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ABSTRACT 

The power system's operating point will be less predictable as a result of these 

adjustments. Designing emergency controls offline via lengthy simulations has 

long been the norm. New sophisticated “wide-area emergency control 

algorithms” are needed since power system for the future is likely to vary more. 

The final line of defense for grid security and resilience is emergency control of 

the power system. For the most part, existing emergency response plans are 

developed off-line, using a “worst-case” scenario or a handful of representative 

operating situations. As the level of uncertainty and variability in 

contemporary electrical grids rises, these systems face considerable challenges 

in terms of adaptability and resilience. “Deep reinforcement learning (DRL)” 

for complex power systems was used in this thesis to build unique adaptive 

emergency control techniques that make use of DRL's non-linear 

generalization capabilities and high-dimensional feature extraction. 

“Reinforcement Learning for Grid Control (RLGC)” is a new open-source 

platform that was created to aid in the advancement and assessment of “DRL 

algorithms” for controlling electricity systems. There is a description of the 

emergency control systems for dynamic generator braking as well as platform 

and DRL-based under-voltage load shedding. The created DRL approach is 

tested for its potential to manage a wide range of simulation situations, 

uncertainty in model parameters, and noise in data. 

Keywords: Emergency Control, Deep Reinforcement Learning, Transient 

Stability Dynamic Breaking, Load Shedding 

 

I. INTRODUCTION 

 

A. Overview 

Owing to rising uncertainty, complexity, and data 

dimensions in power systems, traditional approaches 

typically hit bottlenecks while trying to handle 

control and decision issues. Thus, data-driven 

strategies for fixing such challenges are being 

intensively investigated. “Deep reinforcement 

learning (DRL)” is one of these data-driven 
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methodologies and is recognized as actual “artificial 

intelligence (AI)”. DRL is a mix of “reinforcement 

learning (RL)” and “deep learning (DL)”. This branch 

of study has been employed to handle a broad variety 

of complicated sequential decision-making 

challenges, including those in power systems. This 

study initially discusses the core principles, models, 

methods, and approaches of DRL. The applications in 

power systems are then examined, comprising the 

electricity market, demand response, operational 

control, and energy management. In addition, 

current breakthroughs in DRL include the merging of 

RL with other classical approaches and the potential 

and problems of applications in power systems are 

highlighted as well. 

The second is the programming approach, such as 

mixed integer programming [1], [2], dynamic 

programming [3], power system is a dynamic, 

complex, large-scale network of electrical 

components. Power systems have gone through many 

decades of evolution. During this period, economic, 

technical, political, and environmental motivations 

have converted conventional grids into more 

sophisticated, resilient, sustainable, and efficient 

smart grids [4] – [6]. Smart grids leverage bi-

directional energy flow accompanied by bi-

directional details flow among all the players, 

including manufacturers, consumers, distribution and 

transmission system operators, and demand response 

aggregators [6], [8]. Such variables have caused issues 

to the electricity grid from diverse viewpoints. 

Firstly, the high penetration of renewable power 

provides higher volatility to a power system. 

To tackle these difficulties, effective procedures are 

necessary for planning and controlling the grid. This 

continual change of networks leads to greater 

unpredictability and difficulty in both the 

commercial transactions and the actual physical flows 

of power [9].  

 

 

B. Introduction Deep-Reinforcement Learning 

DRL integrates deep learning's sensing capability with 

reinforcement learning's decision-making capability. 

It is a form of AI that is more akin to human thought 

and is widely recognized as true AI. Fig. 1.1 illustrates 

the basic framework of DRL. Deep learning gathers 

information about the target observation from the 

environment and offers state detail about the present 

environment. 

 

 
Fig. 1.1: DRL Framework 

 

C. DRL Algorithms 

DRL challenges may be phrased as optimization, 

planning, management, and control concerns. 

Solution methods RL, e.g. “Q-learning”, the Q 

function’s iteration procedure is as displayed in [10], 

whereas it will update as displayed in DRL [10]. The 

goal function may be described as [11] at this moment. 

