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ABSTRACT 

Turbidity is one of the important water quality parameters, which is required to 

understand the eco-hydrological process such as a trophic state of water, soil erosion 

into the river system, mixing of other water sources, runoff, discharge etc. An 

algorithm has been developed to estimate the turbidity (in NTU: Nephelometric 

Turbidity Unit) over inland waters using Red band of optical multispectral dataset. 

Field measurements were carried out over Ukai reservoir for 27-28th March 2018 for 

pre monsoon and 27-30th September 2018 for post monsoon seasons, sampling sites 

ranging from turbid to clear water. Where in situ water leaving reflectance and 

turbidity were measured. Model was derived between in situ measured turbidity and 

spectral reflectance of Red band of Landsat series of datasets includes Landsat 5 

Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and 

Landsat 8 Operational Land Imager (OLI) data from 1993-2018. The model was 

applied to derive the turbidity maps of Ukai reservoir for pre-monsoon (March, 

April and May months) season and post monsoon (September, October and 

November months) seasons. Overall turbidity was in the range of 1.47-25 NTU 

during the field data collection for both pre and post monsoon seasons. To 

investigate the results in detail, the reservoir was divided into three parts, i.e. Down 

(A), Middle (B) and Up Streams (C). The water was relatively clear in the 

downstream portion with average turbidity less than 5 NTU over the study period. 

While maximum turbidity was observed in the upstream portion with values more 

than 20 NTU. In the middle portion, the turbidity values were fluctuating within 

the range 4-13 NTU with an average value of 6 NTU. These turbidity maps can be 

used to determine underwater light attenuation that has importance in ecosystem 

modelling.  

Keywords : Turbidity, Ukai Reservoir, Relative Spectral Response (RSR), Landsat 

satellite. 
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I. INTRODUCTION 

 

Turbidity is one of the most important water 

quality parameters and a surrogate for water clarity 

[12]. Total suspended sediment (TSS) concentration 

is an important water quality indicator of turbidity, 

riverine flus, bank erosion and current or wind 

generated resuspension [13]. An increase or 

decrease of water clarity may lead to impact on 

biological components of the system that may be 

adapted to specific light penetrating conditions 

[10].Total suspended matter (TSM) is an important 

water quality parameter and plays a key role in 

water quality evaluation, especially of inland waters 

(e.g. lake, reservoir and river). TSM determines the 

transparency of water and ultimately determines 

the primary productivity of water [34]. Sediment 

transport from large rivers plays an important part 

in geological, biological and chemical processes on 

the earth surface [5]. Lake waters are characterized 

by suspended organic and inorganic materials. 

Suspended materials serve as a carrier and storage 

agent of pesticides, absorbed phosphorus, nitrogen 

and organic compounds and can be an indicator of 

pollution. Therefore, it is very important to 

monitor and assess the concentrations of suspended 

materials in lake waters, as well as their spatial and 

temporal distribution and change [36]. 

