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ABSTRACT 

 

In this paper we have studied the application of Finsler geometry to physics is 

crystal optics and the symmetry properties. The transparent crystals fall into 

only three distinct classes from the point of view of their optical properties, 

biaxial, uniaxial and isotropic crystals. Here we have studied biaxial crystal and 

uniaxial crystal, since the isotropic crystals behave optically as amorphous 

bodies they have no optical anisotropy and correspond to Euclidean geometry.  

Keywords : Crystal Optics, Uniaxial, Biaxial, Optical Anisotropy.                                                                                                                                                                                                                                                        

 

I. INTRODUCTION 

 

Many researchers Born, M. [1], Born, M. and Wolf [2], 

P. L. Antonelli, R. S. Ingarden and M. Matsumoto[3] 

and C. W. Bunn [4] are studied on Crystal Optics in 

Finsler space. Boguslavsky, G. Yu [5] studied theory 

of Locally Anisotropic Space-Time. Born and Wolf [2], 

studied the Optical theory is based on two way: 

Maxwell’s equations and Material equations.  

The material equations in an isotropic medium are 

given by  

 (1.1) (a) 𝒋 = 𝜎𝑬  ,    (b) 𝑫 = 𝜀𝑬,    , (c)  𝑩 = 𝜇𝑯 , 

here 𝜎 is specific conductivity, 𝜀 is dielectric constant 

and 𝜇 is magnetic permeability. 

In dealing with crystals we have generalized these 

later equations in the view of anisotropy. We consider 

that the medium is homogeneous, non-conducting, 

and magnetically isotropic, there are also magnetic 

crystals, but as the effect of magnetization on optical 

phenomena is small, the magnetic anisotropy may be 

neglected (Boguslavsky, G. Yu [5]). We consider 

substances whose electrical excitations depend on the 

direction of the electric field. The equation (1.1b) we 

assume the relation between 𝑫  and 𝑬  to have the 

simplest form which can account for anisotropic 

behavior, which each component of 𝑫  is linearly 

related to the components of E, we can written as 

(1.2)   𝐷𝑘 =  ∑ 𝜀𝑘𝑙𝐸𝑙𝑙  

where k stands for one of the three indices 𝑥, 𝑦, and 𝑧, 

and 𝑙  stands for each of x, y and 𝑧  in turn in the 

summation.  

The most direct and simple application of Finsler 

geometry to physics is crystal optics. In crystals the 

electric vector 𝑬 =  𝐸𝑖  , 𝑖 =  1,2,3  is not in general 

parallel to the electric displacement vector 𝑫 =  𝐷𝑖, 

the set of equation (1.2) can be written as ( C. 

W. Bunn [4]) 

(1.3)   𝐷𝑖 = 𝜀𝑖𝑗𝐸𝑗 
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where 𝜀𝑖𝑗  is the dielectric tensor , here we use 

Einstein's summation convention, but we do not 

distinguish contravariant and covariant indices since 

coordinates are orthogonal Cartesian. 

Here we have studied two classes: biaxial and uniaxial, 

since the isotropic crystals behave optically as 

amorphous bodies they have no optical anisotropy 

and correspond to Euclidean geometry (C. W. Bunn 

[4]). The dielectric axes are those corresponding to 

the eigen vectors and eigen values of tensor 𝜀𝑖𝑗 in (1.3) 

which is assumed to be real and symmetric. 

(1.4) 𝐷𝑖 = 𝜀𝑖𝐸𝑖 ,      𝑣𝑖 =
𝑐

√𝜇𝜀𝑖
 , (𝑖 = 1, 2, 3). 

 

where 𝑣𝑖  is velocities of propagation of light in the 

crystal (R. Courant[7]). The ellipsoid of wave normal 

is formed the expression for electric energy density in 

the coordinate system of the dielectric axes (Born, M. 

and Wolf [2]), 

(1.5)  𝐶2 = 8𝜋𝜔𝑒 = 𝑬. 𝑫 =
𝐷1

2

𝜀1
+

𝐷2
2

𝜀2
+

𝐷3
2

𝜀3
 , 

If we take  𝑥 =
𝐷1

𝐶
 , 𝑦 =

𝐷2

𝐶
 , 𝑧 =

𝐷2

𝐶
  then we can write 

                (1.6)   
𝑥2

𝜀1
+

𝑦2

𝜀2
+  

𝑧2

𝜀3
= 1 

 

 
Fig. 1. Directions of the wave normal of field vectors 

and of the energy flow in an anisotropic crystals. 

