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ABSTRACT 
This paper proposes the design of quadruple-tank process due to the unique multivariable 
MIMO system under minimum and non-minimum scenario with respect to the valve ratio. 
This model is then implemented the distributed estimation algorithm with decentralized 
control. The inputs are set in divergent gains of pumps while the four-tank process is 
interconnected so that the stability properties are different, making the usage of 
decentralized control is reasonable. The number of outputs is designed the same as those 
of inputs which are also that of distributed Luenberger observer with the continuous 
linearized dynamical system. This distributed comprises local estimates only in certain 
output, meaning that it would lead to insufficiency so that the neighbouring links under 
some network topologies are required in the dynamical system. This concept fortunately 
works in two different characteristic stability of the tank process regarding estimating the 

states. This success leads to the further research of the more large-scale complex system. 

Keywords: Decentralized Control, Distributed Estimation, Quadruple-Tank Process, 
Sensor Networks 

 
I. INTRODUCTION 

 
The design dealing with complex multivariable dynamical 
systems have been attracting a lot of interest in the field of 
control theory, such as quadruple-tank process [1] and [2]. This 
scaled structure is particularly suitable in measuring the 
performance limitation according to the identification batch-
algorithm model [3] of the complex control system with the 
non-minimum mentioned [4] as the elaboration of [5]. Since the 
system is interconnected meaning that one could influence 
another, this also leads to the importance of guaranteeing the 
poles in the left-plane. Several control theories have been 
proposed to handle this with the mathematical model built in 
from the sliding-mode [6], robust control [7], or the more 
advanced predictive control as done in [8]. Furthermore, it 
could be generalized with the structure of decentralized control 
as stated in [9] and [10] with the capable of linearizing the non-
linear dynamics so that the location of the stability could be 
well-administered. This quadruple tanks refers to what was 

done by [2] with two divergent scenarios of the stable minimum 
and the difficult with the non-minimum phase. Notwithstanding, 
this plant is applied to test based on the estimation concept of 
the proposed filtering module [11] and distributed estimation 
based on the classical Luenberger observer as conducted in [12] 
and [13] for the linear system. This distributed algorithm 
currently has been widely studied as a new window in the 
control field to locally predict the states through neighbouring 
links. The history of distributed is succeeded by the 
decentralized done in [14] with the interconnected system 
based on the classical Kalman filtering and its distributed in 
[15]. Furthermore, the track fusion applying the cross 
covariance was also initiated by [16] with the evolution of the 
maximum likelihood (ML) as [17]. The consensus of the 
distributed is well-defined in [18] whereas the consensus 
filtering is conducted in [19] with the same Kalman filtering 
and its pseudo estimates [20] and decoupling control [21], even 
with the augmented estimates from the fusion itself [22]. The 
ideas behind the research conducted in [12] are used further in 
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[23] being inspired by the estimator in the domain of discrete-
time applying deep elaboration of the observability connection 
as stated in [24]. The required conditions are suggested in [24] 
regarding the necessary and sufficient to build the augmented 
observer with appearance of the distributed estimation using the 
concept of detectability [5] that for certain node 𝑖 paralleling 
with the output 𝑖, it needs the information from the connected 
node from the topology. The construction of the paper is then 
initiated with the mathematical modelling along with the 
decentralized control. The following is the distributed observer 
and the numerical scenarios to show the proposed ideas under 
some criteria regarding the limitation ended by the conclusion. 
 

II.  MATHEMATICAL DESCRIPTION 
 
The scheme of quadruple-tank process comprising four 
interconnected tanks being driven by two pumps as depicted in 
Fig. (1). This tank process includes multivariable-input 
multivariable-output (MIMO) plant with two inputs and 
outputs, constituting the input (𝑢)  voltages to both pumps 
(𝑣φ, 𝑣ϵ)  influencing the whole tanks and the output (𝑦) 
voltages from both level measurement devices (𝑦φ, 𝑦ϵ) in tank 
1 and 2. Since the measurement devices are located only in the 
bottom two tanks, the objective is to maintain the level (ℎք) of 
the tanks working in certain design of set-point with inlet flow 
rates. While the pumps run, they are then divided into two 
directions using the three-way valve, which each of them 
operates only to the two diagonal position tanks. 
 