Inland water variables such as suspended matter 

and phytoplankton are spatially heterogeneous 

parameters, corresponding synoptic information 

cannot be obtained from in-situ monitoring 

networks. TSM is traditionally measured by 

collecting water samples and analyzing them in the 

laboratory. Monitoring TSM in this way can be 

time consuming and require a large amount of 

human and material resources if a large area is 

involved. Furthermore, a limited number of field 

samples often cannot truly characterize the spatial 

variation of TSM within a body of water. This 

problem, however, can be solved by the integration 

of water quality models, in-situ data and remote 

sensing data that provides spatially distributed 

information [7].Nowadays satellite remote sensing 

has been widely used to monitor inland water 

quality. With the development of remote sensing 

technology, remote sensing data have been utilized 

to assess TSM [7] [25] [15]. Estimating TSM with 

remote sensing has four main advantages, ability to 

cover large areas, rapid results, low costs and 

convenience for dynamic monitoring [26]. The 

combination of temporal coverage, spatial 

resolution and data availability makes the Landsat 

system particularly useful for assessment of inland 

lakes [16]. The extra benefit of using remote sensing 

for water quality analysis is its ability to capture 

synoptic data of a whole region of interest to 

produce continuous surface data and spatial 

variability in water quality [1]. Landsat 8 

Operational Land Imager (OLI) and Thermal 

Infrared Sensor (TIRS) has been widely used in 

coastal management and has been demonstrated to 

be a useful tool for monitoring of coastal sediment 

concentrations at high resolution and accuracy due 

to its higher signal to noise ratio (S/N) compared to 

previous Landsat images [30]. Besides, Landsat 8 has 

been involved with 12 bits of radiance resolution 

compared to 8 bit for the older ones, Landsat 5 

Thematic mapper (TM) and Landsat 7 Enhanced 

thematic mapper plus (ETM+). 

Turbidity values generally correlates with 

reflectance at satellite bands located in the red part 

of the spectrum for low to moderate turbidity 

values. Landsat band 3 (630-690 nm) has been used 

to map turbidity in Guadalquivir River (Spain) for a 

turbidity range 1.5 – 8 NTU [3]. A good correlation 
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between LISS-I red band (620-680 nm) and 

turbidity in the range of 15-45 NTU in the Tawa 

reservoir in India [6] [11]. Goodin et al., 1996 used 

SPOT-HRV2 red band (610-680 nm) to map 

relatively low levels of turbidity, ranging from 3 to 

15 NTU, in the Tuttel Creek reservoir in Kansas, 

USA. [24]. developed a regional algorithm for 

MODIS-Aqua 250 m red band to map turbidity in 

the Adour river plume (Bay of Biacay, France), 

where field turbidity values varied between 0.5 and 

70 NTU. A multiple linear regression analysis using 

Landsat red band (630-690 nm) and near infrared 

(750-900 nm) bands was used to predict turbidity in 

a glacial lake in Alaska where highly scatter rock 

flower (Sediment oriented from glacial rock 

weathering) dominates the particulate fraction and 

where turbidity varied between 2-997 NTU [17].  

The present work is an attempt to understand the 

inherent variability of turbidity over one of the 

biggest reservoirs in Gujarat India. No standardized 

turbidity derived algorithm exists in the scientific 

community because of the high level of variation in 

particle size, density and other optical complexities 

of different water bodies [2009]. As per our 

knowledge, this is the first attempt to develop an 

algorithm for assessment of turbidity over Ukai 

reservoir.  

 

II. STUDY AREA AND MATERIALS  

 

A. Study area  

Ukai Reservoir constructed on the river Tapi, is the 

second largest reservoir in Gujarat, India after 

Sardarsarovar. The total area of the reservoir is 

494.01km2. The dam is meant for power production, 

irrigation and flood control. The reservoir also 

provides water for domestic and industrial use in 

Surat city and surrounding areas. Average annual 

rainfall in the catchment is about 900 mm and 

mostly concentrated in monsoon months (July and 

August). In this study, the reservoir area is divided  

(Figure 1) into three parts, i.e. Down (A), Middle (B) 

and Up streams (C) for analyzing the variation of 

water quality parameters. 

 

 
Figure 1 :  Study area map of Ukai reservoir in Gujarat, India, with (a) Down, (b) Middle and (c) Up Streams and 

ROI’s which are used to explain spatial variation Figure 5a,5b,5c and 5d. 
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B. Satellite data acquisition and field data collection 

Three types of dataset were used, that includes 

Landsat series of satellite data between 1993 - 2018 

in the pre monsoon (March, April and May months) 

and post monsoon (September, October and 

November months) seasons, in situ measured remote 

sensing reflectance (Rrs) and turbidity (NTU: 

Nephelometric Turbidity Unit) measurements. 

Landsat images were downloaded from the 

EarthExplorer (EE) user interface, developed by the 

United States Geological Survey (USGS), 

(http://earthexplorer.usgs.gov). The downloaded 

data includes Landsat 5 Thematic Mapper (TM), 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 

and Landsat 8 Operational Land Imager (OLI) data 

from 1993-2018. All selected images were cloud free, 

the both pre (March, April and May months) and 

post (September, October and November months) 

monsoon data sets are taken with similar 

environmental and hydrological conditions, which 

represent turbidity variations in pre and post 

monsoon seasons. 