 

Here, we construct the directions of vibrations of the 

𝑫 vectors belonging to a wave normal 𝒔 as axes of the 

section through the origin normal to s and the 

directions of optical axes of the crystal as normals to 

spherical sections of the ellipsoid through the origin. 

Since ellipsoid can be triaxial, biaxial or uniaxial, and 

the optical axes can be one or two. 

The distinguish between phase velocity 𝑣𝑝  in 

direction 𝒔  and the ray velocity 𝑣𝑟  which is the 

velocity of energy transport in direction 𝒕, (Born, M. 

and Wolf [2]) we have                                

(1.7)  𝑣𝑝 =
𝑐

𝑛
= 𝑣𝑟 𝒕. 𝒔 = 𝑣𝑟 𝑐𝑜𝑠𝛼 =

|𝑺|

𝜔
𝑐𝑜𝑠𝛼 ,     𝜔 =

𝜔𝑒 + 𝜔𝑚 = 2𝜔𝑒  

where 𝑛 is the refraction index, and Fig.1, it can be 

shown that as a condition of solvability of the 

problem one obtains the Fresnel equation of wave 

normals 𝑠1
2 + 𝑠1

2 + 𝑠1
2 = 1 , 𝒔 =  𝑠𝑖   (Born, M. and 

Wolf [2]), 

(1.8) 𝑠1
2(𝑣𝑝

2 − 𝑣2
2)(𝑣𝑝

2 − 𝑣3
2) + 𝑠2

2(𝑣𝑝
2 −

𝑣3
2)(𝑣𝑝

2 − 𝑣1
2) + 𝑠3

2(𝑣𝑝
2 − 𝑣1

2)(𝑣𝑝
2 − 𝑣2

2) = 0 . 

 Now we have studies the case of an optically uniaxial 

crystal. Let us assume that the optical axis is in the 

three directions, 𝑣1 = 𝑣2 = 𝑣0  for ordinary velocity 

and 𝑣3 = 𝑣𝑒 for extraordinary velocity. Then the set 

of equation (1.8) can be written as 

 (1.9) (𝑣𝑝
2 − 𝑣0

2)(𝑣𝑝
2 − 𝑣𝑒

2)𝑠𝑖𝑛2𝜃 + (𝑣𝑝
2 −

𝑣0
2)𝑐𝑜𝑠2𝜃 = 0 , 

 where   (1.10) 𝑠1
2 + 𝑠2

2 = 𝑠𝑖𝑛2𝜃 ,    𝑠3
2 = 𝑐𝑜𝑠2𝜃,  

              (1.11) 𝑣′𝑝
2

= 𝑣0
2 ,         

              (1.12)   𝑣"𝑝
2 = 𝑣0

2 𝑐𝑜𝑠2𝜃 + 𝑣𝑒
2𝑠𝑖𝑛2𝜃      

 

II. UNIAXIAL CRYSTALS 

 

We have using the method Okubo [6], the equation of 

the extraordinary normal surface (1.12) in orthogonal 

Cartesian coordinates. And we have written the well 

known relations between spherical and rectilinear 

orthogonal coordinates (Born and Wolf [2])  

            (1.13) (a) 𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅ ,          𝑦 =

𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅ ,        𝑧 = 𝑟𝑐𝑜𝑠𝜃 

                      (b) 𝑟2 =  𝑥2 + 𝑦2 + 𝑧2  ,        𝑐𝑜𝑠𝜃 =

𝑧

√𝑥2+𝑦2+𝑧2
      and       𝑠𝑖𝑛𝜃 =

√𝑥2+𝑦2

√𝑥2+𝑦2+𝑧2
  . 

Putting these relations in the equation (1.12), we have 

( 𝑣0 = 𝑎 ,  𝑣𝑒 = 𝑏)  
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           (1.14) 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2 𝑧2

𝑥2+𝑦2+𝑧2 
+

𝑏2 𝑥2+𝑦2

𝑥2+𝑦2+𝑧2 
 , 𝑎 ≠ 𝑏, 𝑎, 𝑏 ≠ 0. 

Multiplying by (𝑥2 + 𝑦2 + 𝑧2) in (1.14), we get 

         (1.15) (𝑥2 + 𝑦2 + 𝑧2)2 − 𝑎2𝑧2 − 𝑏2(𝑥2 + 𝑦2) =

0 ,    𝑥, 𝑦, 𝑧 ≠ 0. 