 
Figure 1: The design of quadruple-tank process 

 
The voltage being implemented to pump 𝑛 with 𝑛 = 1,2 is 𝑣։ 
and the corresponding outlet flow from 𝑛-th pump is 𝑞֋(𝑛), 
which equals to 𝑘։𝑣։ where 𝑘 is the constant pump and 𝑣։ is 
the velocity rate going through the pump. Another important 
scenario is the position or behaviour of the valves, affecting the 
distribution to those four tanks, with the ratio of (𝛾φ, 𝛾ϵ) ∈
[0,1]. This means that if from the 𝑖-th pump, the ratio to tank 1 
is (𝛾φ), with flow rate 𝛾φ𝑘φ𝑣φ, then the counterpart ratio of tank 
4 is (1 − 𝛾φ) , with flow rate (1 − 𝛾φ)𝑘φ𝑣φ . Similarly, this 

concept also administers the rest two tanks with another ratio 
(𝛾ϵ) from another pump. The dynamic of the tanks refers to this 
paper [2] and the mathematical models are presented as follows. 
Firstly, it is required to consider the mass balance theorem and 
the law of Bernoulli’s, saying that the accumulation rate of 
mass in a system (𝑚յ ) equals to the difference between mass 
of inlet flow (𝑚ք) and the outlet (𝑚֊) to the system.  
 

𝑑𝑚յ
𝑑𝑡

= 𝑚ք − 𝑚֊ (1) 

 
and the Eq. (1) could be altered into the non-linear process 
depending on the fluids, therefore 
 

𝐴
𝑑ℎ
𝑑𝑡

= 𝜌𝑞ք − 𝜌𝑞֊ (2) 

 
Since the fluid is the same with 𝜌φ = 𝜌ϵ = 𝜌ϯ = 𝜌Κ, Eq. (2) is 
simplified with Eq. (3) 
 

𝐴ք
𝑑ℎք
𝑑𝑡

= (𝑞ք)ք − (𝑞֊)ք (3) 

 
where for certain tank 𝑖 = 1, … ,4, the variables of 𝐴ք, ℎք, 𝑞ք, 
and 𝑞֊  represent the cross-sectional area of certain tank, the 
fluid level, the inlet and the outlet flow of the tanks respectively. 
Moreover, the inlet flow for the whole tanks 𝑞քφ, … , 𝑞քΚ 

affected by the ratio of the valve 𝛾։ is described as follows, 
 

𝑞քφ = 𝛾φ𝑘φ𝑣φ; 
𝑞քϵ = 𝛾ϵ𝑘ϵ𝑣ϵ 

𝑞քϯ = (1 − 𝛾ϵ)𝑘ϵ𝑣ϵ; 
𝑞քΚ = (1 − 𝛾φ)𝑘φ𝑣φ 

 

(4) 

 
whereas the outlet flow from a tank 𝑞֊(𝑖) is denoted in Eq. (5) 
with 𝑎ք  and 𝑔 are the open cross-section of the bottom-outlet 
flow and the gravitational acceleration in turn 
 

𝑞֊ք = 𝑎քఄ2𝑔ℎք (5) 
 
Taking the whole dynamics (inlet-outlet) of the tanks, the non-
linear dynamic of the quadruple-tank from Fig. (1) is shown 
below. Keep in mind that there exist two inputs from lower 
tanks, flowing from the pipe and the upper outlet tanks which 
are affected by the diagonal-term of the corresponding pump 
 

𝐴φ
𝑑ℎφ
𝑑𝑡

= 𝑞քφ + 𝑞֊ϯ − 𝑞֊φ 

= 𝛾φ𝑘φ𝑣φ + 𝑎ϯఄ2𝑔ℎϯ − 𝑎φఄ2𝑔ℎφ 

𝐴ϵ
𝑑ℎϵ
𝑑𝑡

= 𝑞քϵ + 𝑞֊Κ − 𝑞֊ϵ 

= 𝛾ϵ𝑘ϵ𝑣ϵ + 𝑎Κఄ2𝑔ℎΚ − 𝑎ϵఄ2𝑔ℎϵ 

𝐴ϯ
𝑑ℎϯ
𝑑𝑡

= 𝑞քϯ − 𝑞֊ϯ 

= (1 − 𝛾ϵ)𝑘ϵ𝑣ϵ − 𝑎ϯఄ2𝑔ℎϯ 

𝐴Κ
𝑑ℎΚ
𝑑𝑡

= 𝑞քΚ − 𝑞֊Κ 

= (1 − 𝛾φ)𝑘φ𝑣φ − 𝑎Κఄ2𝑔ℎΚ 

(6) 