Field measurements were carried out over Ukai 

reservoir for 27-28th March 2018 for pre monsoon 

and 27-30th September 2018 for post monsoon 

seasons, sampling sites ranging from turbid to clear 

water. At every sampling location turbidity was 

measured with Wetlabs turbidity meter and 

coordinates were marked using a Global Positioning 

System (GPS). An ASD 

FieldSpecspectroradiometerwas used to measure 

spectral reflectance; it has a spectral range of 350-

2500 nm. In accordance with the Ocean Optics 

protocols [2] [20], the above-water measurement 

method was used to measure the radiance spectra of 

the white reference panel, water, and sky 

respectively. The remote sensing reflectance was 

derived based on the below equation [28]. 

Rrs(l) = (Lt – r*Lsky)/(Lp*π/ρp)     (1) 

where Rrs(l) is remote sensing reflectance, Lt is  the 

measured total radiance of the water surface, r is 

skylight reflectance at the air-water surface; Lsky  is 

the measured radiance from sky; Lp is the measured 

of the reference panel; and ρp is reflectance of the 

diffuse panel [35]. 

C. Satellite data Pre processing 

Landsat images were transformed to top-of-

atmosphere radiance (TOA) with the help of 

radiometric calibration coefficients which are 

mentioned in the metadata file.There is a variety of 

atmospheric correction methods and associated 

models, such as DOS (Dark Object Subtraction), 

FLAASH (Fast Line of Sight Atmospheric Analysis of 

Spectral Hypercubes), 6s (Second Simulation of the 

Satellite Signal in the Solar Spectrum), QUAC 

(Quick Atmospheric Correction) etc. Among them, 

FLAASH is one of the widely used and accepted tool 

because of its higher accuracy and easier use 

compared to the others [29]. The FLAASH model, 

which is a MODTRAN-based atmospheric 

correction software package embedded in ENVI 

software, is a strong tool for atmospheric correction 

[37]. Atmospheric correction was done with the 

FLAASH module, which was incorporated in the 

Envi (Environment of visualizing images) 5.5 

software. The output image was used 

atmospherically corrected waterbody remote sensing 

reflectance (Rrs).  FLAASH module is considered a 

good atmospheric correction for terrestrial 

application [14][21], as well as for an inland water 

bodies [31].While using FLAASH module, in put for 

key parameters used like as, tropical for atmospheric 

model, rural for the aerosol model and 2 –band (K-T) 

for the aerosol retrieval and initial visibility was 

chosen as 40 km. 

 

III. METHODOLOGY 

 

The field-collected in situ spectra was converted 

into simulated bandpass Landsat 8, Landsat 7 and 

Landsat 5 reflectance using Relative Spectral 

Response (RSR) function for each channel. To 

aggregate the reflectance the following equation is 

used. 

http://earthexplorer.usgs.gov/
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𝑅𝑏 =
∑

𝜆𝑛
𝜆𝑚

𝑅𝑆𝑅𝑏(𝜆)∗𝑅(𝜆)𝑑𝜆

∑
𝜆𝑛
𝜆𝑚

𝑅𝑆𝑅𝑏(𝜆)
                            (2)   

 

Where 𝑅𝑏 denotes simulated aggregate reflectance at 

band b. 𝑅𝑆𝑅𝑏(𝜆) represent Relative Spectral 

Response function of band b within a range from 𝜆𝑚 

to 𝜆𝑛 channels and 𝑅(𝜆) is in situ reflectance spectra. 

The parametric algorithm based on the combination 

of bands was tested for estimating the best 

correlation between water turbidity and simulated 

Landsat 8, Landsat 7 and Landsat 5  derived 

reflectance  (𝑅𝑏 ). Modified Normalized Difference 

Water Index (MNDWI) [33], was used to mask out 

the other than water area in images. Among all 

bands Red band was chosen for the estimation of 

turbidity in the Ukai reservoir in pre and post 

monsoon seasons. According to [23] papoutsa et al., 

2014, the statistical analysis indicated that a strong 

correlation between turbidity and reflectance can be 

obtained for Landsat TM and ETM+, 3 and 4 bands. 

