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ABSTRACT 

In this paper, we have portrayed scalar and complex Klein-Gordon field theory on 

R × S3  topological space. The corresponding Klein-Gordon equation was 

established by M. Carmeli in October 1983. The field theory is formulated using 

differential operators defined on S3  topology instead of ordinary Cartesian 

operators. Furthermore, we have quantized the theory and commutation relations 

along with the Hamiltonian for the theory are derived.  
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I. INTRODUCTION 

 

Klein-Gordon field theory has been of grave 

importance in modern particle physics for describing 

the dynamics of spin zero particles. A successful 

attempt of describing field theories on R × S3 

topology was done by M. Carmeli and A. Malka in a 

series of 6 papers [1]-[6]. The R × S3  topological 

Klein-Gordon equation was first introduced in [1] and 

a more general solution using group theoretic method 

was established by authors. However, a rigorous and 

applicable treatment in the framework of quantum 

field theory for those equations using the plane wave 

solution haven’t been yet formulated on R × S3 

topology. The main aim of this paper is to establish 

Klein-Gordon field theory on R × S3 topology where 

we have sketched a classic formulation and it’s 

applications in quantum field theory. From [1], we 

have the following form of Klein-Gordon equation on 

R × S3 topology. 

 

 
(L2 −

1

γ2

∂2

∂t2) ϕ(t, θ) = (
I0γ

ℏ
)

2

ϕ(t, θ). 
             

(1.1) 

Here, θ = (θ1, θ2, θ3) are three rotational angles such as Euler angles and L = (L1, L2, L3) = (Lx, Ly, Lz) is the 

corresponding differential operator given by 

 
L1 =

−sinθ3

sinθ2

∂

∂θ1
− cosθ3

∂

∂θ2
+ cotθ3sinθ3

∂

∂θ3
, 

             

(1.2) 

 
L2 =

−cosθ3

sinθ2

∂

∂θ1
− sinθ3

∂

∂θ2
+ cotθ3cosθ3

∂

∂θ3
, 

             

(1.3) 

 
L3 = −

∂

∂θ3
. 

             

(1.4) 

The operator L2 = L1
2 + L2

2 + L3
2 = Lx

2 + Ly
2 + Lz

2  is then give by  
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L2 =

1

sinθ2

∂

∂θ2
(sinθ2

∂

∂θ2
) +

1

sin2θ2 (
∂2

∂θ12 − 2cosθ2
∂2

∂θ1 ∂θ3
+

∂2

∂θ32). 
             

(1.5) 

Plane wave solution of Eqn. (1.1) is given by 

 ϕ(θ) = e(i/ℏ)(Et−J.θ)              

(1.6) 

where θα = (θ0, θ1, θ2, θ3), θ0 = ct and 

 Jα = (J0, Jk) = (E, γJ),              

(1.7) 

 Jα = (J0, Jk) = (E, −γJ)              

(1.8) 

is the angular momentum four vector with J = (Jx, Jy, Jz) and Jk = iℏγLk. Furthermore, using the definition of 

Jα, Jα and γ = c(m0/I0)1/2 we can conclude the following relation: 

 EJ = J0 = J0 = ±(γ2J2 + I0
2γ4)1/2,              

(1.9) 

 JαJα = EJ
2 − γ2J2 = I0

2γ4.            

(1.10) 

Here, m0 and I0 are rest mass and moment of inertia respectively. Another more general solution of 

Eqn. (1.1) using group theoretic methods can be found in [1].  

 

II.  FIELD THEORY AND QUANTIZATION 

 

Let 

 
Lμ =

∂

∂θμ
= (

1

γ

∂

∂t
, −L), 

             

(2.1) 

 
Lμ =

∂

∂θμ
= (

1

γ

∂

∂t
, L), 

             

(2.2) 

and 

 
LμLμ =

1

γ2

∂2

∂t2
− L2. 

             

(2.3) 

Now, we can construct a Lagrangian for R × S3 topological Klein-Gordon equation as 

 
ℒ =

1

2
LμϕLμϕ −

m0
2

2
ϕ2 

             

(2.4) 

where we have employed ℏ = c = 1. For constructing a variational principle on R × S3  topology, we first 

assume that our Lagrangian depends on fields ϕ and their derivatives Lμϕ. Hence, ℒ = ℒ(ϕ, Lμϕ) and the 

action has the form 

 S(Ω) = ∫

Ω

L(ϕ, Lμϕ)d4θ              

(2.5) 

whose variation δS(Ω) = 0 would lead us to the following Euler-Lagrange’s equation: 

 ∂L

∂ϕ
− Lμ (

∂L

∂(Lμϕ)
) = 0. 

