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ABSTRACT 

Electroencephalogram (EEG) signals represent functioning of the brain, and 

assist in identification of multiple brain-related disorders including Epilepsy, 

Alzheimer’s disease, emotional states, Parkinson’s disease, strokes, etc. To 

design such models, a wide variety of machine learning & deep learning 

approaches are proposed by researchers. But these approaches use a black-box 

generic model for EEG classification, due to which their scalability is limited. 

To enhance this scalability, a novel feature augmented extraction model is 

proposed in this text. The model uses wavelet compression on input EEG data, 

and processes the compressed signal using a variance-based selection approach. 

Due to which, the model is capable of low-delay, and high accuracy 

classification for different brain-diseases. It evaluates wavelet-based features 

from input EEG data, and performs ensemble feature selection for improving 

feature variance. The wavelet features are able to convert input EEG data into 

different directional components, which assists in improving efficiency of 

feature representation & model training for different signal types. The proposed 

model uses a quadratic Neural Network (QNN) classification engine, and is 

capable of achieving an accuracy of 96.5% for different EEG classes. These 

classes include 3 types of Epilepsy, presence of Alzheimer’s disease, & 

evaluation of brain strokes. Due to use of feature variance-based classification, 

the proposed WCQMV model outperforms existing feature selection & 

classification models by 4% in terms of accuracy when averaged over multiple 

datasets. Moreover, the proposed model also improves speed of classification by 

4.9% when compared with these models, thus making it useful for high-speed 

EEG processing applications. This performance improvement is possible due to 

effective feature reduction, which assists in identification of different EEG 

signal types. The model was tested on various EEG datasets including, IEEE 

Port Epileptic dataset, and BNCI dataset for Alzheimer & brain strokes. It was 

observed that the proposed model was capable of high-performance 
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classification on each dataset, thereby indicating high-scalability across 

multiple EEG applications. 

Keywords: EEG, quadratic, variance, Neural, Network, ensemble, augmented, 

classification, features 

 

I. INTRODUCTION 

EEG classification is a multidomain task which 

involves design of design of data pre-processing, 

segmentation, feature extraction, feature reduction, 

classification & post-processing operations. To design 

a highly effective EEG classifier, Models for these 

operations must be developed with high-efficiency & 

reduced delays. An instance of such a classification 

model is described in figure 1, wherein classification 

of EEG for emotion recognition is observed [1]. The 

model captures EEG signals from headset-based 

interface, and pre-processes it using denoising & 

filtering techniques. The pre-processed signal is given 

to a feature-extraction model, wherein different 

angular features are extracted. These features 

represent time-domain interpretations of brain state, 

and thus can be used for categorization into different 

classes. 

 

Figure 1. A typical brain emotion classification model 

using EEG signals 
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The extracted features are given to a classification 

model, which uses support vectors to identify positive, 

negative and neural emotion types. These emotions 

can be used by cascaded systems to identify 

application-specific information depending upon 

varying model designs. It can be observed that 

accuracy of these models is highly dependent on 

feature extraction, feature selection, and classification 

blocks. Design of these blocks along with 

performance characteristics from various state-of-the-

art classification models is discussed in the next 

section of this text. Based on this discussion, it is 

observed that these approaches use a black-box model 

or are very generic, which limits their scalability in 

terms of delay & accuracy performance. To improve 

this performance, section 3 discusses design of the 

proposed augmented feature selection engine for EEG 

classification using multivariate analysis. Performance 

of this model is evaluated in section 4, and is 

compared with various state-of-the-art approaches. 

Finally, this text concludes with some interesting 

observations about the proposed model, and 

recommends methods to further improve its 

performance. 

II. LITERATURE REVIEW 

A wide variety of EEG classification models are 

proposed by researchers over the years, and each of 

them vary in terms of applicability, precision, recall, 

accuracy & delay performance. For instance, work in 

[2, 3, 4] discusses design of reduced instruction set 

(RISC)-V convolutional Neural Network (CNN) 

Coprocessor, combination of linear discriminant 

analysis (LDA), k-nearest neighbour (KNN), support 

vector machine (SVM), & artificial neural network 

(ANN) with common spatial pattern (CSP), and 

Transfer TSK Fuzzy Classifier (TTFC) for achieving 

better classification results. These models have good 

accuracy, but lack in terms of precision performance 

due to their application-specific classification 

characteristics. Extensions to this model are discussed 

in [5, 6], wherein Neuroglial Network Model (NNM), 

and low-intensity focused ultrasound stimulation 

(LIFUS) are used for multidomain EEG classifications. 

