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ABSTRACT 

Turbidity is an optical determination of water clarity. It is one of the most 

important optically active water parameter to assess the water quality through 

the remote sensing observations. Turbidity measurements come from 

suspension of sediment such as silt or clay, inorganic materials, or organic 

matter such as algae, plankton and decaying material. Turbidity and total 

suspended matter often overlap each other. However, it is not a direct 

measurement of the total suspended materials in water. Instead, as a measure of 

relative clarity, turbidity is often used to indicate changes in the total 

suspended solids concentration in water without providing an exact 

measurement of solids. Through remote sensing we can monitor the turbidity 

in large water bodies, rives, coastal areas etc. An algorithm has been developed 

to estimate the turbidity (in NTU: Nephelometric Turbidity Unit) over inland 

waters (Ukai reservoir) using empirical relationship between normalized Green 

and Red bands (NDTI : Normalized Difference Turbidity Index) of Resourcesat-

2 and Resourcsat-2A Linear Imaging Self Scanning-III (RS2 and R2A LISS-III) 

dataset. Derived algorithm shows a strong coefficient of determination (R2 = 

0.97) with the in-situ turbidity measurements. The field measurements were 

carried out over Ukai reservoir on 27-28th March 2018, where synchronous in 

situ water leaving reflectance and turbidity were measured. Model was derived 

between in situ measured turbidity and NDTI derived from spectral reflectance 

of band 2 (Green) and band 3 (Red) of RS2 and R2A LISS-III. The model was 

applied to derive the turbidity maps of Ukai reservoir for pre-monsoon (March, 

April and May months) season during the period 2012 to 2018. Overall 

turbidity ranges from 1.47-20 NTU during the field data collection of pre-

monsoon season and overall scene derived turbidity ranges are between 2 – 33 

NTU. The highest observed turbidity value was more than fourteen times 

http://www.ijsrst.com/
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greater than the lowest value that shows the natural variability within the 

reservoir for the same season. Remotely sensed data sets can increase the 

abilities of water resources researchers and decision making persons to monitor 

waterbodies more effectively and frequently.  

Keywords: Turbidity, Ukai Reservoir, Resourcesat2, Resourcesat2A, Relative 

Spectral Response (RSR). 

 

I. INTRODUCTION 

 

Turbidity is an optical property of water, which 

scatters and absorbs the light rather than transmit it 

in straight lines. It is a major influenceing  parameter 

of the aquatic system, is determined by the light 

absorption and scattering processes that take place 

within the water column [6]. Turbidity and total 

suspended matters (TSM) are considered as important 

water quality variables in many environmental 

studies due to their linkage with incoming sunlight 

that in turn affects photosynthesis for growth of algae 

and plankton [12]. It reduces light penetration into 

the water and which affect the entire aquatic 

ecosystem [11]. Observations on TSM can be used in 

various numerical schemes to help characterize the 

trophic state of an aquatic ecosystem [7] [30]. 

Knowing precise spatial and temporal turbidity 

information of aquatic ecosystem is necessary to both 

protect the lake ecosystem and maintain the water 

quality management [14] [8] [26]. Satellite and 

airborne remote sensing data sets has proven its  

usefulness in mapping some of the most importrant 

optically active water quality parameters such as 

turbidity, TSM, and chlorophyll-a [5] [15] [16] [25].  

 

Remote sensing techniques has been widely used to 

estimate and map the turbidity and concentrations of 

suspended particles [3]. The advantage of remote 

sensing is, it can provide a synoptical view of the 

complete water body due to it's continuous, spatial 

and temporal coverage of large areas coverage. 

Satellite have global coverage and also includes the 

in-accessible locations/harsh enviornmet where 

ground data is not available. Furthermore it provides 

long term and historical water quality monitoring 

possible with satellite data sets.   

Improvements in remote sensing techniques made 

possible to regular monitoring the optically active 

components like turbidity and chlorophyll-a of inland 

water bodies, like lakes and reservoirs [19]. Imaging 

spectroscopy is well esatablished method to assess 

water quality but there are limited airborne and space 

borne measurements with required spatial resoluton 

avaialble over inland water bodies especially over 

rives. Multi spectral sensors onboard Landsat and 

SPOT satellite series have been used to assess water 

quality related paramentes over lakes, reservoirs and 

rivers using different band ratios and single band 

algorithm. In recent decads, a number of studies have 

demonstrated that suspended sediments distribution 

in open sea and inland waters can be mapped from 

different types of satellite remote sensing data, such as 

Landsat satellite series, Moderate Imaging 

Spectroradiometer (MODIS), and Medium Resolution 

Imaging Spectrometer (MERIS) [29] [18] [21].  