However, band 4 cannot be used for water 

reflectance measurements because the water 

absorption coefficient has a very high value (near to 

1) after 800 nm (approximately), light is mostly 

absorbed and not reflected by water at wavelength 

higher than 800 nm. Data corresponding to band 4 

are not relevant and are thus not used for the 

purpose of this study. The very low reflectance 

values of water at band 4 do not give an opportunity 

for remote sensing users to retrieve significant 

aspects of water quality. Empirical methods are 

based on statistical relationship between remote 

sensing data and in situ measured water quality data. 

However, because of the differences among 

experiment conditions, these statistical relationships 

are often not stable, as a result, they are difficult to 

compare and extend from one study to another. In 

comparison, model-based methods depend on bio-

optical models and have the advantages of definite 

physical models and have the robustness and 

retrieval accuracy[7]. 

 

IV. RESULTS AND DISCUSSION 

 

A number of Turbidity or TSM derived models have 

been proposed in previous studies. The empirical 

regression algorithms take advantage of the linear or 

exponential relations between turbidity and 

reflectance in certain spectral bands [36] [19] [32]. 

Till date, there has been no standardized TSM-

derived model because of the high level of variation 

in particle size, density and other optical 

complexities of different water bodies [4]. Because of 

this reason we need to have a region specific model 

needed to estimate turbidity in the study region.  

Pre monsoon season In situ turbidity ranges 1.47 – 

20 NTU with mean value of 6.13 (standard deviation 

(S.D.) = 4.76 NTU) and post monsoon season In situ 

turbidity ranges 2.44 – 25 NTU with mean value of 

7.6 (S.D. = 4.76 NTU).  

We used red band to derive turbidity with in situ 

turbidity measurements and simulated Landsat 5 

(TM), Landsat 7 (ETM+) and Landsat 8 (OLI) red 

band reflectance. Coefficient of Determination (R2) 

was used to evaluate the accuracy of the derived 

algorithm (Table 1).The correlation analysis showed 

that there was a significant relation between 

simulated Landsat 5 (TM), Landsat 7 (ETM+) and 

Landsat 8 (OLI) red band based derived turbidity 

and in situ measured turbidity. Coefficient of 

determination values for pre monsoon season are 

like this, with Landsat 5 (TM) R2 = 0.86, Landsat 7 

(ETM+) R2 = 0.86 and Landsat 8 (OLI) R2 = 0.85 with 

the in situ turbidity measurements. For the post 

monsoon season, with Landsat 5 (TM) R2 = 0.73, 

Landsat 7 (ETM+) R2 = 0.73 and Landsat 8 (OLI) R2 = 

0.75 with the in situ turbidity measurements. as 

shown in Fig. 2 left side (A,B and C) and right side 

(A,B and C). 
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Table 1: Derived algorithms with their correlations coefficients   

 

    Regression Models                                              R2                              Significance 

Pre monsoon  

             Landsat 5: Turbidity (NTU) = 237.14x -2.05          R2 = 0.86                        P < 0.05  (3)   

             Landsat 7: Turbidity (NTU) = 236.17x -2.06          R2 = 0.86                        P < 0.05  (4)   

             Landsat 8: Turbidity (NTU) = 227.48x -2.12          R2 = 0.85                        P < 0.05                       (5)   

Post monsoon  

             Landsat 5: Turbidity (NTU) = 131.23x +2.46        R2 = 0.73                       P < 0.05                         (6)   

             Landsat 7: Turbidity (NTU) = 130.89x +2.44        R2 = 0.72                       P < 0.05                         (7)   

             Landsat 8: Turbidity (NTU) = 126.34x +2.30        R2 = 0.74                       P < 0.05                         (8) 

Where x is red band reflectance. 