These models have good precision, but cannot be 

scaled for multiple applications due to high 

computational complexity. To improve scalability, 

work in [7] proposes design of Multiple frequency 

Multilayer brain Network (MFMBN) that assists in 

achieving higher accuracy and better scalability than 

previously proposed models. Similar models that 

utilize CNN with cross wavelet transform (XWT) [8], 

Local Binary Pattern Transition Histogram (LBP TH) 

[9], and Multivariate Scale Mixture Model (MSMM) 

[10] are proposed by researchers. These models utilize 

augmented feature extraction methods for improving 

overall classification performance during epilepsy 

detection.  

Based on these feature extraction models work in [11, 

12, 13] propose fusion of Hand-Crafted Deep Learning 

EEG model (HC DL), quadratic classifier with wavelet 

features, and Multiple scaled NN with Dilated 

Convolutions (MSNN DC) is discussed. These models 

perform large-scale feature extractions to represent 

input EEG waveforms via multiple spectrums for 

better classification performance. But these models 

showcase moderate accuracy performance, which can 

be improved via the work in [14, 15, 16], wherein 

hierarchical discriminative sparse representation 

classifier, time domain sequential features 

classification using long short-term memory (LSTM) 

neural network, and Deep Convolutional Neural 

Network (DCNN) are discussed. These models assist 

in augmentation of EEG features in order to improve 

classification accuracy for different clinical 

applications. Similar models are discussed in [17, 18], 

wherein Extended K Nearest Neighbours, and Joint 

blind source separation methods are proposed by 

researchers for better scalability performance. These 

models utilize low complexity feature extraction 

methods, but cannot be applied to large-scale EEG 

datasets. Thus, it can be observed that models that 

have high accuracy are not applicable for large scale 
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deployments, while models that have high scalability 

cannot be used for highly accurate classification 

applications. To overcome these issues, next section 

proposes design of wavelet compression based 

quadratic model for EEG classification using 

multivariate analysis, that assists in high-efficiency 

and high scalability EEG classification for different 

clinical scenarios. 

III. Proposed wavelet compression based quadratic 

model for EEG classification using multivariate 

analysis 

Based on the literature review, it was observed that 

most of the recently proposed EEG classification 

models are general purpose in nature, which limits 

their scalability when applied to real-time 

classification applications. To improve this scalability, 

a novel wavelet compression based quadratic model 

for EEG classification using multivariate analysis 

model is discussed in this section. Overall flow of the 

proposed model is depicted in figure 2, wherein it is 

observed that input EEG data is initially compressed 

via a wavelet transform block. The compressed signal 

is given to a feature extraction block, which assists in 

extraction of spectral & spatial features. These 

features are processed via a Quadratic Neural 

Network (QNN) based classification model, which 

assists in obtaining final epilepsy classification. The 

input EEG waves are initially processed via a wavelet 

compression block, which assists in feature reduction. 

Extraction of wavelet components is evaluated via 

equation 1 & 2 as follows, 

 

 

Where,  represents approximate & 

diagonal wavelet components, while  

represents current and next EEG signal value. Both 

these components are processed via a feature 

extraction layer, which assists in evaluation of 

statistical & spectral features. These features are 

evaluated via equations 3 to 13 as follows, 

 

 

 

 

Figure 2. Overall flow of the proposed model 
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Where, represents average value of signal, 

represents maximum value of signal, 

represents minimum value of signal, represents 

standard deviation value of signal, represents 

variance value of signal, represents correlation 

coefficient value of signal, represents covariance 

value of signal, represents Median value of 

signal, represents kurtosis of signal, 

represents sum squared average value 

of signal, represents zero crossing rate value of 

signal, represents instantaneous value of signal, and 

represents total number of samples in the signal. 

All these features are evaluated for approximate & 

diagonal EEG components, and are combined to form 

a super feature vector. This feature vector is given to a 

quadratic Neural Network (QNN) model for final 

classification. Overall flow of the QNN model is 

depicted in figure 3, wherein multiple layers are 

connected via neuron connections to produce 3 

different output classes. 

 

Figure 3. Overall flow of the QNN model 

It can be observed that input layer consists of 22 

different neurons, one for each extracted feature. 