             

(2.6) 

A detailed derivation of the above equation can be found in [6]. We can now plugin Eqn. (2.4) in (2.6) to get 

the following form of Klein-Gordon equation: 
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 (LμLμ + m0
2)ϕ(θ) = 0              

(2.7) 

The process for quantization of R × S3  topological Klein-Godon field theory will be similar to that of 

quantization in classical mechanics. First, we define canonically conjugate momentum to construct 

Hamiltonian and then solve corresponding commutation relations. 

   Define a momentum canonically conjugate to the field variable ϕ(θ) as follows: 

 
Π(θ) =

∂ℒ

∂ϕ̇(θ)
 

             

(2.8) 

from which we can construct a Hamiltonian density as 

 ℋ = Π(θ)ϕ̇(θ) − ℒ              

(2.9) 

which yields a Hamiltonian of the form 

 
H = ∫ d3θℋ = ∫ d3θ(Π(θ)ϕ̇(θ) − ℒ).            

(2.10) 

Note that Lagrangian density (2.4) can be written as 

 
ℒ =

1

2
ϕ̇2 −

1

2
Lϕ. Lϕ −

m0
2

2
ϕ2. 

           

(2.11) 

This leads us to the following Hamiltonian density for the system 

 ℋ = Π(θ)ϕ̇(θ) − ℒ            

(2.12) 

 
= Π(θ)ϕ̇(θ) −

1

2
ϕ̇2 +

1

2
Lϕ. Lϕ +

m0
2

2
ϕ2 

           

(2.13) 

 
= Π(θ)Π(θ) −

1

2
Π(θ)2 +

1

2
Lϕ. Lϕ +

m0
2

2
ϕ2 

           

(2.14) 

 
=

1

2
Π(θ)2 +

1

2
Lϕ. Lϕ +

m0
2

2
ϕ2. 

           

(2.15) 

Therefore, using Eqn. (2.10), we get a Hamiltonian for our theory as 

 
H = ∫ d3θ (

1

2
Π(θ)2 +

1

2
Lϕ. Lϕ +

m0
2

2
ϕ2). 

           

(2.16) 

Assuming equal time canonical Poisson brackets relations between Π(θ) and ϕ(θ) to be 

 {ϕ(θ), ϕ(θ̃)}
θ0=θ̃0 = {Π(θ), Π(θ̃)}

θ0=θ̃0 = 0            

(2.17) 

 {ϕ(θ), Π(θ̃)}
θ0=θ̃0 = δ3(θ − θ̃)            

(2.18) 

then, we can easily show that the dynamical equations of first order in the Hamiltonian form can be written as 

 ϕ̇(θ) = {ϕ(θ), H}            

(2.19) 

 Π̇(θ) = {Π(θ), H}            

(2.20) 

These relations can explicitly be formulated as follows. Recall the definition of Hamiltonian from Eqn. (2.6) 

and then using Eqn. (2.19), we can write 

 ϕ̇(θ) = {ϕ(θ), H}            
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(2.21) 

 
= {ϕ(θ), ∫ d3θ̃ (

1

2
Π2(θ̃) +

1

2
Lθ̃ϕ. Lθ̃ϕ +

m0
2

2
ϕ2(θ̃))}

θ0=θ̃0

 
           

(2.21) 

 
=

1

2
∫ d3θ̃{ϕ(θ), Π2(θ̃)}

θ0=θ̃0 = Π(θ). 
           

(2.22) 

Similarly, 

 Π̇(θ) = {Π(θ), H}            

(2.23) 

 
= {Π(θ), ∫ d3θ̃ (

1

2
Π2(θ̃) +

1

2
Lθ̃ϕ. Lθ̃ϕ +

m0
2

2
ϕ2(θ̃))}

θ0=θ̃0

 
           

(2.24) 

 = ∫ d3θ̃[Lθ̃ϕ(θ̃). {Π(θ), Lθ̃ϕ(θ̃)} + m0
2ϕ(θ̃){Π(θ), ϕ(θ̃)}]

θ0=θ̃0            

(2.25) 

 = L. Lϕ(θ) − m0
2ϕ(θ).            

(2.26) 

Therefore, we get 

 ϕ̇(θ) = Π(θ)            

(2.27) 

and 

 Π̇(θ) = L2ϕ(θ) − m0
2ϕ(θ).            