 

Turbidity values generally correlates well with 

reflectance at satellite bands located in the red part of 

the spectrum for low to moderate turbidity values. 

Landsat band 3 (630-690 nm) has been used to map 

turbidity in Guadalquivir River (Spain) for a turbidity 

range 1.5 – 8 NTU [2]. A good correlation was 

observed between LISS-I red band (620-680 nm) and 
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turbidity in the range of 15-45 NTU in the Tawa 

reservoir in India [10]. [13] used SPOT-HRV2 red 

band (610-680 nm) to map relatively low levels of 

turbidity, ranged from 3 to 15 NTU, in the Tuttel 

Creek reservoir in Kansas, USA. [23] developed a 

regional alogortm for MODIS-Aqua 250 m red band 

to map turbidity in the Adour river plume (Bay of 

Biacay, France), where field turbidity values varied 

between 0.5 and 70 NTU. A multiple linear regression 

analysis using Landsat red band (630-690 nm) and 

near infrared (750-900 nm) bands was used to predict 

turbidity in a glacial lake in Alaska where highly 

scatter rock flower (Sediment oriented from glacial 

rock weathering) dominates the perticulate fraction.  

No global standardized turbidity derived algorithm 

exists in scientific community because of the high 

level of variation in particle size, density and other 

optical complexities of different water bodies [4]. As 

per our knowledge, this is the first attempt to develop 

algorithm for assessment of turbidity over Ukai 

reservoir using Indian Remote Sensing multi spectral 

sensors: Resourcesat 2 and 2A Linear Imaging Self 

Scanning-III (RS2 and R2A-LISS-III). The algorithm 

was used for estimation of spatial and temporal 

variability of turbidity during premonsoon season of 

Ukai reservoir for the last 7 years (2012-2018). 

 

II. STUDY AREA AND MATERIALS 

 

A. Study area  

 

Ukai Reservoir constructed on the river Tapi, is the 

second largest reservoir in Gujarat, India after Sardar 

sarovar. The total area of the reservoir is 494.01km2. 

The river has a Total length of 720 km out of which 

208 km lies in the Madhya Pradesh, 323 km in the 

Maharastra and 189 km in Gujarat. It ultimately meets 

the Arabian Sea approximately 19.2 km west of surat 

in Gujarat. Ukai Reservoir catchment area is 62225 

km2, mean and maximum annual rainfall in the 

watershed 785 and 1191 mm respectively. 

 

The The reservoir is meant for power production, 

irrigation and flood control. The reservoir also 

provides water for domestic and industrial use in 

Surat city and surrounding areas. Average annual 

rainfall in the catchment is about 900 mm and mostly 

concentrated in monsoon moths (July and August). In 

this study based on the observe variation in turbidity 

and the bathymetry, the resevoir area is divided  

(Figure 1) [24] into three parts, i.e. Down (A), Middle 

(B) and Up streams (C) for analyzing the variation of 

water quality parameters. 

 

 
Figure 1. Study area map of Ukai reservoir in India, with 

Down (a), Middle (b) and Up Streams (c) and insitu 

sampling points 

 

B. Satellite data acquisition  

Three types of data set acquired for the analysis, 

includes (1) in-situ Remote Sensing Reflectance (Rrs), 

(2) in-situ turbidity measurements  and (3) RS2 and 

R2A LISS-III (Path/Row: 94/57) satellite radaince data 

for the duartion 2012-2018 (Table 1).  

 

Table 1. RS2 and R2A LISS III satellite data used in the 

Study. 