Using the method Okubo [6], and we write 

         (1.16) 1𝑖 =
𝑦𝑖

𝐿(𝑥,𝑦)
 , 𝑖 = 1, 2, 3 , 

substitute this for 𝑥, 𝑦, 𝑧 in (1.15) and solving for 𝐿, 

we get 

(1.17)  𝐿( 𝑥, 𝑦)   =
(𝑦1)

2
+(𝑦2)

2
+(𝑦3)

2

√𝑎2(𝑦3)2+𝑏2[(𝑦1)2+(𝑦2)2]
 , 

𝑦 ≠ 0,     𝑎, 𝑏 ≠ 0  

Equation (1.17) is written in special coordinates 

adjusted to the symmetry of our example. The 

Lagrangian of the type 

(1.18) 𝐿( 𝑥, 𝑦) =
𝑎𝑖𝑗(𝑥)𝑦𝑖𝑦𝑗

√𝑏𝑖𝑗(𝑥)𝑦𝑖𝑦𝑗
  ,         𝑎𝑖𝑗(𝑥) ≠ 𝑏𝑖𝑗(𝑥) , 

Here both quadratic forms 𝛼2 = 𝑎𝑖𝑗(𝑥)𝑦𝑖𝑦𝑗 and 𝛽2 =

𝑏𝑖𝑗(𝑥)𝑦𝑖𝑦𝑗 are different and positive definite.  

 

III. BIAXIAL CRYSTALS 

 

The Fresnel equation (1.18) with respect to the 

coordinates of 6th order equation, as we have seen 

above, but this time it cannot be factorized into a 2nd 

order and a 4th order equations, although it is 

possible in each normal section of the surface by the 

coordinate planes x =0, y = 0 and z = 0. To uniquely 

fix the appearance of the intersection curves, let us 

label the three axes so that 

 (1.19) (a)  𝜀𝑥 < 𝜀𝑦 < 𝜀𝑧(𝜀𝑥 = 𝜀1,  𝜀𝑦 = 𝜀2, 𝜀𝑧 = 𝜀3)  

or  (b)  𝑣𝑥 > 𝑣𝑦 > 𝑣𝑧 (𝑣𝑥 = 𝑣1, 𝑣𝑦 = 𝑣2, 𝑣𝑧 = 𝑣3)   

It is easily seen that, (Born and Wolf [2]), the sections 

of our surface by the three coordinate planes give 

forms present on Fig.2. and these forms can be 

combined in the 3-dimensional picture shown in 

Fig.3. We obtained a 2-sheet surface whose two 

sheets contact only in 4 points corresponding to the 

point 𝑁1  in the positive quadrant x, y, z. These are 

intersection points of the normal surface by the two 

optical axes lying in the plane (x, z) under the angle 𝛽 

with the z-axis. All the normal surface is smooth 

everywhere, but if we divide it into the outer sheet 

and the inner sheet, both sheets have points of non-

differentiability in points of contact 𝑁𝑖  (i = 1,2,3,4), 

where cusps occur. 

 
Fig. 2.: Sections of the normal surface of a biaxial 

crystal by three coordinates planes through the 

principal dielectric axes. 

                                        Optical axis 

 
Fig. 3. : The normal surface of a biaxial crystal 

 

The Fresnel equation (1.18) is easily soluble if we 

introduce the difference variables 𝑞𝑥 , 𝑞𝑧 ,𝑞 , 

 (1.20) 𝑣𝑥
2 = 𝑣𝑦

2 + 𝑞𝑥  ,     𝑣𝑧
2 = 𝑣𝑦

2 + 𝑞𝑧 ,     𝑣𝑝
2 = 𝑣𝑦

2 +

𝑞 . 

Then the Fresnel equation can be written as 

 (1.21) 𝑞2 + [𝑠𝑥
2𝑞𝑧 + 𝑠𝑦

2(𝑞𝑧 − 𝑞𝑥) − 𝑠𝑧
2𝑞𝑧]𝑞 −

𝑠𝑦
2𝑞𝑥𝑞𝑧 = 0 

and its solution as 

 (1.22)   𝑞 = −
1

2
𝑃 ±

1

2
√∆ , 

where 

             (1.23)  𝑃 = 𝑞𝑧 − 𝑞𝑥 − (𝑞𝑥 + 𝑞𝑧)𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 , 