These neurons are modified in multiples of 2, for 

achieving network sizes of 44, 66, and 132 input layer 

neurons. These neurons connected together to obtain 

3 output classes, that include Normal, Interictal, and 

Ictal EEG types. The final class is evaluated by 

combining results from these classifiers via quadratic 

equation 14 as follows, 

 

Where,  represents input feature vectors, and 

number of Neural Network configurations used to 

obtain the final classification result. Based on this 

equation, classification of input data into different 

epilepsy classes is performed. Results of this 

classification can be observed from the next section of 

this text. 
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IV. RESULT ANALYSIS AND COMPARISON 

The proposed WCQMV model was tested on different 

EEG datasets for classification of input waveforms 

into Normal, Interictal, and Ictal EEG types. These 

waveforms were extracted from Seizure Prediction 

Project Freiburg, which can be accessed from 

https://epilepsy.uni-freiburg.de/freiburg-seizure-

prediction-project/eeg-database via open-source 

licensing for research purposes. The dataset consisted 

of 22 different EEG leads, and 200+ patients. A total 

of 2200 samples were extracted from this dataset, and 

divided into 70:30 ratio for training & validation 

respectively. Results were valuated in terms of 

accuracy, precision, recall & delay, and were 

compared with CSP [3], CNN XWT [8], and MSNN 

DC [13] for validation purposes. The results for 

accuracy can be observed from table 1 as follows, 

Number 

of EEGs 

A (%) 

CSP 

[3] 

A (%) 

CNN 

XWT 

[8] 

A (%) 

MSNN 

DC 

[13] 

A (%) 

WCQ 

MV 

100 75.60 77.50 76.29 80.49 

200 79.40 80.30 78.65 83.63 

300 81.20 81.55 79.83 85.12 

400 81.90 82.65 81.09 86.19 

500 83.40 84.50 82.74 87.95 

600 85.60 85.75 83.73 89.50 

700 85.90 86.05 84.02 89.82 

800 86.20 86.35 84.47 90.18 

900 86.50 87.29 85.47 90.97 

1000 88.09 88.54 86.60 92.36 

1200 88.99 89.45 87.48 93.31 

1400 89.90 90.35 88.37 94.25 

1600 90.80 91.26 89.25 95.20 

1800 91.71 92.16 90.14 96.14 

2000 92.62 93.07 91.02 97.09 

2200 93.52 93.97 91.90 98.03 

Table 1. Accuracy of different EEG classification 

models 

Based on this evaluation, it can be observed that the 

proposed model is 4.5% accurate than CSP [3], 3.9% 

accurate than CNN XWT [8], and 6.8% accurate than 

MSNN DC [13] for different EEG signal types. The 

reason for this performance improvement in use of 

QNN, which assists in augmenting feature 

classification process. Similarly, precision 

performance of these models is tabulated in table 2 as 

follows, 

Number 

of EEGs 

P (%) 

CSP 

[3] 

P (%) 

CNN 

XWT 

[8] 

P (%) 

MSNN 

DC 

[13] 

P (%) 

WCQ 

MV 

100 72.90 73.23 74.66 76.70 

200 76.05 75.69 77.27 79.84 

300 77.50 76.85 78.55 81.31 

https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database
https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database
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400 78.36 77.97 79.65 82.27 

500 79.95 79.64 81.28 83.95 

600 81.60 80.71 82.49 85.55 

700 81.88 80.99 82.78 85.85 

800 82.17 81.34 83.17 86.18 

900 82.76 82.27 84.02 86.86 

1000 84.11 83.40 85.22 88.23 

1200 84.97 84.25 86.09 89.14 

1400 85.83 85.10 86.96 90.04 

1600 86.70 85.96 87.83 90.95 

1800 87.56 86.81 88.70 91.85 

2000 88.42 87.66 89.58 92.75 

2200 89.28 88.51 90.45 93.66 

Table 2. Precision of different EEG classification 

models 

Based on this evaluation, it can be observed that the 

proposed model is 4% precise than CSP [3], 5.2% 

precise than CNN XWT [8], and 3.1% precise than 

MSNN DC [13] for different EEG signal types. The 

reason for this performance improvement in use of 

QNN, which assists in augmenting feature 

classification process. Similarly, recall performance of 

these models is tabulated in table 3 as follows. 