The policy-based approaches directly optimize the 

quantity of interest while staying stable under the 

function approximations at each step by redefining 

the policy and calculating the value according to this 

new policy until the policy converges. At first, the 

objective function’s gradient is derived as policy 

parameters as indicated in [11], and then the weight 

matrix will update using [12]. 

D. Applications in Power System 

After years of study, several articles have been 

published regarding the uses of DRL in power systems, 

and most of them were published after 2018. These 
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applications cover a broad variety of optimization 

issues, decisions, and control, in the power system, 

including electricity market, demand response, 

operational control, energy management, and many 

more. 

 
Fig. 1.2: Main DRL algorithms and their inter-

relationship 

 

In conclusion, DRL and its applications in the power 

system still confront numerous potential problems. 

These will provoke additional attention and inquiry, 

and there will certainly be more startling 

breakthroughs in the future. 

 

II. LITERATURE REVIEW 

 

A. Overview 

In the literature, there are several examples of crises 

and preemptive management methods. It will be 

examined in this section which is the most crucial of 

all. The literature frequently makes use of one of two 

ways to choose remedial control measures. The first is 

sensitivity approaches, and the second is Optimal 

Power Flow (OPF) approaches. Emergency control 

measures are selected using sensitivity approaches, 

which are determined by the stability index’s 

sensitivity when compared to the controls that are 

now accessible. 

 

 

B. Sensitivity Approach 

To find control actions, several linear methods have 

been proposed. From a power system model, it is 

possible to calculate the sensitivities of distinct 

measures of stability about the available control 

inputs, and then to implement these results to 

improve stability. These procedures are often 

extremely quick, which makes them excellent for use 

in emergencies. They are unsuitable for huge changes 

in configuration due to the failure of the linear 

assumption. 

According to [3], voltage stability was improved by 

employing a control methodology that relied on 

descriptor load flow, Jacobian's least singular value. It 

relies on the sensitivity of reactive and active powers, 

and it is remedied utilizing a strategy that is based on 

the continuation of previous actions.  

C. Optimal Power Flow Approach 

The OPF may be utilized to reveal adequate 

emergency controls for a given situation. When 

compared to the sensitivity method, which relies on a 

linearization of the system, the OPF may encompass 

the entire model and thus take into consideration the 

nonlinear effects. Several stability indices may be 

applied to the “OPF formulation” to accommodate 

stability margins to achieve the desired level of 

resistance to fluctuation resistance. This is why the 

sensitivity methodologies have been largely replaced 

by the OPF technique in the scientific literature. The 

OPF is utilized to confront the economic challenges 

associated with the operation of a power system [15]. 

Consequently, “OPF formulations” such as “security-

constrained OPF (SC-OPF),” “Integrate Security 

against Eventualities,” and “Security-Constrained OPF 

(SC-OPF)” is used. The SC-OPF is a computationally 

intensive device that is utilized to retain the power 

system operating in a normal state of operation. On 

the other hand, the OPF may also be utilized to 

restore the cohesion of a power system [16], if 

necessary. A set of stability constraints may be 

incorporated into the OPF to compute the corrective 
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activity required to locate a new stable operating 

point. 

According to [17], a method for revamping a system 

to offer damping to prevent small-signal instability 

without amending the closed-loop power oscillation 

damping controllers has been discovered and 

implemented. In [18], the topic of security against 

unforeseen events was also discussed. Because of the 

computational challenges involved, the OPF scheme 

for retaining small-signal stability is generally not 

adequate for emergency control in huge systems in 

general. 

D. Operational Envelope 

When managing power systems, it is possible to use 

an operational envelope that is estimated off-line, like 

that explained in [18], which addresses voltage and 

temperature stability. It is possible to implement 

emergency controls as controls that guide the 

operating point into the security region if the 

functional space of the power system has stability 

restrictions defined. With the help of specified 

contingencies, [19] developed a method for evaluating 

the boundaries of voltage, temperature, small-signal, 

and transient stability under specified conditions, and 

the results are displayed as a graph. 