(2.28) 

Taking both sides derivative of Eqn. (2.29) and using Eqn. (2.30) we obtain what is kown as second order 

equation which eventually gives Kelin-Gordon equation in it’s original form on R × S3 topology, that is, Eqn. 

(2.7). 

 

III. SOLUTION AND CREATION-ANNIHIIATION OPERATORS 

We know that plane wave solution to R × S3 topological equation is given by Eq. (1.6). Therefore, using this 

information, we can construct a corresponding general solution in terms of the corresponding plane wave 

solution as 

 
ϕ(θ) = ∫

d3J

√(2π)32J0
(e−iJ.θa(J) + eiJ.θa†(J)) 

             

(3.1) 

where 

 
a(J) =

a(J)

√2J0
 

             

(3.2) 

and 

 
a†(J) =

a†(J)

√2J0
 

             

(3.3) 

are functions that later act annihilation and creation operators later. Therefore, as now we have constructed 

our general solution, using Eqn. (2.29) we can get the conjugate momentum as follows: 

 
Π(θ) = ϕ̇(θ) = −i ∫ d3J√

J0

2(2π)3
(e−iJ.θa(J) − eiJ.θa†(J)). 

             

(3.4) 
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Since definition (3.1) ad (3.4) are invertible, we can construct construct the following representation of 

functions (3.2) and (3.3): 

 
a(J) =

1

√(2π)32J0
∫ d3θeiJ.θ(J0ϕ(θ) + iΠ(θ)) 

             

(3.5) 

 
=

1

√(2π)32J0
∫ d3θeiJ.θ  ↔  ∂tϕ(θ). 

             

(3.6) 

 
a†(J) =

1

√(2π)32J0
∫ d3θe−iJ.θ(J0ϕ(θ) − iΠ(θ)) 

             

(3.7) 

 
=

−1

√(2π)32J0
∫ d3θe−iJ.θ  ↔  ∂tϕ(θ). 

             

(3.8) 

Since now we have obtained a reasonable representation for solution and operators, we can now apply this to 

quantize our theory. Therefore, the commutation relations for (3.1) and (3.4) reads: 

 [ϕ(θ), ϕ(θ̃)]
θ0=θ̃0

= ∫ ∫
d3J

√(2π)32J0

d3J′

√(2π)32J′0

× (e−iJ.θ−iJ′.θ[a(J), a(J′)] + e−iJ.θ+iJ′.θ[a(J), a†(J′)]

+ eiJ.θ−iJ′.θ[a†(J), a(J′)] + eiJ.θ+iJ′.θ[a†(J), a†(J′)]) = 0 

             

(3.9) 

 [Π(θ), Π(θ̃)]
θ0=θ̃0

= − ∫ ∫ d3Jd3J
′

√J0J′0

2(2π)3

× (e−iJ.θ−iJ′.θ[a(J), a(J′)] − e−iJ.θ+iJ′.θ[a(J), a†(J′)]

− eiJ.θ−iJ′.θ[a†(J), a(J′)] + eiJ.θ+iJ′.θ[a†(J), a†(J′)]) = 0 

           

(3.10) 

and 

 [ϕ(θ), Π(θ̃)]
θ0=θ̃0

= −
i

(2π)3
∫ ∫ d3Jd3J′√

J′0

4J0
× (e−iJ.θ−iJ′.θ[a(J), a(J′)]

− e−iJ.θ+iJ′.θ[a(J), a†(J′)] + eiJ.θ−iJ′.θ[a†(J), a(J′)]

− eiJ.θ+iJ′.θ[a†(J), a†(J′)]) = iδ3(θ − θ̃). 

           

(3.11) 

In a similar manner, through a process of long and pain full calculations, we can derive similar commutation 

relations for operators (3.2) and (3.3) using relation (3.7) and (3.7). Therefore, we get 

 [a(J), a(J′)] = [a†(J), a†(J′)] = 0            

(3.12) 

 [a(J), a†(J′)] = δ3(J − J′)            

(3.13) 

To understand the physical meaning of this operators and their working, let us take a look at the Hamiltonian 

of our system. Therefore, from Eqn.(2.12), we have 

 
H =

1

2
∫ d3θ (Π2(θ) + Lϕ. Lϕ + m0

2ϕ2(θ)). 
           