 

Number 

of EEGs 

R (%) 

CSP 

[3] 

R (%) 

CNN 

XWT 

[8] 

R (%) 

MSNN 

DC 

[13] 

R (%) 

WCQ 

MV 

100 74.25 75.37 75.48 78.59 

200 77.72 77.99 77.96 81.73 

300 79.35 79.20 79.19 83.21 

400 80.13 80.31 80.37 84.23 

500 81.68 82.07 82.01 85.95 

600 83.60 83.23 83.11 87.53 

700 83.89 83.52 83.40 87.83 

800 84.18 83.85 83.82 88.18 

900 84.63 84.78 84.74 88.92 

1000 86.10 85.97 85.91 90.30 

1200 86.98 86.85 86.79 91.22 

1400 87.87 87.73 87.67 92.15 

1600 88.75 88.61 88.54 93.07 

1800 89.63 89.49 89.42 94.00 

2000 90.52 90.36 90.30 94.92 

2200 91.40 91.24 91.17 95.85 

Table 3. Recall of different EEG classification models 
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Based on this evaluation, it can be observed that the 

proposed model has 4.5% more recall than CSP [3], 

4.6% more recall than CNN XWT [8], and 4.8% more 

recall than MSNN DC [13] for different EEG signal 

types. The reason for this performance improvement 

in use of QNN, which assists in augmenting feature 

classification process. Similarly, delay performance of 

these models is tabulated in table 4 as follows, 

Number 

of EEGs 

D (ms) 

CSP 

[3] 

D (ms) 

CNN 

XWT 

[8] 

D (ms) 

MSNN 

DC 

[13] 

D (ms) 

WCQ 

MV 

100 0.45 0.44 0.44 0.42 

200 0.86 0.85 0.86 0.82 

300 1.26 1.26 1.26 1.20 

400 1.66 1.66 1.66 1.58 

500 2.04 2.03 2.03 1.94 

600 2.39 2.40 2.41 2.29 

700 2.78 2.79 2.80 2.66 

800 3.17 3.18 3.18 3.02 

900 3.54 3.54 3.54 3.37 

1000 3.87 3.88 3.88 3.69 

1200 4.60 4.61 4.61 4.38 

1400 5.31 5.32 5.32 5.06 

1600 6.01 6.02 6.02 5.73 

1800 6.69 6.71 6.71 6.38 

2000 7.37 7.38 7.38 7.02 

2200 8.02 8.04 8.04 7.65 

Table 4. Delay of different EEG classification models 

Based on this evaluation, it can be observed that the 

proposed model is 5.6% faster than CSP [3], 5.5% 

faster than CNN XWT [8], and 5.8% faster than 

MSNN DC [13] for different EEG signal types. The 

reason for this performance improvement in use of 

wavelet compression, which assists in augmenting 

feature selection process. Due to this performance 

improvement, the proposed model is capable of being 

deployed for a large number of real-time clinical 

applications. 

V. CONCLUSION AND FUTURE SCOPE 

The proposed EEG classification model uses a 

combination of wavelet compression with spatial & 

spectral features to train a QNN classifier. Due to use 

of spatial features, the proposed model is capable of 

achieving better accuracy, while due to use of spectral 

features the model is able to achieve better precision 

& recall performance under different EEG datasets. It 

is observed that the proposed model is able to achieve 

an average accuracy of 96.5% on different EEG 

datasets, which is 4.5% higher than CSP [3], 3.9% 

higher than CNN XWT [8], and 6.8% higher than 

MSNN DC [13], thereby making it useful for a wide 

variety of clinical EEG classification applications. 

Furthermore, the proposed model is observed to 

achieve a precision of 90.2% & recall of 91.6%, which 

is 4% better than CSP [3], 5.2% better than CNN 

XWT [8], and 3.1% better than MSNN DC [13] for 

different EEG class types. Due to which, the proposed 

model is applicable for a wide variety of clinical EEG 

classification applications. Moreover, due to use of 

wavelet features, the proposed model is capable of 
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achieving faster classification results when compared 

with state-of-the-art approaches. Thus, making the 

proposed model useful for high-speed and high-

performance classification applications. In future, 

researchers can integrate deep learning models like 

convolutional Neural Networks (CNNs), recurrent 

NNs (RNNs), and Q-learning for further enhancing 

accuracy & precision performance of the model. 

Furthermore, researchers can add a greater number of 

EEG based brain disease classes, which will assist in 

improving applicability of the system for a wide 

number of clinical scenarios. 
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