 
Figure 2:   Scatter plots of in situ measured turbidity with derived turbidity using field measured spectra 

simulated Landsat 5 (TM), Landsat 7 (ETM+) and Landsat 8 (OLI) equivalent bandpass for pre (left side A,B,C) 

and post (Right side A,B,C) monsoon season. 
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Turbidity was derived models (equation 3 to 8) 

were applied to the 52 cloud free Landsat 5 (TM), 

Landsat 7 (ETM+) and Landsat 8 (OLI) images (L5 = 

19, L7 = 21, and L8 = 12 images) from 1993 - 2018 

for pre and post monsoon seasons. The Landsat 

derived turbidity pattern results are shown in 

Figure 3 and 4. 

 

 
Figure 3:  Derived –Turbidity distribution maps in the Ukai Reservoir from 1993 to 2018 for pre monsoon 

season. 
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Figure 4 : Derived –Turbidity distribution maps in the Ukai Reservoir from 1993 to 2018 for post monsoon 

season. 
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Most of the existing methods interpreting turbidity 

propose site-specific empirical relationships 

between turbidity and reflectance at different 

satellite wavebands by fitting field turbidity 

measurements with either field or satellite derived 

reflectance [8]. Single band or band ratio of two 

bands is routinely used to develop turbidity as well 

as other water parameters [22] [27]. In present 

study Red band was used to estimate turbidity, in 

pre monsoon case Red band was showing high 

correlation with in situ turbidity measurements. In 

the post monsoon case, Green band was showing 

high correlation with in situ turbidity 

measurements, Red band showing second highest 

correlation with in situmeasurements, we ignored 

the Green band correlation due its atmospheric 

influencing nature. [12] developed an algorithm for 

turbidity in the North-western Black sea coastal 

zone based on the high correlation between the 

redband of Landsat TM. Lobo et al., 2013 used a 

time series analysis of Landsat MSS/TM/OLI images 

to assess the impacts of gold mining activities to 

Amazonian waters. 

This result indicated that water reflectance of the 

red band of Landsat was the most appropriate for 

establishing a robust empirical model for TSS or 

turbidity retrieval [18]. Vanhellemont and Ruddick 

used Landsat 8 OLI band 4 (i.e Red band) to 

retrieve turbidity in the southern north sea where 

the water depth was less than 50 m. In low turbid 

waters where total suspended solids (TSS) are less 

than 50 g/m3, there is high correlation between 

turbidity and remote sensing reflectance of red 

region and for high turbidity or TSS exceeding 50 

g/m3 , near infrared  (NIR) wavelength  are 

recommended for turbidity retrieval[10]. The shift 

to NIR wavelength for turbidity retrieval is due to 

the saturation of Rrs in visible wavelengths when 

TSS concentration exceeds 50 g/m3, [10] [9]. This 

study also indicated that NIR wavelength should be 

used to retrieve suspended sediment matter for the 

very high turbid waters.In our study, measured 

turbidity in two field trips were less than 25 NTU, 

in both pre (23 samples) and post monsoon (18 

samples)  

seasons. The algorithm that was developed 

forturbidity retrieval was stable and reliable when 

using the red band.Figures 5a, 5b, 5c, and 5d 

explains estimated pre monsoon season turbidity 

ranges 3.55 – 32.35 NTU with mean value of 12.84 

(standard deviation (S.D.) = 1.66 NTU) and post 

monsoon season turbidity ranges 2.72 – 10.63 NTU 

with mean value of 6.64 (S.D. = 0.47 NTU).  

