cell boundaries. Figure 2.8a illustrates plastic 

yielding of the corners of the unit cell. Plastic 

yielding is the failure mode allowing the longest 

plateau stress to be reached because the lattice will 

keep bending until the densification strain is reached. 

As the lattice is enduring increasing strain, thus 

further and further plastically deformed, the stress is 

held constant to absorb energy over the greatest 

amount of area. Elastomeric lattice materials like 

rubber fail by buckling (Figure 2.8b). Also the larger 

the slenderness ratio (t/L) of the struts, the greater 

chance of buckling due to the fact of a larger 

slenderness ratio reduces the Euler buckling 

load.Brittle lattices have the smallest region of plateau 

stress. Ceramic lattices are an example of brittle 

fracture failure and collapse by successive fracturing 

of the unit cell, initialized in Figure 2.8c. An extended 

plateau stress region is preferred for bending 

dominated lattices, therefore the more ductile the 

material chosen will generate higher energy 

absorption through more. 

 
Bending dominated failure modes; (a) plastic 

bending (b) buckling (c) brittle fracture 

 

STRETCH DOMINATED BEHAVIOR 

Unlike bending dominated, stretch dominated 

structures are designed for high structural efficiency. 

High structural efficiency is aimed to maximize the 

specific stiffness and strength ratio. This is 

accomplished by constructing a lattice to have 

significantly high stiffness and strength, yet keeping 

in mind the centralized goal of minimum material 

through low relative density. A stretch dominated 

lattice generates high stiffness and strength through 

the means of having added supports in a unit cell. 

Figure 2.4b represents these additional supports now 

carrying tension or compression depending on the 

loading. As mention previously, as Figure 2.4b is 

loaded in compression, the middle crossbar is now 

placed in a state of tension, thus implying the 

“stretch”. Once a support is in a state of tension, the 

stiffness and strength sharply increases due to the fact 

that slender structures are much stiffer when 

stretched than when bent and/or compressed.  

 

Stretch dominated lattices first respond by elastic 

stretching of its struts. For stretch dominated lattices, 

an average of one third of its struts carry tension 

when the structure is loaded in simple tension. 

Through the same approach as bending dominated 

lattices, stretch dominated structures derive a 

relationship for relative density and elastic modulus 

of Equation 10 below. 

 

Equation 10 presents a linear relationship of relative 

stiffness to relative density for stretch dominated 

structures. A linear relationship (power of one) makes 

stretch dominated lattice stiffer by of a factor of 3-10 

for the same relative density of a bending dominated 

lattice (power of two). 

 
 

Figure 2.7 depicts the stress versus strain behavior of 

stretch dominated lattices where a plateau stress is no 

longer evident like that of a bending dominated 

structure. Without any plateau stress, the area is 

much less under the stretch dominated stress-vs-

strain curve; thus having much less capability of 

energy absorbance. Stretch dominated structures fail 

first by the onset of plastic deformation by stretching. 

The next response is post-yield softening after the 

initial yield, plastically buckling, or brittle collapse of 

the struts follows. Post-yield softening consists of a 

severe decrease in stress as strain is further increased 
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past the initial yield. With the action of post-yield 

softening, stretch dominated structures are not ideal 

candidates for energy absorbing applications as a flat 

plateau stress is desired. The last regime of failure is 

same as bending dominated for densification of the 

lattice. The key takeaway for stretch dominated 

lattices is that both the modulus and initial collapse 

strength are much higher than bending dominated, 

suiting them for lightweight structural applications 

requiring high specific stiffness and strength. 

 

POTENTIAL DESIGN SPACE FOR LATTICE 

STRUCTURES 

An interesting approach for lattice structures is to plot 

the relative modulus versus relative density. Figure 

2.9a and Figure 2.9b compare bending dominated to 

stretch dominated behavior with the relationship of 

relative modulus and strength to relative density with 

a few existing researched cellular structures. The 

slopes of the curves; 2 for bending dominated and 1 

for stretch, on a log-log plot are applied from the 

relative modulus and strength limits. From the upper 

bound, bending dominated structures decrease in 

modulus more rapidly with a quadratic relationship. 

This reinforces the idea of stretch dominated lattice 

being stiffer by a factor of 3-10 (for the cellular 

solids/lattices relative density range), approaching 10 

as the relative density is decreased further and is 

observed when compared in Figure 2.9 

 
Relative modulus vs relative density (a) and relative 

strength vs relative density (b) 

 

Ideal bending dominated behavior slices right 

through the area of foams, confirming that bending 

dominated structures will behave as energy absorbers 

similar to foams. Foams envelope such a wide area 

outside of the ideal bending line because many foams 

heterogeneous structures. Because foams are 

stochastic, strong and weak zones exist causing the 

stiffness to fluctuate, resulting in the wide area. 2D 

honeycombs lie on the ideal stretch line. This is due 

to the exceptional structural efficiency of 

honeycombs when loaded parallel to its hexagonal 

axis. Other researched lattices of Kagome and 

pyramidal lattices are slightly below ideal stretch 

behavior. It is encouraging to observe 3D lattice 

structures have the potential to fill voids on the 

relative stiffness versus relative density chart. The 

potential to fulfill unoccupied areas of stiffness versus 

density is the baseline motivation for cellular meta-

materials and the reason current research is being 

conducted. 