(3.14) 

We can break our Hamiltonian into three pieces in order to simplify calculations as follows:  

 
H1 =

1

2
∫ d3θΠ2(θ) 
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(3.15) 

 
H2 =

1

2
∫ d3θLϕ. Lϕ 

           

(3.16) 

 
H3 =

1

2
∫ d3θm0

2ϕ2(θ). 
           

(3.17) 

Using definition (3.1) and (3.4), we get the following values of H1, H2 and H3  

 
H1 = −

1

2
∫ d3JJ0(e−2iJ0θ0

a(J)a(−J) − a(J)a†(J) − a†(J)a(J)

+ e2iJ0θ0
a†(J)a†(−J)) 

           

(3.18) 

 
H2 = −

1

2
∫ d3J

J2

J0
(−e−2iJ0θ0

a(J)a(−J) − a(J)a†(J) − a†(J)a(J)

− e2iJ0θ0
a†(J)a†(−J)) 

           

(3.19) 

 
H3 =

1

2
∫ d3J

1

J0
(e−2iJ0x0

a(J)a(−J) + a(J)a†(J) + a†(J)a(J)

+ e−2iJ0x0
a†(J)a†(−J)) 

           

(3.20) 

respectively. Therefore, adding those terms we get 

 
H =

1

2
∫ d3JJ0 (a(J)a†(J) + a†(J)a(J)). 

           

(3.21) 

Using relation (1.9), we can write the above Hamiltonian as 

 
H = ∫ d3J

EJ

2
(a(J)a†(J) + a†(J)a(J)). 

           

(3.22) 

It follows now that 

 [a(J), H] = Ea(J)            

(3.23) 

 

 [a†(J), H] = −Ea†(J)            

(3.24) 

which shows that operators a(J) and a†(J) annihilate and create a quantum of energy. 

 

IV. NORMAL ORDERING AND NUMBER OPERATOR 

 

We know since the study of quantum mechanics that the ordering of the operators is ambiguous and it 

affects calculations. To remove this ambiguity, we define normal ordering where creation operators stand to 

the left of annihilation operators. Thus, if we normal order our Hamiltonian, we get 

 HN.O = ∫ d3JEJa
†(J)a(J) = ∫ d3JEJN(J)              

(4.1) 

where N(J) = a†(J)a(J) is the number operator. From this,the total number operator for the system can be 

defined as 

 N = ∫ d3JN(J) = ∫ d3Ja†(J)a(J).              

(4.2) 

It now follows from the definition of number operator that 

 [a(J), N(J′)] = [a(J), a†(J′)a(J′)]              

(4.3) 
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 = [a(J), a†(J′)]a(J′)              

(4.4) 

 = a(J′)δ3(J − J′)              

(4.5) 

and 

 [a†(J), N(J′)] = [a†(J), a†(J′)a(J′)]              

(4.6) 

 = a†(J′)[a†(J), a(J′)]              

(4.7) 

 = −a†(J′)δ3(J − J′).              

(4.8) 

Thus, 

 [a(J), N] = [a(J), ∫ d3J′N(J′)]              

(4.9) 

 
= ∫ d3J′(a(J′)δ3(J − J′))            

(4.10) 

 = a(J)            

(4.11) 

and 

 
[a†(J), N] = [a†(J), ∫ d3J′N(J′)]            

(4.12) 

 
= ∫ d3J′ (−a†(J′)δ3(J − J′))            

(4.13) 

 = −a†(J).            

(4.14) 

The above calculation is just another way to show that a†(J) and a(J) raise and lower the number of quanta by 

one unit. 

V. ENERGY EIGENSTATES 

 

Consider the normal ordered Hamiltonian 

 H = ∫ d3JEJa
†(J)a(J).              

(5.1) 

The energy eigenstates of this Hamiltonian is 

 H|E⟩ = E|E⟩.              

(5.2) 

Thus, 

 E = ⟨E|H|E⟩              

(5.3) 

 = ⟨E| ∫ d3JEJa
†(J)a(J)|E⟩              

(5.3) 

 = ∫ d3JEJ⟨E|a†(J)a(J)|E⟩ ≥ 0.              

(5.5) 
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This yields that E ≥ 0 and we do not have to worry about negative energy states. Using relation (3.26) and 

(3.27), we have 

 [a(J), H]|E⟩ = EJa(J)|E⟩              

(5.6) 

 a(J)H|E⟩ − Ha(J)|E⟩ = EJa(J)|E⟩              

(5.7) 

 H{a(J)|E⟩} = (E − EJ){a(J)|E⟩}.              