 

III. METHODOLOGY 

 

A. Overview 

All countries' national and economic security depends 

on reliable and resilient energy. Anticipated (e.g. N-1) 

threats have been well protected by a wide range of 

preventive management measures. In the preceding 

two decades, however, the United States, India, Brazil, 

and Europe all experienced multiple large-scale 

blackouts [1–3]. Emergency control has long been 

recognized as essential for limiting the scope and 

impact of power outages and other significant 

blackouts. Generation tripping or dispatch, dynamic 

braking, controlled system separation, and load 

shedding. 

 

B. Problem Statement 

To create new schemes that have great adaptiveness 

and resilience to handle the uncertainties and changes 

that occur in current electricity grids. 

C. Research Objectives 

To answer our issue statement, the present research 

has the below-mentioned objectives: 

1. Developed an innovative and able to adapt 

“Emergency Control Techniques” utilizing “Deep 

Reinforcement Learning (DRL)” by using the 

non-linear generalization capabilities and high-

dimensional feature extraction of DRL for 

“complex power systems.” 

2. DRL's ability to withstand a wide range of 

simulation situations, the uncertainty of model 

parameters, and data noise is examined in the 

second phase of the research project. 

3. Third, extensive case studies have shown that 

both the IEEE 39 bus and the two areas, four 

machine systems have excellent performance and 

resiliency. 

D. Developing Algorithms For Grid Control 

Reinforcement Learning for Grid Management 

(RLGC) is an open-source platform that has been 

created and released with the aim of designing, 

testing, and assessing RL algorithms for power system 

control [20]. Open-source benchmarks (like Image 

Net and Open AI Gym) are significant driving factors 

in machine learning improvement (including RL). 

RLGC's purpose is to provide a comparable open-

source benchmark for RL in power grid management. 

Fig. 3.1 depicts the architecture of this open platform. 

It consists of two major sections:  

1. The RL module; and  

2. The power system simulation and control 

module.  

Two configuration files are utilized to describe the 

settings for the dynamic simulation of the power 

system as well as the RL training parameters.  
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Fig. 3.1: An open platform for the development, 

skilling, and benchmarking of real-time control 

algorithms for power systems. 

E. Implementation Details and Usage 

RL module contains a Power DynSimEnv python 

class, which is created by widening the OpenAI 

Gym's standard basic environment Env class, which is 

named Power DynSimEnv. Control module and 

power system simulation developers are working on 

creating a wrapper for the Inter PSS simulation 

functions and capabilities, which will be used to 

interface with the PowerDynSimEnv environment in 

the Real-Time (RL) module. When applied to 

Algorithm 1, it consists of various key functions that 

represent the interactions between the environment 

and the learning agent (AL1). 

A typical approach for testing algorithms of DRL and 

training NN models for grid control on the 

established platform consists of two stages: (1) the 

testing stage for verifying the taught NN and (2) the 

training stage for learning. The DRL will execute NN 

learning via training steps high in number throughout 

the training stage. It learns an optimum policy via 

exploitation and exploration and stores the best-

performing NN settings automatically. 

Fig. 3.2 illustrates the methodology for utilizing a grid 

control platform for testing and training the DRL 

model for grid control.  

 
Fig. 3.2 shows a flowchart of a reminiscent approach 

for utilizing the platform to train and evaluate RL 

model(s) for grid control 

F. DRL Algorithms For Grid Emergency Control 

We explored and built control schemes based on DRL 

for two common forms of grid emergency control 

using the established platform stated in the preceding 

chapter: 

1. Dynamic generator brake [8]; and 

2. Low-voltage load shedding 

Design and execution specifications for both 

emergency control systems' DRL algorithms will be 

covered in the following subchapters. These details 

will include neural networks, observations, actions, 

and reward systems, among other things. 