 

III. DIAMOND LATTICE NUMERICAL STUDIES 

AND EXPERIMENTAL COMPARISON 

 

DIAMOND LATTICE BUILD PARAMETER 

DETAILS 

 

To explore how the diamond lattice would change 

mechanical properties, a wide range of unit cell 

lengths and thicknesses were manufactured through 

Laser Sintering (LS) and also analyzed in FEA. Unit 

cell lengths (L) were modified from 5 – 20 millimeters 

and thickness of the struts (t) varied from 0.5 – 2 

millimeters, both parameters shown in Figure 1.6. 

 

In order to understand how the parameters of unit 

cell length (L) and element thickness (t) vary the 

configuration of the diamond lattice, hence, directly 

the effective density of a combination of unit cell 

length (L) and thickness (t), Solidworks models are 

rendered below. All of the laser-sintered diamond 

lattices and Solidworks models were (2x2x2) arrays of 

unit cells except where noted. As previously 

mentioned, the thickness (t) is the cross section 

thickness in the primary bending direction under a 
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vertical load. The other cross section dimension (w) 

was set to 1.25t to assure bending about a consistent 

axis. Figure 3.1 portrays the effect of thickness for a 

constant unit cell length of 10 mm. As the thickness is 

increased from 0.5 -2 mm, the relative density of a 

diamond lattice with a 10 mm unit cell length 

increases significantly from 2.15 to 27.55 %. 

 

When the thickness is held constant while varying 

unit cell length, relative density is changed in an 

inverse proportion. Figure 3.2 below shows a constant 

1 mm thickness and varying the unit cell length from 

5 – 20 mm. As the unit cell length increases, the 

relative density decreases because increasing the 

distance from top to bottom of the unit cell makes the 

thickness of the struts proportionally smaller as seen 

below. It is worthy here to note the effect of relative 

density by adjusting the unit cell length and thickness 

for the reason that it directly affects the mechanical 

response of the diamond lattice. 

 

 
Variation of element thickness (t) for unit cell length 

(L) of 10 mm 

 
Variation of unit cell length (L) for constant 

element thickness (t) of 1 mm  

 

IV. Experimental Research Method 

Diamond lattice samples consisting of 2x2x2 arrays of 

diamond lattice cells were fabricated on an EOS 

Formiga P100 from PA2200 powder (50% virgin, 50% 

recycled) with a powderbed temperature of 170 C 

using 0.100 mm layers and 0.25 mm scan spacing. Scan 

speeds were 2500 mm/s on hatching and 1500 mm/s on 

the edges using 21W and 16W respectively. All parts 

were printed in the XYZ orientation as defined in 

ASTM F291-11. Parts were positioned at least 45 mm 

from the edges of the build volume and allowed to cool 

overnight before removal from the powder bed. The 

parts were cleaned with compressed air. Compression 

testing was performed on a Tinius Olsen Model H5K-S 

UTM 5kN testing system using the axis motion to 

calculate the applied strain. The displacement rate was 

adjusted to maintain a constant strain rate of 5%/min 

for all samples. Three to five samples were tested for 

each condition. 

 

A schematic of laser sintering process is shown below 

in Figure 3.3 and summarized in the following. Laser 

sintering systems lay down a layer of powder leveled 

by a roller in a heated build chamber just below the 

melting point and/or glass transition temperature of 

the powdered material. Once the roller levels the 

powder, cross-sectional sintering or fusion of the 

powder particles takes place by a 2 laser in the 

geometry digitally controlled. The surrounding 

powder that isn’t thermally fused acts as support for 

following layers so the need for additional supports is 

eradicated. The process repeats with additional layers 

of powder by lowering the build platform by one 

layer thickness and laser sintering of the specified 

geometry until the part is finished from the base to 

top layer.  

 
Laser sintering process  

 

FEA SIMULATION METHOD 

The compression tests were simulated using finite 

element analysis (FEA) in SolidWorks. Boundary 

conditions were chosen to model the experimental 
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compression testing with a fixed lower platen of a 

compression tester with an applied displacement on 

the top as illustrated in Figure 3.4 below. For the 

simulation, the diamond lattice’s bottom pads were 

set to a zero displacement in the z-direction. The 

bottom center contact point was fixed in all directions. 

This enabled the other bottom pads to slide in the x 

and y directions to accommodate transverse 

displacements. Motion in the x and y direction of 

bottom pads is characterized as “slipping” meaning 

the bottom pads would translate horizontally on a 

bottom plane as the diamond lattice is compressed. 