(5.8) 

In a similar manner, we get 

 H{a†(J)|E⟩} = (E + EJ){a†(J)|E⟩}.              

(5.9) 

Since a(J) acts as an annihilation operator, their must exist a state with minimum energy due to relation (5.6). 

Thus 

 a(J)|Emin⟩ = 0.            

(5.10) 

Beyond this, we cannot lower our energy states further . This minimum energy state is known as vacuum state 

and can also be denoted by |0⟩. 

 

VI. GREEN’S FUNCTION 

 

Green’s function is fundamental in quantum field theory in studying the solutions of inhomogeneous 

differential equations where interaction between fields or particles takes place. The simplest case of Klein-

Gordon field with an external source J(θ) is  

 

 (LμLμ + m0
2)ϕ(θ) = J(θ)              

(6.1) 

and the corresponding Lagrangian is given by 

 
ℒ =

1

2
LμϕLμϕ −

m0
2

2
ϕ2 + Jϕ. 

             

(6.2) 

The Green’s function for a given inhomogeneous equation is defined as the solution of the equation with a 

delta source. Therefore, for Klein-Gordon equation, we have 

 (LμLμ + m0
2)G(θ − θ̃) = −δ4(θ − θ̃).              

(6.3) 

If G(θ − θ̃) is known, then we can write the solution of Eqn. (6.1) as  

 ϕ(θ) = − ∫ d4θ̃G(θ − θ̃)J(θ̃)              

(6.4) 

then 

 
(LμLμ + m0

2)ϕ(θ) = − ∫ d4θ̃(LθμLθ
μ

+ m0
2)G(θ − θ̃)J(θ̃)              

(6.5) 

 = − ∫ d4θ̃ (−δ4(θ − θ̃)) J(θ̃)              

(6.6) 

 = J(θ).              
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(6.7) 

If we Fourier transform the functions, it would turn the above partial differential equation into an algebraic 

equation. Therefore, define 

 
δ4(θ − θ̃) =

1

(2π)4
∫ d4Je−iJ(θ−θ̃) 

             

(6.8) 

and 

 
G(θ − θ̃) =

d4J

(2π)4
∫ e−iJ(θ−θ̃)Ĝ(J). 

             

(6.9) 

Substituting above values in Eqn. (6.3), we get 

 
Ĝ(J) =

1

J2 − m0
2. 

           

(6.10) 

Thus 

 
G(θ − θ̃) =

d4J

(2π)4
∫

e−iJ(θ−θ̃)

J2 − m0
2 . 

           

(6.11) 

Note that the above Green’s function has poles at J0 = ±EJ. This poles can be removed using advanced Green’s 

function. We would not go into details as it is not the aim of our paper, although, readers can refer to [8] (pg. 

194) to make themselves familiarise with the advance Green’s function corresponding to the Cartesian Klein-

Gordon equation  

 

VII.  COMPLEX KLEIN-GORDON FIELD EQUATION 

 

In complex Klein-Gordon field theory on R × S3 topology, we have 

 (LμLμ + m0
2)ϕ(θ) = 0              

(7.1) 

 (LμLμ + m0
2)ϕ†(θ) = 0              

(7.2) 

where ϕ(θ) ≠ ϕ†(θ). We can express ϕ(θ) and ϕ†(θ) in terms of two distinct spin zero scalar fields ϕ1(θ) and 

ϕ2(θ) which are hermitian. Thus 

 
ϕ(θ) =

1

√2
(ϕ1(θ) + iϕ2(θ)) 

             

(7.3) 

 
ϕ†(θ) =

1

√2
(ϕ1(θ) − iϕ2(θ)). 

             

(7.4) 

Inverting the above relations yields  

 
ϕ1(θ) =

1

√2
(ϕ(θ) + ϕ†(θ)) 

             

(7.5) 

 
ϕ2(θ) =

−i

√2
(ϕ(θ) − ϕ†(θ)). 

             

(7.6) 

We can now express Eqn. (7.1) and (7.2) in terms of ϕ1(θ) and ϕ2(θ) to get 

 (LμLμ + m0
2)ϕ1(θ) = 0              

(7.7) 

 (LμLμ + m0
2)ϕ2(θ) = 0.              

(7.8) 
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Corresponding Lagrangian from which we can derive the above equations of motion is  

 
ℒ =

1

2
Lμϕ1Lμϕ1 +

1

2
Lμϕ2Lμϕ2 −

m0
2

2
(ϕ1

2 + ϕ2
2) 

             

(7.9) 

 
=

1

2
Lμϕ†Lμϕ − m0

2ϕ†ϕ. 
           