             (1.24)  𝑄 = [(𝑞𝑧 + 𝑞𝑥)𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2]2, 

             (1.25) 𝑐𝑜𝑠𝜃1 = 𝑠𝑥  𝑠𝑖𝑛𝛽 + 𝑠𝑧𝑐𝑜𝑠𝛽 , 

             (1.26) 𝑐𝑜𝑠𝜃2 = −𝑠𝑥 𝑠𝑖𝑛𝛽 + 𝑠𝑧𝑐𝑜𝑠𝛽 , 
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              (1.27) 𝑡𝑎𝑛𝛽 = ±√
𝑞𝑥

𝑞𝑧
= ±√

𝑣𝑥
2−𝑣𝑦

2

𝑣𝑦
2−𝑣𝑧

2 

Finally, we can express the solutions (there are two) 

of the Fresnel equation as 

(1.28) 𝑣𝑝
2 =

1

2
[𝑣𝑥

2 + 𝑣𝑧
2 + (𝑣𝑥

2 − 𝑣𝑧
2)𝑐𝑜𝑠(𝜃1 ± 𝜃2)] 

or, introducing the new constants 

 (1.29) 𝐴2 =
1

2
(𝑣𝑥

2 + 𝑣𝑧
2) > 0,   𝐵2 =

1

2
(𝑣𝑥

2 − 𝑣𝑧
2) > 0 ,  

𝐴2 > 𝐵2 

 (1.30) 𝑣𝑝
2 = 𝐴2 + 𝐵2𝑐𝑜𝑠(𝜃1 ± 𝜃2). 

 

The dependence on the third constant 𝑣𝑦 is implicitly 

contained in the angles 𝛽 (1.27) and  𝜃1 , 𝜃2  (1.25)-

(1.26). In order to get a more explicit representation 

of the result let us introduce a (in general, skew) 

coordinate system composed of the y-axis and the two 

optical axes, 

 

 (1.31) 𝑥 = (𝜉 − 𝜁)𝑠𝑖𝑛𝛽 ,     𝑦 = 𝜂 ,   𝑧 = (𝜉 + 𝜁)𝑐𝑜𝑠𝛽 , 

 

The determinant of the transformation (1.31) 

 

 (1.32) 𝐷 = [
𝑠𝑖𝑛𝛽 0 −𝑠𝑖𝑛𝛽

0 1 0
𝑐𝑜𝑠𝛽 0 𝑐𝑜𝑠𝛽

] = 2𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 =

𝑠𝑖𝑛2𝛽 ≠ 0,   0 < 𝛽 <
1

2
𝜋 . 

 

According to the assumption that the crystal is 

optically biaxial for uniaxial crystals the 

transformation (1.31) makes no sense. 

 
Fig.4. : Dielectrical coordinate system (𝑥, 𝑦, 𝑧) and 

optical coordinate system (𝜉, 𝜂, 𝜁) in a biaxial crystal. 

Introducing the abbreviation, 

(1.33) 𝐶 = 𝑐𝑜𝑠2𝛽 − 𝑠𝑖𝑛2𝛽 ,     −1 < 𝐶 < +1 

Containing constant 𝑣𝑦 , (1.27), we may write (1.30) 

in the form 

 (1.34) 𝜉2 + 𝜂2 + 𝜁2 + 2𝐶𝜉𝜁 = 𝐴2 +

𝐵2 (𝜉−𝐶𝜁)(𝜁+𝐶𝜉)∓[𝜂2+𝜁2(1−𝐶2)+4𝐶𝜉𝜁]
1
2 [𝜉2(1−𝐶2)+𝜂2]

1
2

𝜉2+𝜂2+𝜁2+2𝐶𝜉𝜁
      

Using the method Okubo [6] substitution as in (1.16) 

we finally obtain two metric functions,  

𝑄2= 𝑦12
+ 𝑦22

+ 𝑦32
+ 2𝐶𝑦1 

𝑦3 
    

And M = [𝑦22
+ 𝑦32

(1 − 𝐶2) + 4𝐶𝑦1 
𝑦3 

]
1

2[𝑦12
(1 −

𝐶2) + 𝑦22
]

1

2   

is conveniently given by 

 (1.35)     𝐿±=
𝑄2

√𝐴2𝑄2+𝐵2{(𝑦1−𝐶𝑦3)(𝑦3+𝐶𝑦1)∓𝑀
 

If the optical axes are orthogonal, 𝛽 =
𝜋

4
 , 𝐶 = 0,  (1.35) 

considerably simplifies to 

 (1.36) 𝐿±=

𝑦12
+ 𝑦22

+ 𝑦32

√𝐴2[𝑦12
+𝑦22

+𝑦32
]+𝐵2{(𝑦1𝑦3∓(𝑦22

+𝑦32
)