 

IV. SIMULATION, TEST, AND RESULTS 

 

Throughout the rest of the thesis, the same time steps 

are utilized in the test cases to ensure consistency. It 

took 9 hours to complete the training procedure on a 

Linux workstation with 32 AMD Opteron 1.44 GHz 

Processors and 64 Gigabit RAM, with no parallelism, 

on a computer. Our technique robustly learns 

effective policies when the parameters are properly 

tuned. Fig. 4.1 depicts the moving average of the 

reward over the course of the training. The decrease 
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observed at the 3600th episode, as depicted in Fig. 4.1, 

is associated with a significant negative reward as a 

result of one “bad” excursion during training. The 

instability of the DQN algorithm is not indicated by 

this result, on the contrary. For the DQN algorithm to 

continue to be trained, the DQN model must learn to 

avoid the poor control actions that it has encountered 

during the training process. The DQN model 

eventually converges to the local optimum solution. 

We have done a lot of testing, and we have found that 

all of the local optimums that we found are excellent 

solutions. 

T

 
Fig. 4.1: The rewards’ moving average throughout the 

DRL skilling 

Using a new and much larger set of scenarios, 

including a variety of combinations of fault location, 

power flow condition, and fault duration, we test the 

structural rigidity of the culminating control policy 

(law) after the DRL model training. 

1. A variety of power flow predicaments are 

tested, which would include (a) the original 

power flow case for learning and training, (b) 

each load in the system decreases or increases 

by 50 MW, 100 MW, and 180 MW, and (c) the 

tie-line power flow decreases or increases by 20 

MW, 40 MW, 70 MW, and 100 MW between 

buses 7 and 10. Because the two tie-lines are 

the only means of connecting areas 1 and 2, it is 

possible to adjust the tie-line power flow by 

raising the generators’ actual power output in 

one area while diminishing the generators’ 

actual power output in the other area in the 

appropriate manner to achieve the desired 

result; 

2. The problem location is picked for all the 10 

buses; 

3. The fault time is determined in a random 

manner between 0.3 s and 0.7 s. 

The two-area power system is estimated to be able to 

withstand a fault for up to 0.583 seconds without 

losing stability without the use of dynamic braking. 

As an alternative, the system may remain stable if it is 

used in conjunction with the control rule learned by 

DRL in the various situations described above (we test 

220 distinct scenarios). To make the inputs to the 

DRL-based control system more pragmatic, we add a 

zero mean as well, one percent Gaussian-distributed 

noise to the data that is supplied to the trained NN. 

The trained control based on DRL was compared to 

the standard 2-dimension Q-table-based “Q-learning” 

approach in [8], which we found to be superior. 

When sound is added to the observations, the 

findings reveal that the control based on DRL 

outperforms the traditional “Q-learning”-based 

control for all of the testing situations. 

Fig. 4.2 (a) and (b) depict two illustrations of the RB 

actions for various power flow and faults conditions, 

for both DRL-based and traditional “Q-learning”-

based control systems. As shown in Fig. 4.2 (a), the 

relative rotor angle and generator 3 speed ( without 

and with RB actions) are depicted, as are the RB 

actions, for an intermittent defect at bus 4 with a 

period of 0.7 seconds, under the power flow condition 

that each load raises by 100 MW as compared to the 

power flow scenario used to train the operators. 

Under the original power flow situation for training, 

Fig. 4.2 (b) depicts the speed of generator 3 as well as 

the relative rotor angle and also the RB actions for a 

defect at bus 9 with a period of 0.6 seconds, and the 

RB actions for a defect at bus 9. Fig. 4.2 (a) and (b) 

show that if no RB actions are provided (red line), the 

system loses stability; however, when both DRL-

based (blue line) and traditional “Q-learning”-based 
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control (green line) provide RB actions, the system 

can maintain cohesion. 

However, the control based on DRL offers 

unquestionably greater control actions as compared to 

the traditional “Q-learning”-based control, because 

the control based on DRL operates the RB in shorter 

time steps and, as a result, earns greater rewards. As 

illustrated in Fig. 4.2 (a) and (b), the control based on 

DRL would perform various RB actions at various 

times in each of the two circumstances. Every one of 

the outcomes displayed in Fig. 4.2 demonstrates the 

robustness, effectiveness, and adaptability of the DRL 

algorithm. However, it must be kept in mind that we 

also looked at different pre-fault periods; under 

normal circumstances, the control based on DRL does 

not apply any braking to the vehicle. 