 
The Bernoulli’s law in Eq. (6) could be then reconstructed in 
Eq. (7) for the sake of the state-space representation, therefore 
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𝑑ℎφ
𝑑𝑡

= −
𝑎φ
𝐴φ

ఄ2𝑔ℎφ +
𝑎ϯ
𝐴φ

ఄ2𝑔ℎϯ +
𝛾φ𝑘φ
𝐴φ

𝑣φ 

𝑑ℎϵ
𝑑𝑡

= −
𝑎ϵ
𝐴ϵ

ఄ2𝑔ℎϵ +
𝑎Κ
𝐴ϯ

ఄ2𝑔ℎΚ +
𝛾ϵ𝑘ϵ
𝐴ϵ

𝑣ϵ 

𝑑ℎϯ
𝑑𝑡

= −
𝑎ϯ
𝐴ϯ

ఄ2𝑔ℎϯ +
(1 − 𝛾ϵ)𝑘ϵ

𝐴ϯ
𝑣ϵ 

𝑑ℎΚ
𝑑𝑡

= −
𝑎Κ
𝐴Κ

ఄ2𝑔ℎΚ +
(1 − 𝛾φ)𝑘φ

𝐴Κ
𝑣φ 

(7) 

 
Eq. (7) could be also simplified for the so-called conductance 
𝐾ք. The variables being used in the laboratory-scale process are 
written in Table (I) regarding the upper (𝐴ք) and lower (𝑎ք) 
open cross-sectional for each tank (𝑖) along with the ratio of the 
measured gain signals (𝑘վ)  whilst Table (II) asserts the 
condition of the couple operating points of the quadruple-tank 
process comprising the initial values of level (ℎք

Ј) and velocity 
(𝑣ք

Ј). Furthermore, those are defined as 𝑃_ and 𝑃+  declaring 
the minimum-phase and the counterpart of non-minimum-
phase scenario in turn 
 

𝐾ք =
𝑎ք
𝐴ք

ఄ2𝑔 (8) 

 
TABLE I 

Parameter of the laboratory-scale quadruple-tank 

Variable Unit Values 

𝐴φ, 𝐴ϯ cm2 28 
𝐴ϵ, 𝐴Κ cm2 32 
𝑎φ, 𝑎ϯ cm2 0.071 
𝑎ϵ, 𝑎Κ cm2 0.057 

𝑘վ  V/cm 0.5 
𝑔 cm/s2 981 

TABLE II 
Operating points of the minimum 𝑃 _ and non-minimum phase 

𝑃+ of the quadruple-tank process 

Variable Unit 𝑃− 𝑃+ 

(ℎφ
Ј), (ℎϵ

Ј) cm (12.4), (12.7) (12.6), (13.0) 
(ℎϯ

Ј), (ℎΚ
Ј) cm (1.8), (1.4) (4.8), (4.9) 

(𝑣φ
Ј), (𝑣ϵ

Ј) V (3.00), (3.00) (3.15), (3.15) 
(𝑘φ), (𝑘ϵ) cm3/Vs (3.33), (3.35) (3.14), (3.29) 
(𝛾φ), (𝛾ϵ)  (0.70), (0.60) (0.43), (0.34) 

 
The non-linear model in Eq. (7) could be changed into the linear 
approximation by proposing the following variables 𝑥ք = ℎք −
ℎք

Ј, 𝑢ք = 𝑣ք − 𝑣ք
Ј from Table (II). With the standard state-space 

design of 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 and the output 𝑦 = 𝐶𝑥, the complete 
equation is presented in Eq. (9). Moreover, the certain values 
of time-constant for each tank 𝑇ք  is influenced by the initial 
level ℎք

Ј and the static variables, as shown in Eq. (10), such that 
 

𝑇ք =
𝐴ք
𝑎ք

ఇ2ℎք
Ј

𝑔
 (10) 