1
2(𝑦12

+𝑦22
)

1
2]

 

 

We see that under conditions (1.29) and (1.33) about 

constants functions 𝐿 ± are always positive definite, 

convex, (1) p-homogeneous in y, and smooth in the 

domain 𝐷 = 𝑅3 − 𝑆,  

 

 (1.37) 𝑆 = {1)𝑦1 = 𝑦2 = 𝑦3 = 0,   2) 𝑦1 ≠ 0, 𝑦2 =

𝑦3 = 0,   3) 𝑦1 = 𝑦2 = 0, 𝑦3 ≠ 0}, 

 

So they define two regular conjugated Minkowski 

spaces two regular conjugated Finsler spaces for fluid 

crystals when constants A, B, C can depend on the 

position x. The condition of smoothness everywhere 

is not important physically, but the exceptions from 

smoothness represent interesting mathematical and 

physical facts. In the mathematical view both 

indicatricies can be considered as a one whole and we 

can also speak about multi-Finsler spaces having 

indicatricies with many sheets connected by one 

algebraic equation. These spaces have many sets of 

trajectories and other properties, which however are 

mutually connected. As we know physics requires 
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such entities, although they can be also separated for 

instance, by means of selection of polarization using 

Nicol prisms etc. In the case of uniaxial crystals the 

situation is simpler, but we have actually two 

indicatricies (i.e. sphere and oval), but they contact 

smoothly at the optical axis. In the previous section 

we neglected the sphere as giving an Euclidean space, 

but actually the sphere belongs to the complete 

physical phenomenon.  

 

IV. CONCLUSION 

 

In this paper we have studied biaxial crystal and 

uniaxial crystal, since the isotropic crystals behave 

optically as amorphous bodies they have no optical 

anisotropy and correspond to Euclidean geometry. In 

this continuation we have studied the case of an 

optically uniaxial crystal and assume that the optical 

axis is in the three directions, 𝑣1 = 𝑣2 = 𝑣0  for 

ordinary velocity and 𝑣3 = 𝑣𝑒  for extraordinary 

velocity and obtained some results. In uniaxial crystal 

we have studied using the method Okubo, the 

equation of the extraordinary normal surface (1.12) in 

orthogonal Cartesian coordinates and using the well 

known relations between spherical and rectilinear 

orthogonal coordinates, and obtained the some results. 

Which are known as Fresnel equation in the type of 

Lagrangian 𝐿. In the biaxial crystal we have seen that, 

the sections of our surface by the three coordinate 

planes give forms present on Fig.2. and these forms 

can be combined in the 3-dimensional picture shown 

in Fig.3. We obtained a 2-sheet surface whose two 

sheets contact only in 4 points corresponding to the 

point 𝑁1   in the positive quadrant 𝑥, 𝑦, 𝑧. These are 

intersection points of the normal surface by the two 

optical axes lying in the plane (𝑥, 𝑧) under the angle 𝛽 

with the z-axis. All the normal surface is smooth 

everywhere, but if we divide it into the outer sheet 

and the inner sheet, both sheets have points of non-

differentiability in points of contact 𝑁𝑖  (i = 1,2,3,4), 

where cusps occur. We see that under conditions 

(1.29) and (1.33) about constants functions 𝐿 ±  are 

always positive definite, convex, (1) p-homogeneous 

in y, and smooth in the domain  𝐷 = 𝑅3 − 𝑆, so they 

define two regular conjugated Minkowski spaces two 

regular conjugated Finsler spaces. The condition of 

smoothness everywhere is not important physically, 

but the exceptions from smoothness represent 

interesting mathematical and physical facts. In the 

mathematical view both indicatricies can be 

considered as a one whole, and we can also speak 

about multi-Finsler spaces having indicatricies with 

many sheets connected by one algebraic equation. 

These spaces have many sets of trajectories and other 

properties, which however are mutually connected. 

In the case of uniaxial crystals the situation is simpler, 

but we have actually two indicatricies (i.e. sphere and 

oval), but they contact smoothly at the optical axis. 

Spaces (1.35) and (1.36) have not been yet 

investigated mathematically, as far as we know. We 

think that it may be interesting to investigate further 

mathematical properties of these spaces, in particular, 

their torsion for the Minkowski case and curvature 

for the general Finsler case.  
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