A. Under-Voltage Load Shedding 

As shown in Fig. 4.3, an orchestrated UVLS scheme 

against FIDVR was constructed using the established 

platform and DRL algorithm, and the scheme was 

assessed on an amended IEEE 39-bus system [21], 

where step-down transformers were added to load 

buses 4, 7, and 18. A mix of constant impedance loads 

[23] and single-phase A/C motors [22] is used to 

model the original loads, which have been relocated 

to the transformers’ low-voltage side. 

It is necessary to use the OpenAI Baselines version of 

the DQN method to establish a closed-loop control 

strategy for implementing load shedding at buses 4, 7, 

and 18 to prevent FIDVR and attain the voltage 

recovery criteria displayed in Fig. 4 to prevent FIDVR. 

According to this study, the reward function 

coefficients (9) are as follows:c1 = 260, c2 = 150, and 

c3 = 3. It is observed that the voltage magnitudes at 

buses 4, 7, 8, and 18 and the step-down transformers’ 

low-voltage sides connected to them are greater than 

zero and that the proportions of loads served by buses 

4, 7, and 18 are greater than one; therefore, Nm = 11. 

The most recent ten observation states are stacked 

and being utilized as a starting point. 
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Fig. 4.2: The system's relative rotor angle and the 

generator speed evolution: Both buses 4 and 9 have a 

fault of 0.7 seconds, which means that Ni , the nodes 

in the input layer is 110 in number and Nr is 10 

 

At each action time step, the control action for buses 

4, 7, and 18 is either 1 (load shedding) or 0 (no-load 

shedding) (shedding 20 percent of the initial total 

load at the bus). This means that at each action step, 

there are a total of 8 possible combinations of 

potential discrete control actions, which corresponds 

to a total of 8 nodes in the output layer No . The 

following are some other critical hyperparameters to 

consider: 1,200,000 total interaction steps were used 

in the training; Nh1 = Nh2= 256 nodes were used in 

the hidden layers; the learning rate was η = 0.00005; 

the learning rate was 0.00005; the minimum 

exploration rate was 0.02. 

After a flat start of dynamic simulation, each episode 

begins with a short-circuit fault implemented 

randomly at bus 4, 15, or 21 with a randomly-chosen 

fault duration of 0.0 s (no-fault), 0.05 seconds, or 0.08 

seconds; and the fault is self-cleared at the end of the 

simulation at 1.0 s of the simulation time. By selecting 

the fault location and duration at random, the 

training agent can ensure that the system interacts 

with it both with and without the presence of FIDVR 

conditions. No paralysis was experienced during the 

training procedures, which took 21 hours on the same 

Linux workstation that was utilized in the earlier case. 

Figure 4.4 depicts the rewards’ moving average 

received throughout the training period. 

 
Fig. 4.3: The moving average of the awards received 

throughout the DRL load shedding management 

skilling for the 39-bus system. 

Using a set of 960 test situations containing various 

combo of power flow circumstances, fault locations, 

dynamic model parameters, and fault duration from 

the skilling contexts, we evaluated the structural 

rigidity and adaptiveness of the trained DRL agent. (1) 

four distinct load levels (80%, 90%, 110%, and 120%); 

(2) two distinct sets of critical dynamic parameters for 

the A/C motor model, one about (assumed) true 

values and the other incorporating a 10% rise in the 

A/C motor stalling performance parameters T stall 

and V stall[39]. Keep in mind that the A/C motor 

dynamic model is an aggregated model that displays a 

huge number of physical A/C in the real world, and as 

a result, its parameters may contain a variety of errors; 

(3) 30 distinct fault sites (corresponding to buses 1 

through 30); and (4) four different fault length 

periods (corresponding to 0.02, 0.05, 0.08, and 0.1 s). 