The top pads (seen in Figure 3.4 below) were set to a 

fixed displacement in the z-direction. A fixed 

displacement (δ) was set to simulate a certain desired 

strain for compression of the diamond lattices. For 

example, if the unit cell length of 10 mm (height of 20 

mm for 2x2x2 array) was displaced 1 mm, this created 

an effective strain of 5%. The manufacturer supplied 

bulk properties values for Nylon (PA 2200: 1.7 GPa 

for modulus, 0.394 for Poisson’s ratio, and 930 kg/m3) 

were used for the material properties in the 

simulation. Ahmadi and Campoli both support similar 

methods of FEA for evaluating properties of open cell 

porous structures. 

 

A mesh convergence study was conducted for the 

various unit cell lengths and thickness combination to 

ensure refinement of the mesh was sufficient to have 

less than 1-2 % change in reaction forces when 

halving the element size. Large deflection conditions 

(Non-Linear Simulation) produced no more than 0.84 

– 1.5 % deviation as compared with linear analysis for 

1% applied strains so linear results at 1% applied 

strains were used for all effective elastic modulus 

results reported below. 

 
Boundary conditions for simulating compression 

testing of diamond lattice 

 
Plot of z displacements in a simulated diamond 

lattice under an applied displacement of (δ). 

Representative resulting diamond lattice deformations 

are illustrated above in Figure 3.5 with an applied 

displacement of (δ). The resultant force on the bottom 

pads was extracted to estimate the force of 

compression. After the resultant force was extracted it 

was converted to stress as the resultant force over the 

bottom plane area; the stress divided by the applied 

strain value produced an effective elastic modulus(𝐸*). 

 

Additional simulations were performed to determine 

whether the compression stiffness of the 2x2x2 arrays 

of unit cells is representative of the bulk properties of 

4x4x4 and 6x6x6 unit cell arrays with many more unit 

cells (N) as illustrated in Figure 3.6. The 4x4x4 and 

6x6x6 models were cut into quarter models in an 

effort to reduce simulation run time meanwhile 

obtaining accurate values of stiffness. Then symmetry 

conditions were applied to the quarter models 

(example of original and sliced 4x4x4 lattice shown in 

Figure 3.7 & Figure 3.8 below along with the same 

zero and fixed displacements as previously applied. 
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Now however, the absolute fixed point was at the 

intersection of the two symmetry planes. 

 

 
 

Diamond lattices with different numbers of unit cells 

 
Original 4x4x4 lattice 

 
Simplified 4x4x4 unit cell diamond lattice model after 

applying symmetry conditions 

 

The stiffness of the larger models was calculated as 

before and compared to the 2x2x2 unit cell values. 

Figure 3.9 compares the relative stiffness on a log-log 

scale for the different number of unit cell lattices 

studied. Observing Figure 3.9 shows the relative 

stiffness fluctuates only slightly (~5%) and maintains 

a close to constant line for the different combinations 

of (t) and (L). 

 

The change of elastic modulus has a max of 7% with 

most points floating between 4 – 6 % and the error 

from using the smaller test sample (2x2x2 unit cells) is 

minimal compared to the modulus variation of over 

1000x across the geometries studied. 

 
Relative stiffness study for different number of unit 

cell lattices 

 

V. EXPERIMENTAL VS FEA RESULTS 

 

The range of lattice conditions used in the simulations 

and in experiments are summarized in Table 1. 

Simulation results predict a change of elastic modulus 

proportional to the power of four for a given 

thickness and unit cell length. These trends are 

presented in Figure 3.10 and Figure 3.11 below. The 

approximate fourth power relationship (varying from 

3.83 – 4.07) with most of the exponents existing in 

the range of: 4 +/- 0.04.The fourth power relationship 

supports the assertion that diamond lattices are 

bending dominated structure, recall Equation 6 is the 

derivation of effective stiffness (elastic modulus) as a 

proportional fourth power relationship between 

thickness (t) and unit cell length (L).The results can 

be condensed to a relationship between the effective 

modulus and the ratio of element thickness to unit 

cell length (t/L). This relationship is represented in 

Figure 3.12 below. A special note for the (t/L) ratio, 

the cellular solids relative density limit of 30% 

equates to a (t/L) value of 0.2 As (t/L) increases, both 

the density and the stiffness increase as well. Since a 

thickness/length ratio (t/L) can be achieved with 

various combinations of unit cell length and thickness, 

other considerations such as process accuracy, build 
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time can be utilized to select the specific parameters 

used to obtain to generate a diamond lattice for a 

specific application. 

 

Table 1 : Range of FEA and experimental stiffness for size parameters 

 
         Experimentally 

Measured Eeff 

(MPa) with 

St. Dev.    