 
From Eq. (10) and Table (II), the time-constant for each 
operating-point is shown in Table (III) which is used in the 
state-space matrices Eq. (9) and the transfer functions Eq. (11), 
 

TABLE IIII 
Time-constant for the operating points 𝑃_ and 𝑃+ 

Variable 𝑃− 𝑃+ 

(𝑇φ, 𝑇ϵ) (62,90) (63,91) 
(𝑇ϯ, 𝑇Κ) (23,30) (39,56) 

𝑑𝑥
𝑑𝑡

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

1
𝑇φ

0
𝐴ϯ

𝐴φ𝑇ϯ
0

0 −
1
𝑇ϵ

0
𝐴ϵ

𝐴ϵ𝑇Κ

0 0 −
1
𝑇ϯ

0

0 0 0 −
1
𝑇Κ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑥 +

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝛾φ𝑘φ
𝐴φ

0

0
𝛾φ𝑘ϵ
𝐴ϵ

0
(1 − 𝛾ϵ)𝑘ϵ

𝐴ϵ
(1 − 𝛾φ)𝑘φ

𝐴φ
0

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑢; 𝑦 = ং𝑘վ 0 0 0
0 𝑘վ 0 0

ঃ 𝑥 

 

(9) 

𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−φ𝐵 + 𝐷 

=

⎣
⎢⎢
⎡

𝛾φ𝑐φ
1 + 𝑠𝑇φ

(1 − 𝛾ϵ)𝑐φ
(1 + 𝑠𝑇ϯ)(1 + 𝑠𝑇φ)

(1 − 𝛾φ)𝑐ϵ
(1 + 𝑠𝑇Κ)(1 + 𝑠𝑇ϵ)

𝛾ϵ𝑐ϵ
1 + 𝑠𝑇ϵ ⎦

⎥⎥
⎤

→ 𝑐։ =
𝑇։𝑘։𝑘վ

𝐴։
 

(11) 

𝐺−(𝑠) =

⎣
⎢⎢
⎡

2.6
1 + 62𝑠

1.5
(1 + 23𝑠)(1 + 62𝑠)

1.4
(1 + 30𝑠)(1 + 90𝑠)

2.8
1 + 90𝑠 ⎦

⎥⎥
⎤

 𝐺+(𝑠) =

⎣
⎢⎢
⎡

1.5
1 + 63𝑠

2.5
(1 + 39𝑠)(1 + 63𝑠)

2.5
(1 + 56𝑠)(1 + 91𝑠)

1.6
1 + 91𝑠 ⎦

⎥⎥
⎤

 (12) 

det 𝐺(𝑠) =
𝑐φ𝑐ϵ

𝛾φ𝛾ϵ ∏ (1 + 𝑠𝑇ք)
Κ
ք=φ

× ঘ(1 + 𝑠𝑇ϯ)(1 + 𝑠𝑇Κ) −
(1 − 𝛾φ)(1 − 𝛾ϵ)

𝛾φ𝛾ϵ
ঙ (13) 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 1 
 

Moh Kamalul Wafi et al Int J Sci Res Sci & Technol. January-February-2022, 9 (1) : 301-307 
 

 
 
 

304 

For the particular ℎք
Ј, the transfer function in Eq. (11) is utilized 

to yield the stationary control signal from Eq. (9) with specific 
(𝑐ք). Keep in mind that the valve ratio 𝛾։ for the non-minimum 
𝑃+  and minimum 𝑃−  is set with 0 < (𝛾φ + 𝛾ϵ) < 1 and 1 <
(𝛾φ + 𝛾ϵ) < 2 as written in Table (2). 
 
The transfer function in Eq. (11) is affected by the variables 
working in two different operating points. Moreover, this 
means the transfer function results in two divergent physical 
modelling as reported in Eq. (12). More specifically, 𝐺−(𝑠) 
represent the minimum phase whereas the 𝐺+(𝑠) constitutes 
the non-minimum scenario. Transfer functions in Eq. (11) and 
(12) have zero locations leading to the physical representation 
of the system with respect to certain ratio of 𝛾։. The zeros in 
Eq. (11) are then supposed to be the numerator of the following 
characteristic rational formula as written in Eq. (13). These zero 
results furthermore in the analysis of either left- or right-half 
plane. From Eq. (14), it can be inferred that the analysis of 
determining the scale of 𝛾φ  and 𝛾φ  is if the 𝜂 → 0, the two 
zeros are approaching the negative of either a 𝑇ϯ or 𝑇Κ while as 
𝜂 → ∞, those would be then in the extremely asymptotically  
(−/+) of ∞, such that 
 