In pre monsoon season, reservoir surface area 

ranges from 137.74 to 337.27 km2, for the same 

season turbidity ranges from 3.55 to 32.35 NTU. In 

post monsoon season reservoir surface area ranges 

from 264.64 to 496.98 km2, for the same season 

turbidity ranges from 2.72 to 10.63 NTU. Detailed 

Down, middle and Up stream and surface area and 

turbidity values are provided in table 2 and 3.In pre 

monsoon, lowest turbidity value (3.55 NTU) was 

observed on 7th April 2006 while the highest value 

(32.35 NTU) was observed on 12th May 2016. The 

highest value was more than nine times greater 

than the lowest value, which represents high 

turbidity variation in Ukai reservoir in the pre 

monsoon season. In pre monsoon season, lowest 

surface area (137.74 km2) of the reservoir was 

observed on 22nd May 2005 and highest surface area 

(337.27 km2) observed on 16th March 1995. In post 

monsoon, lowest turbidity value (2.72 NTU) was 

observed on 23rd November 2017, highest value 

(10.63 NTU) was observed on 14th October 2011. 

The highest value was only 3.9 times more than 

lowest value, which represents less turbidity 

variation in Ukai reservoir in post monsoon season 

and lowest surface area (264.64 km2) of the 

reservoir was observed on 24th October 2009 and 

highest surface area (496.98 km2) observed on 19th 

November 1998. 
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Table 2: Derived turbidity of Ukai reservoir during 1993-2018 categorized into Down, middle and Up stream 

 

Pre monsoon Minimum (NTU) Maximum 

(NTU) 

Mean         

(NTU) 

Standard 

deviation (NTU) 

Down stream 3.55 23.19 9.90 3.51 

Middle stream 4.72 25.34 11.43 4.13 

Up stream 6.09 32.35 18.16 6.17 

Over all Ukai 3.55 32.35 12.84 5.83 

Post monsoon Minimum Maximum Mean Standard 

deviation 

Down stream 2.72 10.34 6.20 1.72 

Middle stream 3.19 9.77 6.47 1.54 

Up stream 4.11 10.63 7.39 1.54 

Over all Ukai 2.72 10.63 6.64 1.69 

 

Table 3: Derived turbidity and surface area of Ukai reservoir during 1993-2018 pre and post monsoon season 
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Figure 5a : Derived –Turbidity variations in the Ukai Reservoir from 1993 to 2005 for pre monsoon season. 

 

 
 

Figure 5b: Derived –Turbidity variations in the Ukai Reservoir from 2006 to 2018 for pre monsoon season. 
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Figure 5c:Derived –Turbidity variations in the Ukai Reservoir from 1993 to 2005 for post monsoon season. 

 

 
 

Figure 5d:Derived –Turbidity variations in the Ukai Reservoir from 2006 to 2018 for the post monsoon season. 
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V. CONCLUSION 

 

Estimated Pre monsoon turbidity ranges were 3.55 

– 32.35 NTU, the lowest value is more than 9 times 

to highest value. In the post monsoon turbidity 

range was 2.72-10.63 NTU the lowest value is just 3 

times to highest value. This represents, in the pre 

monsoon turbidity variations was more than the 

post monsoon turbidity variations. Derived 

algorithm shows a strong coefficient of 

determination R2 = 0.86 - 0.85, 0.75 - 0.72 with the 

in situ turbidity measurements in pre and post 

monsoon seasons respectively. Less than 30-40 NTU 

turbidity is able to derive with help of Red band, 

more than the 40 NTU turbidity water spectral 

signature shifts towards NIR band region. In both 

pre and post monsoon, down- stream was having 

less turbidity variation and Up- stream had high 

turbidity variations. 

The Study provides (1) Sensor specific, Red band 

based algorithm for assessment of turbidity over 

Ukai reservoir during 1993 – 2018 (26 years) pre 

and post monsoon seasons. (2) An empirical method 

that applied a thorough analysis to derive turbidity 

variation Among Landsat 5 (TM), Landsat 7 (ETM+) 

and Landsat 8 (OLI) Satellites. Some uncertainties 

remain with the empirical algorithm, in the future 

study should be conducted to incorporate factors 

such as particle size, shape, colour and mineral type 

as well as organic substance and chlorophyll that 

may affect the optical properties of turbid waters. 

Results obtained through this study could serve as a 

basic foundation for the assessment of turbidity and 

remaining water quality parameters in Ukai 

reservoir, and it also be used in various numerical 

models to help characterize the tropic state of an 

inland aquatic ecosystem. 
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