Unit Cell Length 

(L) [mm]  

Thickness (t) 

[mm]   (t/L)   

FEA 

Simulation Eeff 

(MPa)   

  5.0  0.5   0.100   3.59   0.504 ± 0.013  

  5.0  1.0   0.200   56.77   21.37 ± 0.483  

  5.0  1.5   0.300   263.51   N/A  

  5.0  2.0   0.400   708.33   N/A  

 7.5 0.5  0.067  0.69  0.099 ± 0.016  

 7.5 1.0  0.133  11.29   N/A 

 7.5 1.5  0.200  56.27   N/A 

 7.5 2.0  0.267  169.54   N/A 

  10  0.5   0.050   0.21   0.040 ± 0.0004  

  10  1.0   0.100   3.51   1.56 ±0.010  

  10  1.5   0.150   17.97   10.93 ± 0.521  

  10  2.0   0.200   55.98   29.77 ± 1.585  

 12 0.5  0.042  0.10   N/A 

 12 1.0  0.083  1.66  0.76 ± 0.022  

 12 1.5  0.125  8.59   N/A 

 12 2.0  0.167  27.21   N/A 

  15  0.5   0.033   0.04   N/A  

  15  1.0   0.067   0.67   0.27 ± 0.007  

  15  1.5   0.100   3.47   N/A  

  15  2.0   0.133   11.10   N/A  

 20 0.5  0.025  0.012   N/A 

 20 1.0  0.0500  0.209  0.80 ± 0.004  

 20 1.5  0.075  1.076   N/A 

 20 2  0.100  3.45   N/A 

 

 
FEA calculated effective modulus vs element 

thickness (t) 

 

 

 
FEA calculated effective modulus vs unit cell 

length (L) 
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FEA calculated effective modulus of diamond 

lattice vs (t/L) compared to experimentally-measured 

effective modulus values and designed (t/L). 

 

 

The stiffness of the LS components measured from the 

compression test data is summarized in Table 1 and 

presented on Figure 3.13 and Figure 3.14 . Only the 

unit cell size of 10 mm has sufficient points to fit a 

relationship to effective modulus (Figure 3.13). It has 

an exponent significantly higher than predicted by 

the FEA (4.8). The experimental relationship with 

unit cell size is much closer to the FEA results with 

exponent of 3.7 and 4.02 for 0.5 mm and 1.0mm 

element sizes respectively. It is also noted from Figure 

3.13 and Figure 3.14 that the effective modulus 

measured experimentally is substantially below the 

FEA predictions for all the tests cases though the 

difference is reduced at larger element size (t) values. 

This may be explained by the surface characteristics 

of LS components. 

 
FEA vs experimental values of the effective lattice 

modulus vs element thickness (t) 

 
Comparison of FEA simulated to experimentally 

measured effective modulus vs unit cell length (L) 

Laser sintered PA 2200 generally leaves 

partially densified layers on the outer surface of the 

part geometry that contributes to weight and 

thickness measurements, but does not influence 

strength and stiffness characteristics. This means that 

a designed part may not have the designed strength 

and stiffness intended because the measured thickness 

is not fully supporting the part geometry. Figure 3.15 

below is an SEM image of the surface of a LS part 

cleaned with compressed air that illustrates the 

lightly compacted layers and surface roughness of 

laser sintered PA 2200. 

 
SEM image of laser sintered PA 2200 fracture surface 

illustrating surface structure of a single laser pass after 

air cleaning 

These partially densified surface structures 

would substantially decrease the effective modulus of 

the thin printed elements to create a lower 

experimental measurements of effective modulus. 

Further, a consistent low density surface layer would 

have a larger impact on the thinner components and 

could produce the larger errors observed in the 

thinner element sizes. In order to further evaluate 

this possibility, the effective element size of each 

experimental element that would give the measured 

modulus values was calculated by scaling the FEA 

predictions based on the fourth order power 

relationship observed above. 

The effective element size calculated for each 

experimental condition is summarized in Table 2. It is 

noted that the difference between the designed 

thickness and the effective thickness varies between 

0.184 and 0.317 mm with an average of 0.211 mm for 

the variety of diamond lattices printed. The difference 

remains consistent across feature sizes from 0.5 mm to 

1.5 mm. The lightly compacted layers for laser 
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sintered parts directly effects the performance of the 

diamond lattices in relation to the elastic modulus. 

Table 2 indicates 0.5 mm thickness lattices have the 

largest difference of FEA to experimental elastic 

modulus and this is explained because the 0.211 mm 

effective thickness error is a much greater percentage 

of 35 – 41 % of designed thickness. As the thickness 

increases, the lightly compacted layers contribute to 

less of the designed thickness (close to 20%), thus 

reducing the divergence between experimental and 

simulated results. 

 
Given the consistent magnitude of the 

difference between the design and effective thickness 

values, this could be applied as a design offset. The 

average of the effective thickness error calculated for 

all parts was subtracted from the design thickness to 

calculate an effective thickness. The effective 

modulus results are reported in Figure 3.16.Since now 

the effective thickness is being applied for 

experimental results, the points are essentially shifted 

and promptly coincides to an enhanced resemblance 

to the numerical simulations.  The substantially 

improved agreement between FEA and experimental 

measurements with this correction suggests that this 

is an easy way to compensate for the process effects 

on material stiffness when designing for a target 

stiffness level. 