 Acquisition date 

(YYYY/MM/DD) 

Satellite-Sensor 

1 2012-03-02 RS2 LISS-III 

2 2012-03-26 RS2 LISS-III 

3 2013-03-21 RS2 LISS-III 

4 2013-04-14 RS2 LISS-III 

5 2013-05-08 RS2 LISS-III 

6 2014-03-16 RS2 LISS-III 

7 2014-04-09 RS2 LISS-III 

8 2015-03-11 RS2 LISS-III 

9 2015-04-28 RS2 LISS-III 
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10 2015-05-22 RS2 LISS-III 

11 2016-03-05 RS2 LISS-III 

12 2016-04-22 RS2 LISS-III 

13 2016-05-16 RS2 LISS-III 

14 2017-03-12 R2A LISS-III 

15 2017-04-05 R2A LISS-III 

16 2017-05-11 RS2 LISS-III 

17 2018-03-31* R2A LISS-III 

18 2018-04-24 R2A LISS-III 

19 2018-05-06 RS2 LISS-III 

 

*The asterisked file (2018-03-31) was the IRS-2A 

LISS-III image, which was the nearest pass date to 

field work dates 

 

RS2 and R2A LISS-III Level-1 geometric terrain 

corrected (GTD) data was procuered form the 

National Remote Sensing Center site (NRSC, 

http://nrsc.gov.in). LISS-III dataset is 10-bit quantized 

and has spatial resolution of 24 m with swath of 141 

km. More details about the sensor are provides in the 

Table 2. This study mainly concentrates on the pre-

monsoon season, i.e. March to May, in which total 19 

cloud free images were analyzed during the period of 

this study. 

 

Table 2. RS2 and R2A LISS-III sensors characteristcs 

Sensor Green 

Band    

Red 

Band     

NIR 

Band    

SWIR 

Band  

RS2/R2A-LISS-

III 

(Wave length) 

(mm) 

0.52-

0.59 

0.62-

0.68 

0.77-

0.86 

1.55-

1.70 

RS2/R2A-LISS-

III 

(Exoatmospheri

c spectral 

irradiance  

Eo (W m-2 µm-

1)) 

1850.0

5 

1588.8

6 

1106.7

2 

241.8

0 

 

 

Source: [22] 

C. Field data collection 

 

The field measurements were carried out over Ukai 

reservoir on 27-28th March 2018, where in-situ water 

leaving reflectance and turbidity was measured. There 

were total 23 sampling sites ranging from turbid to 

clear water. At every site, the turbidity was measured 

with the Wetlabs Turbidity meter  (NTU-B) and the 

co-ordinates were marked using a Global Positioning 

System (GPS). An ASD FieldSpec spectroradiometer 

was used to measure spectral reflectance that has 

spectral range of 350-2500 nm. In accordance with 

the Ocean Optics protocols [1] [20], the above-water 

measurement method was used to measure the 

radiance spectra of the white reference panel, water, 

and sky respectively We acquired in situ 

hyperspectral reflectance data using an Analytical 

Spectral Devices (ASD)  

 

spectroradiometer at 1.5 m above the water surface. 

The instrument uses three separate detectors spanning 

the visible, near-infrared (VNIR), and shortwave 

infrared (SWIR1 and SWIR2) with a spectral 

sampling interval of 1.4 nm for the VNIR detector and 

1.0 nm for the SWIR detectors. The spectral 

measurement is resampled and reported for every 1 

nm. The majority of in situ remote sensing samples 

were acquired from 09:30 to 11:00 am and from 2:00 

to 4:30 pm local time on 27-28th March 2018. Above 

water radiometry measurement and data analysis was 

done performed as per IOCCG protocols for in situ 

optical radiometry [32]. The measurement equation 

for the water-leaving radiance 𝐿𝑊 is given by  

𝐿𝑊 = 𝐿𝑇 − 𝜌𝐿𝐼 

where 𝜌 is the sea surface reflectance factor with the 

wind speed, 𝐿𝑇 is total radiance from the water and  

𝐿𝐼 is Sky radiance. 

The remote sensing reflectance was derived based on 

the below equation [27].  

 Rrs(λ) = (Lt – r*Lsky)/(Lp*π/ρp)                             (1)                                                          

where Rrs(λ) is remote sensing reflectance, Lt is  the 

measured total radiance of the water surface, r is 

skylight reflectance at the air-water surface; Lsky  is 

the measured radiance from sky; Lp is the measured of 

http://nrsc.gov.in/
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the reference panel; and ρp is reflectance of the diffuse 

panel [31]. 