For the UVLS relay load shedding scheme, we have 

tested the previously trained load shedding control 

based on DRL, along with an MPC methodology that 

utilizes a mixed integer programming optimization to 

address the issue posed by (6). Each of the three 

control approaches has been assessed in terms of the 

reward and the execution time specified in the design 

(9). The reward differences (i.e., the DRL’reward 

minus the reward of a comparative approach) for each 

test situation are computed to demonstrate the 

comparison findings; a positive number indicates that 

the DRL technique is better for the corresponding test 

case, and a negative number indicates that the 

comparative methods are superior. 462 of the 960 test 
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situations could result in FIDVR difficulties if nothing 

is done, necessitating the use of load shedding, 

according to the results.  

The reward difference’ histogram between the UVLS 

relay and the DRL-based control is depicted in Fig. 

8(a). This means that the control based on 

DRLoutperformed the UVLS relay in 92.22 percent of 

the 462 test cases. Test Set A contains 229 test 

scenarios with the same dynamic characteristics as 

the training scenarios, whereas Test Set B contains 

233 test scenarios with dynamic load parameters 

Tstall and Vstall that are 10 percent higher than the 

training scenarios (Test Set B). It is the primary goal 

of Test Set B to replicate the modeling gaps (or 

uncertainties) that can occur in real-world 

applications. It should be noted that the DRL 

approach based on DQN is model-free, whereas 

methods based on MPC rely strongly on the 

correctness of the model; as a result, it is critical to 

address modeling errors in applications based on MPC. 

 

 

 

 
Fig. 4.4. Histogram of the reward gap among (a) UVLS 

and DRL for the \s462 test cases that need load 

shedding; (b) MPC and DRL for the 229 test cases in 

\sTest Set A; and (c) MPC and DRL for the 233 test 

cases in Test Set B. 

 

For Test Set A, Fig. 10 (b) portrays the reward 

difference’ histogram between the DRL and the MPC, 

which reveals that DRL-based control outperforms 

the MPC in a slight majority of the test situations (the 

DRL outperforms the MPC in 57.22% of the test 

situations). The reward difference’s histogram 

between the MPC and DRL techniques is shown in 

Fig. 10 (c) for Test Set B, and it reveals that the DRL 

approach outperforms the MPC technique in 90.56 

percent of the test situations. Fig. 10 (b) and (c) 

illustrate considerable merit of the newly developed 

DRL approach over the MPC technique: the MPC 

method's effectiveness is highly dependent on the 

correctness of the system model, whereas DRL is 

model-independent and more resilient to modeling 

errors.  

Calculation times for the DRL and MPC algorithms 

are summarized in Table 4.1. UVLS relays do not have 

a calculation time because they are either 

instantaneous or have a preset delay. The DRL 

method needs significantly less implementation time 

than the MPC technique, as the NN handling the 

complex mapping from observed states to actions is 

much more efficient in the DRL approach than the 

time-consuming, complex optimization solution 

procedures in the MPC technique. With a 0.13 second 

response time during an eight-second simulation 

event, the DRL technique can meet real-time 
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operating prerequisites and enables grid operators to 

validate control actions as needed. 

Table 4.1: Comparison of The MPC And DRL's 

Average Computation Time 

 
A new test scenario with a 120 percent load level is 

depicted in Figs. 11 and 12 to further demonstrate the 

advantages of the DRL technique. The effectiveness of 

the MPC, DRL, and UVLS relay control schemes are 

all compared for this new test scenario, which is 

shown in Fig. 13. There is a 0.1-second duration time 

for the fault to occur on bus 3, and the dynamic 

parameters V stall and T stall both rises by 10% as a 

result of the fault. The data is also contaminated with 

zero mean, one percent Gaussian-distributed noise to 

render the testing for the load shedding control based 

on DRL more realistically conducted This test 

scenario yields total rewards of -1271.61 points for 

the DRL, -1548.14 points for the MPC, and - 3778.80 

points for the UVLS relay control, respectively. For 

various load shedding controllers, the voltage profiles 

at buses 4, 7, and 18 are shown in Fig. 11.  