In practice, there may be additional sources of 

error including variations in material properties with 

thickness and errors in unit cell size, but these factors 

are unlikely to cause the large differences in 

experimental modulus values observed since unit cell 

size errors are much smaller and the lattice modulus 

value varies only linearly with material modulus of 

elasticity. Figure 3.17 plots the experimental and FEA 

modulus values against the (t/L) ratio, but utilizes the 

adjusted thickness values (design thickness minus 

average thickness error) for the experimental values. 

With this adjustment, the experimental and FEA 

results show good agreement. Careful assessment of 

these other error sources may yield further 

improvements in the prediction of lattice properties 

to guide design. 

 
Comparison of effective lattice modulus predicted by 

FEA simulation vs experimental  modulus  

measurements  vs utilizing corrected thickness (t) 

values 

 
Simulation  and experimental values of the

 effective elastic modulus 

measurements vs (t/L) utilizing the corrected 

thickness (t) values 

DESIGN SPACE AND SCALING OF LATTICES 

RESEARCHED 

As mentioned above, different combinations of 

thickness and unit cell length that produce the same 

(t/L) ratio for the diamond lattice configuration will 

have constant effective modulus and density values. 

Figure 3.18 presents a chart that can identify potential 

unit cell length and thickness for given stiffness and 

density. Along the dark lines are FEA values that are 

then extrapolated (dashed lines) to expand the 

amount of design space for diamond lattice 

parameters. The shaded triangular region is where the 

relative density limit of 30% is drawn as in that 

region design start to diverge from the realm of 

cellular solids. Additional limits are imposed by the 

process resolution constraints. The minimum 
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thickness is the minimum feature size of the part—

here taken as 0.5 mm. Within this region, t/L values 

can be selected to achieve the desired effective 

modulus values. 

 
Plot of constant curvature/density lines as a function 

of unit cell and thickness dimensions 

Meta-structured systems can create an 

effective “meta-material” with properties that can be  

tuned  to  specific  design  requirements.  Generating 

meta-materials  in  the  arrangement  of diamond 

lattice has proven to produce structures that vary in 

effective elastic modulus over four orders of 

magnitude (shown in Figure 3.17). The stiffness is 

shown to vary to the fourth power with the ratio of 

the element thickness to the unit cell size. This 

research also provides an effective error analysis for 

the thickness of laser sintered parts to assess the 

divergence of simulated and 40 experimental results. 

Once an effective thickness was applied, the 

experimental results were in agreement with FEA. 

IV. MODIFICATION OF DIAMOND LATTICE 

PARAMETERS TO EXPAND RANGE OF 

MECHANICAL PROPERTIES AND POISSON’S 

RATIO EVALUATION 

It explores modifying diamond lattice 

parameters other than unit cell length (L) and 

thickness (t). By modifying different build parameters 

diamond lattice properties are further evaluated to 

expand the range of attainable properties in the 

previous chapter. This chapter also provides analysis 

for Poisson’s ratio of diamond lattices. 

SCALING DIAMOND LATTICE PROPERTIES INTO 

OTHER MATERIALS AND ASHBY CHARTS 

This research establishes a well-defined 

effective stiffness and density range for diamond 

lattices constructed of PA 2200 as the material. PA 

2200 manages to range across 5 orders of magnitude 

for stiffness and reaching stiffness and density values 

of 56 MPa and 262 kg/m3 respectively-employing the 

relative density limit of 30%. These values are 

meaningful but during research it was thought: how 

can we extend the range of properties attainable 

without changing build parameters besides thickness 

and unit cell length? The answer resides in scaling the 

diamond lattices into other materials other thanNylon. 

Scaling diamond lattice values into other 

materials of: other thermoplastics like ABS 

(Acrylonitrile butadiene styrene), PLA (Polylactic 

acid); and especially metals of: Steel, Titanium, and 

Aluminum were of particular interest as alternate 

materials and commonly 3D printed. To obtain the 

correct scaling values for effective stiffness and 

density the relative stiffness and density was utilized. 

The relationship between relative stiffness and 

density according to thickness and unit cell length has 

already been acquired through the prior analysis of 

this research. By equating the known relative stiffness 

and density values for Nylon (PA 2200) to another 

relative value for another material we can calculate 

the effective stiffness and density values. Equation 11 

and Equation 12 below show the equated relationship 

for relative stiffness and density. 