𝜂 ∶=
(1 − 𝛾φ)(1 − 𝛾ϵ)

𝛾φ𝛾ϵ
 (14) 

 
Recalling the parameters of minimum and non-minimum, the 
first accounts for (𝛾φ + 𝛾ϵ) = 1.30 > 1 which means that the 
flow going to the two bottom tanks is greater than that of the 
two top tanks and by contrast, (𝑃+), the flow to the lower tanks 
would be smaller compared to the upper. This also indicates 
that controlling the two bottom tanks is much easier than the 
left (1 & 3) or the right (2 & 4) tanks. Beyond that, the zeros 
location is not the only consideration, rather the direction. 
Likewise, the transfer function (𝐺) is having the zero direction 
by the following equation Eq. (15) and (16). 
 
Another concept is what was proposed by [25] regarding the 
relative gain array (RGA) denoting how the MIMO control 
system is measured. This is defined as Υ = (𝐺)Ј ∗ (𝐺− )Ј 
where the symbol of (∗)  describes the multiplication by 
element (−†) with the inverse transpose of matrix. The RGA 
of this system is given as follow depending solely on the valve 
ratio, therefore 
 

𝜆 =
𝛾φ𝛾ϵ

𝛾φ + 𝛾ϵ − 1
 �̃� =

(1 − 𝛾φ)(1 − 𝛾ϵ)
1 − 𝛾φ − 𝛾ϵ

 (17) 

For the decentralized scenario with the non-minimum, the RGA 
then is designed as Eq. (17) indicating that 𝜆෩ > 0 and this is 
preferable. Moreover, the stability property is also considered 
for the input gain flow 𝑣։

Ј  if Eq. (18) 
 

ঘ 𝛾φ𝑘φ (1 − 𝛾ϵ)𝑘ϵ
(1 − 𝛾φ)𝑘φ 𝛾ϵ𝑘ϵ

ঙ (18) 

 
is a non-singular matrix with 𝛾

ଵ
+ 𝛾2 ≠ 1 

III. DECENTRALIZED CONTROL 
 
Since the quadruple-tank is the multivariable control system, 
the decentralized control is proposed with 𝑢 = diag[𝐶φ 𝐶ϵ] 𝑒 
as depicted in Fig. (2) for the specific proportional-integral (PI) 
control law as written in Eq. (20). Decentralized control 
requires the parallel dimension of input-output system and the 
positive diagonal element of RGA 𝐺(0) with this decentralized 
makes it easy to be controlled, otherwise, with negative 
diagonal element, it leads to be the unstablility 

 

 
Figure 2: Decentralized control design with the coupling of 𝐶φ and 𝐶ϵ 
 
Inside the 𝐺(𝑠), the transfer function is designed as in Eq. (19) 
and the control gain parameters being used in the simulation are 
obtained from the root-locus calculation. Those gain 𝐾֋, 𝐾ք 
values for certain pump 𝑛  are different and this research 
focuses on the minimum phase 𝑃−  only to be implemented 
using the distributed estimation explained in the next chapter. 
 

𝐺(𝑠) = ং𝐺φ 𝐺ϵ
𝐺ϯ 𝐺Κ

ঃ 

=

⎣
⎢⎢
⎡

Φφ
𝜑φ𝑠 + 𝜉φ

Φϵ
𝜗ϵ𝑠ϵ + 𝜑ϵ𝑠 + 𝜉ϵ

Φϯ
𝜗ϯ𝑠ϵ + 𝜑ϯ𝑠 + 𝜉ϯ

ΦΚ
𝜑Κ𝑠 + 𝜉Κ ⎦

⎥⎥
⎤
 

(19) 

𝐶։ = 𝐾 ঒1 +
1

(𝑇ք)։𝑠
ও → 𝑛 = 1,2 (20) 

ং𝜓φ
𝜓ϵ

ঃ
յ

⎣
⎢⎢
⎡

𝛾φ𝑐φ
1 + 𝑧𝑇φ

(1 − 𝛾ϵ)𝑐φ
(1 + 𝑧𝑇ϯ)(1 + 𝑧𝑇φ)