(7.10) 

If we write solutions in terms of ϕ1(θ) and ϕ2(θ) the we can define the conjugate momenta as 

 
Πi(θ) =

∂ℒ

∂ϕ̇i(θ)
= ϕ̇i(θ) 

           

(7.11) 

where −= 1,2. Commutation relations can be given by  

 {ϕi(θ), ϕj(θ̃)}
θ0=θ̃0 = {Πi(θ), Πj(θ̃)}

θ0=θ̃0 = 0            

(7.12) 

 

 {ϕi(θ), Πj(θ̃)}
θ0=θ̃0 = iδijδ

3(θ − θ̃).            

(7.13) 

And finally, the Hamiltonian can be given by 

 

 ℋ = ∑

i

(Πiϕi) − ℒ            

(7.14) 

 
= ∑

i

(
1

2
Πi

2 +
1

2
Lμϕi. Lμϕi +

m0
2

2
ϕi

2). 
           

(7.15) 

Now, on the other hand, if we write our solution in terms of ϕ and ϕ†, we can define conjugate momenta as 

follow: 

 
Π(θ) =

∂ℒ

∂ϕ̇†(θ)
= ϕ̇(θ) =

1

√2
(ϕ̇1(θ) + iϕ̇2(θ)) =

1

√2
(Π1(θ) + iΠ2(θ)) 

           

(7.16) 

 
Π†(θ) =

∂ℒ

∂ϕ̇(θ)
= ϕ̇†(θ) =

1

√2
(ϕ̇1(θ) − iϕ̇2(θ)) =

1

√2
(Π1(θ) − iΠ2(θ)). 

           

(7.17) 

Equal time commutation relations are given by  

 [ϕ(θ), ϕ(θ̃)]
θ0=θ̃0 = [ϕ(θ), ϕ†(θ̃)]

θ0=θ̃0 = [ϕ†(θ), ϕ†(θ̃)]
θ0=θ̃0 = 0            

(7.18) 

 [Π(θ), Π(θ̃)]
θ0=θ̃0 = [Π(θ), Π†(θ̃)]

θ0=θ̃0 = [Π†(θ), Π†(θ̃)]
θ0=θ̃0 = 0            

(7.19) 

 [ϕ(θ), Π†(θ̃)]
θ0=θ̃0 = [ϕ†(θ), Π(θ̃)]

θ0=θ̃0 = iδ3(θ − θ̃).            

(7.20) 

Using (7.10), we can write the Hamiltonian density as 

 ℋ = Πϕ̇† + Π†ϕ̇ − ℒ            

(7.21) 

 = Π†Π + Lμϕ†. Lμϕ + m0
2ϕ†ϕ            

(7.22) 

and thus  

 

 H = ∫ d3θ(Π†Π + Lμϕ†. Lμϕ + m0
2ϕ†ϕ)            

(7.23) 
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Solutions of Eqn. (7.1) and (7.2) can be given as 

 
ϕi(θ) = ∫

d3J

√(2π)32J0
(e−iJ.θai(J) + eiJ.θai

†(J)). 
           

(7.24) 

Similarly, the solutions of Eqn. (7.1) and (7.2) can be given by 

 
ϕ(θ) = ∫

d3J

√(2π)32J0
(e−iJ.θa(J) + eiJ.θb†(J)) 

           

(7.25) 

 
ϕ†(θ) = ∫

d3J

√(2π)32J0
(e−iJ.θb(J) + eiJ.θa†(J)) 

           

(7.26) 

where 

 
a(J) =

1

√2
(a1(J) + ia2(J)) 

           

(7.27) 

 
b(J) =

1

√2
(a1(J) − ia2(J)) 

           

(7.28) 

Commutation relations for annihilation and creation operators can be given as  

 [ai(J), aj
†(J′)] = δijδ

3(J − J′)            

(7.29) 

 [a(J), a†(J′)] = [b(J), b†(J′)] = δ3(J − J′).            

(7.30) 

 

All other commutation relations are zero. 

 

VIII. CONCLUSION 

 

In this paper, we have established R × S3  Klein-

Gordon field theory for both complex and scalar fields. 

Furthermore, corresponding Hamiltonin and 

commutation relations within operators are derived. 

This approach to Klein-Gordon field theory will be 

important in the problems with angular dependence 

instead of Mikowskian distance. An example of such 

problem with angular dependence can be found in 

the beginning of [7].  
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