 

 
To calculate the effective stiffness and density 

value for another material simply multiply the 

relative stiffness or density by the bulk property of an 

alternate material. Table 3 presents the bulk material 

properties used to calculate effective stiffnesses and 

densities for alternate materials. This method will 

reveal effecttive stiffness and density values according 

to thickness and unit cell length for the alternate 

materials in Table 3. 
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Figure 4.1 (also employing the realtive density 

limit of 30%) below shows the plots of calculated 

effective stiffness versus t/L for different materials 

and shows a drastic change in the range of stiffness 

attainable for diamond lattices. Contrasting ABS to 

steel, results signify an increase in stiffness from 56 

MPa to 7 GPa, or 12,400% increase. The massive 

increase in the stiffness comes from the fact of the 

bulk stiffness of the steel and other metal is much 

higher than Nylon (PA 2200). As for the 

thermoplastics of ABS and PLA, stiffness was 

relatively similar because the bulk stiffness is on the 

same order of magnitude as Nylon (PA 2200). Figure 

4.2 directly compares the stiffness and density for the 

metal materials also including t/L values. Figure 4.2 

interprets the steel will have the stiffest lattice but 

also the highest density for a given t/L. The metal 

lattices add apporximately another two orders of 

magnitude for stiffness attainable. 

 
Effective stiffness vs t/L for different materials 

 
Effective stiffness vs effective density for metal 

diamond lattices 

Extending diamond lattices into metals also 

increases the design space vastly. Section 2.4 

introduces the potential design space lattice structures 

could fill. When the diamond lattice analysis includes 

metal materials, overlaid material property charts 

below illustrate the design space fulfilled by diamond 

lattices. Analyzing the diamond lattice overlay onto 

the material property chart of Figure 4.3 the diamond 

lattice materials fit well into the porous solids domain 

region. Figure 4.4 displays a direct comparison of 

diamond lattices to other recently researched lattice 

structures. It should be noted Figure 4.4 terms other 

“lattice” structures. These lattices were stretch 

dominated lattice configuration so the reason for 

higher stiffness to weight ratios. Remember stretch 

dominated lattices seek to optimize specific stiffness 

unlike bending dominated structures operating in the 

low stiffness bending regime. 

Both material property charts below show 

metal diamond lattices fit well to metal foams and 

also into regions of solid natural materials and 

engineering polymers. This is analogous to the 

cellular metal diamond lattice having the same 

stiffness and density as a “solid” natural material or 

polymer. A diamond lattice structure having the 

ability to mimic stiffness of a solid polymer drives 

multi-functionality. Since the diamond lattice is not a 

solid material but cellular and porous, it provides be 

flexibility and compliancy at the same stiffness as a 

solid material. The porosity also reduces the amount 

of material thus generating a lightweight structure. As 

previously mentioned, the property of compliancy 

pertaining to a diamond lattice yields an energy 

absorbent structure. The porous structure also allows 

for a convective fluid to pass through allowing a 

potential cooling or heating effect. Thus, instead of a 

solid material as structural members, diamond lattices 

provide the same stiffness capable of multiple 

functions. This realization proves the design space for 

diamond lattices as lightweight, multifunctional, load 

bearing structures to potentially replace solid 

structural material. 
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Modulus vs density material property chart for porous, 

cellular solids 

 
Overlaid material property chart 

encompassing design space of lattice 

structures  

DOUBLE ARC CONFIGURATION 

The previous section presents deviation from 

the (t/L) curve and filling the design space of diamond 

lattice properties, but how could diamond lattice 

stiffness be enhanced to increased values of stiffness 

for the same density? One modification to diamond 

lattices creates double arcs for struts. Double arc (DA) 

diamond lattices essentially creates a circular arc of 

uniform thickness where a single strut existed in the 

standard (St.) diamond lattices. Figure 4.5 illustrates a 

diamond lattice with double arc configuration. The 

radius of curvature was set in order to intersect the 

joining nodes an individual arc strut connects. To 

connect the joining nodes, the radius of curvature 

relates to unit cell length (L) by: (radius = 0.433*L). 

Double arc simulations were analyzed for strut 

thickness (t) for the different unit cell length (L) in 

Table 4. It is hypothesized that creating a double arc 

would increase stiffness-but would there be tradeoffs 

with the increase in stiffness? 

 
Diamond lattice double arc (DA) front view (a) 

and isometric view (b) 

Figure 4.6 and Table 4 double arcs display an increase 

in stiffness from 2.5 – 3 times the stiffness of the 

standard diamond lattice. This confirms the 

hypothesis of increase stiffness but the double arcs 

also increase the density of an individual diamond 

lattice. Density for a double arc is 1.6 – 2 times a 

standard diamond lattice. Approximately double the 

density falls logically with the reasoning a double arc 

will basically have a double strut for a given thickness 

(t) instead of a single strut for a standard diamond 

lattice. 

Another aspect comparing double arcs and 

standard diamond lattices is the exponents of Figure 

4.6 and Figure 4.7. Inspecting the charts show the 

double arcs have a higher exponent than the standard 

diamond lattices. A higher exponent implies different 

scaling of stiffness with the unit cell and density 

parameters. This is seen in Figure 4.7 as a decrease in 

the distance between the stiffness off the single and 

double arc at higher density values. 