(1 − 𝛾φ)𝑐ϵ
(1 + 𝑧𝑇Κ)(1 + 𝑧𝑇ϵ)

𝛾ϵ𝑐ϵ
1 + 𝑧𝑇ϵ ⎦

⎥⎥
⎤

= ং00ঃ
յ

 

 

(15) 

RGA Υ =

⎣
⎢⎢
⎡

𝛾φ𝛾ϵ
𝛾φ + 𝛾ϵ − 1

−(1 − 𝛾φ)(1 − 𝛾ϵ)
𝛾φ + 𝛾ϵ − 1

−(1 − 𝛾φ)(1 − 𝛾ϵ)
𝛾φ + 𝛾ϵ − 1

𝛾φ𝛾ϵ
𝛾φ + 𝛾ϵ − 1 ⎦

⎥⎥
⎤

→ ং 𝜆 1 − 𝜆
1 − 𝜆 𝜆 ঃ (16) 
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IV.DISTRIBUTED ESTIMATION 
 
Since the area of control systems have been increasing upon the 
demand of the more complex systems, one is to estimate the 
state from networked system. To deal with this, the usage of 
distributed estimation with switching its localization into key 
neighbourhood communication [12] and [13] attracts the most 
as portrayed in Fig. (3) 

 
Figure 3: Scheme of distributed estimation over 𝑁  output 𝑦

ே
 and 

observer 𝒪կ  
 
Suppose the following time-domain linear system as in Eq. (21), 
where 𝑥 ∈ ℝ։  and 𝑦 ∈ ℝ֋  are the state and measurement in 
turn. This distributed enables the 𝑦 as col(𝑦φ, … , 𝑦կ) and 𝐻ք 
as col(𝐻φ, … ,𝐻կ) with 𝑁  is assigned the number of nodes in 
the network 𝒢 , where ∑ 𝑝ք

կ
ք=φ = 𝑝 and 𝑦ք ∈ ℝ֋Վ . This 𝑦ք  is 

then assumed as the solely key data being obtained by certain 
local node (𝑖) to estimate the states by using the neighbouring 
links to cope with the lack of insufficient data with the 
constraint of the designed network topology, 
 

𝑑𝑥
𝑑𝑡

= 𝐴𝑥, 𝑦 = 𝐻𝑥 = ৘
𝐻φ
⋮

𝐻կ

৙ 𝑥 = ৘
𝑦φ
⋮

𝑦կ
৙ (21) 

 
Furthermore, this research considers the distributed estimation 
with Luenberger structure containing 𝑁  local output and 
observers having the following dynamics for each node 𝑖 as 

stated in Eq. (21), where 𝑥ෝ௜ ∈ ℝ𝑛, 𝐿ք ∈ ℝ։×֋Վ  and 𝑀ք ∈ ℝ։×։ 
are the estimated state, the injection and weighting gain 
matrices to be designed for node 𝑖. The values of 𝛾 and 𝒩௜ is a 
scalar coupling gain and the communicated nodes of certain 
node 𝑖. More specifically, the matrices of 𝐿ք and 𝑀ք comprises 
 

𝐿ք ∶= 𝑇ք ং𝐿քͷ
0 ঃ, 𝑀ք(𝑘ք) ∶= 𝑇ք ঘ

𝑘ք𝑀քͷ 0
0 𝐼ᇋք

ঙ 
 

(23) 

with the weighted values of 𝑘ք ≥ 1  along with the identity 
matrix of 𝐼ᇋք . 𝜎ք  shows the size of the matrix from the size 

information from the undetectable subspace 𝑈ք  of the couple 
(𝐴,𝐻ք) . Moreover, the orthonormal matrix 𝑇ք  should be 
designed from the following criteria to obtain the desired value, 
such that  
 