For various relay control schemes, the voltage profiles 

at buses 4, 7, and 18 are displayed in Fig. 12. The 

amount of load shedding at buses 4, 7, and 18 is 

shown in Fig. 12. It is considerable to keep in mind 

that the additional one percent noise does not affect 

the decision-making or the effectiveness of the DRL-

based control. Both of the following factors 

contribute to the large reward difference (2507.19) 

between the UVLS relay and DRL: 1) Compared to 

the UVLS relay, the DRL sheds a considerably smaller 

amount of load. The figure illustrates that, when 

compared to the UVLS relay, the DRL sheds 60 

percent (120 MW) less load for bus 4 (the DRL 

technique does not shed any load at bus 4) and 20 

percent (14.64 MW) less load for bus 18; 2) when 

compared to the UVLS relay technique, the DRL 

method leads to a significantly better voltage recovery 

profile, as illustrated in Figure. With the control 

based on DRL, the voltages at all three load buses 

with the A/C motors quickly recover above the 

voltage recovery envelope permitted by the operating 

standard, allowing for faster voltage recovery.  

The UVLS relay mechanism, on the other hand, is 

unable to recover the voltages at the three buses even 

3 seconds after the fault has been resolved, causing 

the UVLS relays to shed a higher load at these three 

buses as a result. Because the DRL technique sheds 

less load than the MPC method while still meeting 

the operating standard criteria, the reward difference 

(276.53) between the two techniques is primarily due 

to this fact. The figure displays that the DRL 

technique reduces bus 7 load by 20 percent (26 MW) 

and bus 18 load by 20 percent (14.64 MW) when 

compared to the conventional technique. Because the 

MPC approach continues to suffer from fallacious 

crucial model parameters (10 percent divergence from 

the genuine values), the MPC approach results in 

higher load shedding (10 percent difference from the 

true values). Be aware that even though the Figure 

displays that the MPC technique’s voltage recovery 

profiles are a little bit greater than those of the DRL 

method (at the expense of additional loads shed), this 

does not result in a higher reward because a voltage 

recovery profile that is higher than the standard 

voltage recovery standard is not rewarded as per the 

rules (9).  

We conclude that this is appropriate given that the 

ultimate goal of UVLS controls is to recover the 

voltage over the envelope allowed by industry 

standards with the least amount of load shedding 

possible In summary, when comparing the DRL 

approach to the MPC control techniques and UVLS 

relay, the DRL approach displays considerable 

improvements in terms of resilience and adaptability. 

The DRL model may also deliver control actions 

incredibly quickly (0.13 s on average) in emergencies, 

making it a good candidate for use in real-time 

emergency control situations. 
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Fig. 4.5: Voltage profiles and required voltage 

recovery envelope for different types of loads 

shedding control methods: a) bus 4; b) bus 7; c) bus 18 

 

V. DISCUSSIONS 

 

There are numerous key issues for DRL use in general, 

and notably in respect to its usage in power system 

emergency control. 

 

 

 
Fig. 5.1: Load fractions online when load shedding is 

managed via MPC, DRL, or UVLS relay mechanisms: 

(a) bus 4; (b) bus 7; (c) bus 18. The Proportions are 

multiplied by the interim busload, expressed in 

megawatts. 

 

VI. CONCLUSIONS AND FUTURE WORK 

 

In the event of a large disruption or a severe 

emergency, a reliable emergency control system is 

very essential. Building “adaptive emergency control 

systems” using DRL is the focus of this dissertation. 

As part of an effort to speed up the development and 

testing of grid control algorithms, an open-source 

platform called RLGC has been created. We seek to 

serve as a starting point for future research in this 

field by releasing it as an open-source project. 

“Dynamic generator brake and UVLS” are two typical 

emergency control solutions built on the platform. It 

was found that both “DRL-based emergency control 
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schemes” are adaptive and robust (to new scenarios, 

noise in observations, and model parameter 

uncertainty) as well as superior to MPC-based 

emergency control, conventional “Q-learning,” and 

other prevailing protection mechanisms. To 

efficiently tackle control issues linked with increased 

uncertainties in power systems, recent innovations 

like deep meta-reinforcement learning and safe 

exploration are being used. 
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