 
Diamond lattice double arc and standard effective 

stiffness vs unit cell length (L) 
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Diamond lattice double arc and standard effective 

stiffness vs effective density 

 
EVALUATION OF POISSON’S RATIO 

Since the diamond lattices design intent is a 

bending dominated structure, this research 

hypothesizes a relatively high positive Poisson’s ratio. 

The ratio between lateral to axial strain induced 

during uniaxial loading of a material or structure 

defines Poisson’s ratio (υ). 

Materials with a positive Poisson’s value under 

compressive loading will contract in the loading 

direction and expand in the orthogonal (lateral) 

directions. When a material is placed in a state of 

tension it will stretch in the direction of applied load 

and contract in orthogonal directions. The limit for 

most isotropic material is a positive Poisson’s ratio of 

υ = 0.5; however, structures built with the intent of 

very high shear strain can breach the isotropic limit. 

Negative Poisson’s or “auxetic structures” ratios 

behave exactly opposite of its positive counterpart 

and have a limit of υ=-1. More information on auxetic 

structures can be found from the research by Zhang, 

Soman, and Alderson. For diamond lattices we 

concentrate on compressive loading conditions. 

Compression in the axial direction causes the axial 

strain to equal Equation 13 where Figure 4.8 defines 

(Δ𝑢𝑧) as the change in length upon compression and 

(ℎ𝑜) as the initial length of the diamond lattice. 

 
As mentioned above as a compressive load applies 

axially to a structure it will expand in the lateral 

direction. This expansion causes a lateral strain. The 

lateral strain is prescribed in Equation 14. Since the 

expansion is lateral as seen in Figure 4.8, the width of 

the lattice is now defining the lateral strain by (Δ𝑢𝑥) 

designating the horizontal displacement of each side 

when compressed (the expansion) and (𝑤o) 

nominating the original width of the lattice. The 

change in width is the expansion on the outside edges 

in the horizontal direction for both sides of the lattice. 

 
After calculating both the axial and lateral 

strains, Poisson’s ratio can be found. Equation 15 

shows the relationship of the lateral strain divided by 

the axial strain to equal Poisson’s ratio (𝜐). 

 
Evaluation of Poisson’s ratio for diamond 

lattice entailed the same simulation method as the 

stiffness extraction. A linear study for 1% strain was 

applied axially (𝜀𝑎𝑥𝑖𝑎𝑙) to different combinations of 

(t/L) values. After the simulation completed the 

measurement of Δ𝑤 was extracted to find the lateral 

strain (𝜀𝑙𝑎𝑡𝑒𝑟𝑎𝑙). Once the lateral strain was 

calculated the Poisson’s ratio was found. 
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Elongation in axial and transverse directions for 

Poisson’s ratio 

 
Poisson’s ratio for diamond lattices 

Figure 4.9 indicates Poisson’s ratio for 

different relative densities. At low relative densities 

Poisson’s ratio is close to 0.5 and decays in decreasing 

value to ~0.4 as the relative density approaches the 

cellular solid limit of 30%. A value of 0.5 for Poisson’s 

ratio is the maximum an isotropic material can 

achieve and only structures designed for high shear 

can pass the 0.5 limit. 

Most metals have Poisson’s ratio of 0.3 ±0.0.5, 

polymers ~0.4, and rubber (0.48) being the only 

material approaching the limit of Poisson’s ratio. [54] 

The diamond lattices ability to reach Poisson’s ratio of 

0.5 is interesting as it places the structure near the 

max and above most materials and structures. 

A value of 0.5 for Poisson’s ratio of isotropic 

materials means the material is incompressible. A 

near incompressible material-like rubber or water- 

does not allow compressibility and volume is 

conserved. [55, 56] A great application for rubber is 

O-rings and sealants. For O-rings and sealants volume 

conservation is desired because when an O-ring or 

sealant is compressed, the volume of material expands 

in the lateral direction thus creating a seal for the 

mated parts. A diamond lattice close to a value of 0.5 

for Poisson’s ratio will approach incompressibility. If 

applications require large expansion in the lateral 

direction, diamond lattices could fulfill this 

requirement. 

The reasoning why the Poisson’s ratio decays 

as the relative density increases for diamond lattice 

resides in the struts becoming relatively thicker. As 

either the thickness (t) increases or the unit cell 

length (L) decreases the relative density increases 

because the struts are increasing in relative thickness 

for the diamond lattice. With the struts increasing in 

relative thickness, Euler beams become less accurate. 

Slender struts promote bending so a low relative 

density diamond lattice will closely approach the 

theoretical limit of isotropic, solid materials for 

Poisson’s ratio of 0.5. 

V. CONCLUSIONS AND FUTURE WORK 

This thesis explored the design space for low 

stiffness, bending dominated structures in the form of 

diamond lattice configuration. Diamond lattices 

exemplify a bending dominated structure because of 

the obtuse angles of its strut members and the lower 

number of connections of struts at the joints. The 

wide sweeping angles allow for the structure to bend 

when a compressive load is applied. This chapter 

begins with reiterating the motivation for this thesis. 