𝐻ք𝑇ք = [𝐻քͷ 0], 

𝑇ք
յ 𝐴𝑇ք = ং𝐴քͷ 0

𝐴քϝ 𝐴քϷ
ঃ (24) 

 
where the couple (𝐴քͷ, 𝐻քͷ) suppose to be detectable 𝑈ք = 0. 
Keep in mind that the definition if detectable if slightly lower 
than observability saying that the states condition of the 
unobservable is stable. The next is to find the matrices of 𝐿քͷ 
and 𝑀քͷ which could be opted from solving 𝐴քͷ − 𝐿քͷ𝐻քͷ as 
the Hurwitz and the following equation in Eq. (25) in turn and 
the complete equation for certain local 𝑖  in the observer is 
denoted in Eq. (26). Bear in mind that the initial states designed 
from Eq. (21) and (22) are maintained to be converged the true 
states as in Eq. (27) with the assumption that the network 
topology is then connected yet undirected along with the 
detectability of the couple (𝐴, 𝐻) 
 

lim
𝑡→∞

‖𝑥ෝ𝑖(𝑡) − 𝑥(𝑡)‖ (27) 
 

𝑥ෝ̇𝑖 = 𝐴𝑥ෝ𝑖 + 𝐿𝑖൫𝑦𝑖 − 𝐻𝑖𝑥ෝ𝑖൯ + 𝛾𝑀𝑖
−1(𝑘𝑖) ෍ (𝑥ෝ𝑗 − 𝑥ෝ𝑖)

𝑗∈𝒩𝑖

 

 

(22) 

(𝐴քͷ − 𝐿քͷ𝐻քͷ)յ 𝑀քͷ + 𝑀քͷ(𝐴քͷ − 𝐿քͷ𝐻քͷ) = −𝐼։−ᇋՎ
 (25) 

𝑥ෝ̇𝑖 = 𝐴𝑥ෝ𝑖 + 𝐿𝑖൫𝑦𝑖 − 𝐻𝑖𝑥ෝ𝑖൯ + 𝛾𝑀𝑖
−1(𝑘𝑖) ෍ 𝛼𝑖𝑗(𝑥ෝ𝑗 − 𝑥ෝ𝑖)

𝑁

𝑗=1

 (26) 

ቆ𝑘𝑖 −
𝛽

𝜃(�̅�)ቇ ቆ𝛾 −
𝛽ത

2𝜆2
ቇ >

𝛽ത2𝑁2

2𝜆2𝜃(�̅�)
; → ∀𝑖 ∈ 𝒩; 𝑘𝑖 ≥ 1; 𝛾 >

𝛽ത
2𝜆2

; 𝜃(�̅�) =
1
2 ൭1 − ቆ1 −

�̅�2

2 ቇ

2

൱ (28) 

𝑀ք(𝑘ք)(𝐴 − 𝐿ք𝐻ք) = 𝑇ք ঘ
𝑘ք𝑀քͷ 0

0 𝐼ᇋք
ঙ 𝑇ք

յ (𝐴 − 𝐿ք𝐻ք)𝑇ք𝑇ք
յ = 𝑇ք ঘ

𝑘ք𝑀քͷ 0
0 𝐼ᇋք

ঙ ং𝐴քͷ − 𝐿քͷ𝐻քͷ 0
𝐴քϝ 𝐴քϷ

ঃ 𝑇ք
յ  (29) 

𝑒𝑖 = 𝑥ෝ𝑖 − 𝑥 →
𝑑𝑒𝑖

𝑑𝑡 = (𝐴 − 𝐿𝑖𝐻𝑖)𝑒𝑖 + 𝛾𝑀𝑖 ෍ 𝛼𝑖𝑗൫𝑒𝑗 − 𝑒𝑖൯

𝑁

𝑗=1

 

= Λ𝑒 − 𝛾𝑀࣎࣍࣍࣌ (ℒ ∘ 𝐼։)𝑒 → ৎ
Λ = diag{𝐴 − 𝐿φ𝐻φ ⋯ 𝐴 − 𝐿կ𝐻կ}

𝑀 = diag{𝑀φ ⋯ 𝑀կ}
 

(30) 
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If the parameters of 𝑘ք  and 𝛾  are opted rewarding the 

conditions in Eq. (28) with 𝛽ք ∶= 2‖𝐴քϝ‖ϵ + ‖𝐴քϷ
յ + 𝐴քϷ‖ and 

𝛽ത  ∶= max(𝑖 ∈ 𝒩) 𝛽ք  where 𝛽  is the sum of 𝛽ք  from 1 to 𝑁 . 
The idea of the characteristic of 𝑇ք is that it is the orthonormal 
matrix so that it satisfies following the Eq. (29) with the error 
of the local node 𝑖 in Eq. (30) as the combination of the two 
equations, Eq. (21) and (22). 
 