Concluding analysis follows the motivation in terms 

of experimental versus FEA data and also 

modifications of the diamond lattice parameters for 

expansion of properties. 

5.1 MOTIVATION AND THESIS GOALS 

The goal of this thesis is to evaluate diamond 

lattice mechanical properties (specifically stiffness 

and density) to fulfill meta-material design space. 

Previous work focused on maximizing the specific 

stiffness in the meta-material design space. 

Maximizing specific stiffness uses reinforced 

geometry to enhance the stiffness and strength of a 

lattice structure; but these same reinforcements 

prevent bending of the struts. With bending 

prevented, strains are small and energy absorption is 

sacrificed. This is where the potential for diamond 
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lattices becomes valuable in the realm of low stiffness, 

energy absorbent structures. This thesis is successful 

in documenting the range of effective stiffness that 

can be reached by diamond lattices for potential use 

in energy absorbent applications. 

EXPERIMENTAL VERSUS FEA ANALYSIS 

Chapter two’s central theme describes the 

foundation of cellular solids by detailing how the 

governing principles will promote a cellular lattice 

structure response. Much of the chapter focused on 

the derivation and description of bending-dominated 

structures and to display the design space available. 

Chapter three validates the relations derived in 

chapter 2 both experimental and simulated. At first, 

experimental and simulation data entailed a 

discrepancy to not fully agree. Further analysis 

ensued to explain the discrepancy and was found in 

analyzing the effective thickness of laser sintered 

diamond lattices. 

Laser sintering my leave behind lightly 

compacted layers on the outer surface of a part’s 

geometry. In the case of the diamond lattices, the 

lightly compacted layers changes the effective 

thickness of the struts (t). The lightly compacted 

layers on the outer surface of the struts essentially 

made the diamond lattice struts respond thinner than 

expected by a constant amount that was independent 

of the total strut size. The lightly compacted layers 

contribute to weight and thickness measurements but 

do not increase the mechanical response of the 

diamond lattice. Lightly compacted layers constitute a 

larger percentage of the strut thickness for smaller 

strut sizes therefore these elements deviate farther 

from predictions. A thickness correction was applied 

to the experimental data to find an effective thickness 

of the laser sintered diamond lattices; once applied 

the experimental data shifted to be in agreeance well 

with simulated data. 

After correction, both experimental and 

simulated data proved the relationship of the 

diamond lattices build parameters to effective stiffness 

and effective density to hold true for a structure in 

the bending dominated regime. From chapter two’s 

derivations, bending dominated structures relate 

relative density to a squared (t/L) relationship 

(Equation 2). Since relative stiffness derives a squared 

relationship of relative density (Equation 5), build 

parameters thickness (t) and unit cell length (L) are 

proportional to effective stiffness to the fourth power 

(Equation 6). The fourth power relationship is 

consistently shown in the charts of chapter 3 and 

confirms diamond lattices are indeed bending 

dominated structures. Chapter 3 also shows that 

diamond lattices constructed of PA 2200 can tune 

stiffness range over four orders to magnitude. Four 

orders of magnitude is a significant portion of design 

space for a wide range of applications for low stiffness. 

RECOMMENDATIONS FOR FUTURE WORK 

Future work for diamond lattices considers 

further exploration for isotropy. Confirming the 

diamond lattice is isotropic is valuable as it means the 

diamond lattice would have the same mechanical 

response in all directions. Having the same stiffness 

reaction in the longitudinal and lateral directions 

generates a structure that can be loaded regardless of 

direction. 

Other work can be done evaluating different 

loading conditions placed on diamond lattices. Shear 

forces when placing the diamond lattice into a 

sandwich structure are an interesting aspect that 

needs work done. All of the experiments and 

simulations of the diamond lattices were completed 

with uniaxial loading, but what would happen if the 

diamond lattices was placed in a state of biaxial or 

even multiaxial loading? Research could be done with 

other loading conditions to analyze the complicity of 

the stiffness reaction. 

Another central aspect for further research lies 

in quantifying the energy absorbance the low stiffness 

structures. Completing experimental fatigue tests 

with cyclic loading can evaluate how much energy 

will be absorbed when repeatedly loaded. Energy 

absorption of diamond lattices would be valuable to 

quantify as this research has already proven a range of 
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tunable stiffness that could tuned even further for 

specific energy absorbent applications. 

Lastly, while this research proves diamond 

lattices fill design space gaps in meta-material space, 

more work can be done on lattice structures that can 

fill even more design space-specifically different areas 

on the material property charts of chapter 4. Further 

research could be done in modifying the diamond 

lattice by changing the angles of the joining struts or 

maybe reinforcing the diamond lattice in strategic 

points where deformation is highest. Modifying the 

diamond lattice or even analyzing other lattice 

structures could fill more design space and open up 

many more applications for lattice structures. 
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