V. NUMERICAL SCENARIOS 
 
This chapter is used to elaborate the concept with some 
simulation. The dynamic of the system is presented in Eq. (9) 
with the suitable parameter as in Table (1), (2), and (3) for 
certain phase-conditions either minimum 𝑃− or non-minimum 
𝑃+. Since the nodes are only two 𝑁 = 2, the communication 
occurs between them with 𝑦ք = 𝐻ք𝑥,  

 
𝐻φ = [𝑘վ 0 0 0] 
𝐻ϵ = [0 𝑘վ 0 0] (17) 

 
The detail parameters being used in the simulation are 𝛾 = 6, 
𝑘φ = 3 , and 𝑘ϵ = 4.5  with initial condition of 𝑥Ј =
[8 5 −2 1] along with decentralized control parameters of 
(𝐾φ𝑇քφ)φ = (3,30)  and (𝐾ϵ𝑇քϵ)φ = (2.7,40)  for the 
minimum phase 𝑃−  and for the non-minimum phase 𝑃+  of 
(𝐾φ𝑇քφ)ϵ = (1.5,110) and (𝐾ϵ𝑇քϵ)ϵ = (−0.12,220) with ten 
times settling time longer than that of the minimum-phase. The 
parameters for distributed estimation are presented in the 
following details, such that, 
 

𝑇φ = ং𝐼ϵ 𝑶
𝑶 𝐼ϵ

ঃ 𝑇ϵ = ং𝐼ϵ 𝑶
𝑶 𝐼ϵ

ঃ 

𝐿φͷ = ६31७ 𝐿ϵͷ = ং−1
3 ঃ 

𝑀φͷ = ং0.5 −0.5
0.5 1 ঃ 𝑀ϵͷ = ং0.286 −0.25

−0.25 0.387 ঃ 
 

 
The numerical scenario for minimum phase shows that the 
system could deal with the interconnected tanks system with 
the proposed parameters as being depicted in Fig. (4c) with the 
following error in Fig. (4a). Keep in mind that the peak errors 
happened are due to the changes of set-points as shown in the 
time of 100, 200, 300 and 350 from the two voltages since the 
four tanks are the interconnected system which affects one from 
others. However, the dynamics MIMO system is then 
stabilizing with the very fast time. By contrast, the non-
minimum phase is much more difficult to be controlled and it 
needs ten times setting time than that of their counterparts as 
presented in Fig. (4b) for the error and Fig. (4d) for the output 
dynamics. Likewise, the peaks occurred are made of the 
changes of set-points. Furthermore, regarding the distributed 
estimation, both true states (𝑥) response with the black-dashed 
lines could be followed by the estimates of (𝑥ෝଵ)  and (𝑥ෝଶ) . 
Regarding Fig. (4e)-Fig. (4f), the performance of the estimation 
is depicted and shows the ability of tracking. 
 

VI. CONCLUSION 
 
The mathematical dynamics of the quadruple-tank have been 
written along with some key parameters, such that the valve 
gains dividing the flow with 𝛾φ + 𝛾ϵ < 1  would be non-
minimum and otherwise is the minimum. The constructed 

   
(a) (c) (e) 

   
(b) (d) (f) 

Figure 4: The error of the two parameters from the minimum-phase 𝑃− as (a) and the non-minimum 𝑃+ as (b) using decentralized PI control; 
The two responses of the true output (𝑦) from 𝑃− as (c) with 500s and 𝑃+ as (d) with ten times longer settling time by 5000s with the same 
gains of control as designed; The response states of the distributed estimation of the 𝑃− (e) and 𝑃+ (f) with the same initial conditions. 
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decentralized PI control also show the adverse of maintaining 
the scenario of non-minimum compared to their counterpart. 
With respect to the distributed estimation, it has been designed 
using local communication as much as the number of outputs. 
This local Luenberger observer design could deal with the 
dynamics of the quadruple-tank process while it is erratic in the 
early stages of iterations. Our future work would be the changes 
of distributed estimation along with some distributed fault 
detection and fault-tolerant control. 
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