 

III. METHODOLOGY 

 

The field-collected in situ spectra were converted into 

simulated bandpass RS2 and R2A LISS-III sensor 

reflectance using Relative Spectral Response (RSR) 

function for each channel. To aggregate the 

reflectance following equation is used. 

 

𝑅𝑏 =
∑ 𝑅𝑆𝑅𝑏(𝜆)∗𝑅(𝜆)𝑑𝜆

𝜆𝑛
𝜆𝑚

∑ 𝑅𝑆𝑅𝑏(𝜆)
𝜆𝑛
𝜆𝑚

                                        (2)                                               

 

Where 𝑅𝑏 denotes simulated aggregate reflectance at 

band b. 𝑅𝑆𝑅𝑏(𝜆) represent Relative Spectral Response 

function of band b within a range from 𝜆𝑚  to 𝜆𝑛 

channels and 𝑅(𝜆) is in situ reflectance spectra. 

 

The parametric algorithm based on the combination 

of bands was tested for estimating the best correlation 

between water turbidity and simulated RS2 and R2A 

LISS-III derived reflectance  (𝑅𝑏 ). Modified 

Normalized Difference Water Index (MNDWI) [28] 

was used to mask out pixels other than water in 

images. Several linear and non-linear models were 

explored out over bands and band combination using 

least square fitting technique to find the best 

coefficient of determination (R2). Among all models 

Normalized Difference Turbidity Index (NDTI) [17], 

was found to exhibits a strong relation with in situ 

measure turbidity.  

 

𝑁𝐷𝑇𝐼 =  
𝑅𝑅𝑒𝑑(𝐵3)− 𝑅𝐺𝑟𝑒𝑒𝑛(𝐵2)

𝑅𝑅𝑒𝑑(𝐵3)+ 𝑅𝐺𝑟𝑒𝑒𝑛(𝐵2)
                             (3)                              

where  𝑅𝑅𝑒𝑑(𝐵3) is reflectance in Red band, 𝑅𝐺𝑟𝑒𝑒𝑛(𝐵2)  

is reflectance in Green band. 

 

A flow chart of the methodology is shown in Figure 2. 

Pre-processing of the Level 1 GTD RS2 and R2A LISS-

III data is required for conversion of the Digital 

Number (DN) values to Top of Atmosphere) TOA) 

reflectance data. The derived radiance values were 

converted to TOA reflectance using solar exo-

atmospheric irradiance (Eo) values of RS2 LISS- III 

sensor [22]. The removal of atmospheric additive 

constant haze removal is done using simple dark 

object subtraction (SDOS) for multispectral image [9]. 

 

 
Figure 2. Systematic flow chart of processing RS2 and R2A 

LISS-III images 

 

IV. RESULTS AND DISCUSSION 

 

The correlation analysis showed that there was a 

significant co-relation between simulated RS2 and 

R2A LISS-III derived NDTI and insitu measured 

turbidity. Both the IRS-RS2 and R2A LISS-III derived 

algorithm shows a strong coefficient of determination 

(R2 = 0.97) with the in situ turbidity measurements, 

which is also shown in Figure 3 (A and B). For other 

combinations like reflectance in Green, Red and NIR 

bands, the observed coefficient of determination was 

found to be 0.57, 0.90 and 0.74 respectively. Although 

the Red band also provide a good corelation but NDTI 

based algorithm was found to be performimg better 

for different seasons.  

 

The derived algorithm are represented as  

Turbidity (IRS-RS2) LISS-III (NTU) = 

106.17x2 + 91.46x + 21.83                                   (4)                                          

 

Turbidity (IRS-R2A) LISS-III (NTU) = 

107.16x2 + 92.41x + 22.05                                   (5) 

where the x is NDTI derived values. 
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Figure 3. Scatter plots of turbidity algorithm calibration (A 

& B) between in situ measured turbidity measurement data 

and simulated RS2 and R2A LISS-IIIderived NDTI. 

 

Figure 4 shows the turbidity variation over the Ukai 

reservoir derived using new turbidity algorithm 

(equations 4 and 5) for 19 cloud free IRS-R2A (4) and 

IRS-RS2 (15) LISS-III images, from 2012 to 2018 in 

pre monsoon season (March, April and May months). 

Reservoir surface area was estimated using MNDWI.  

In the month of March, the reservoir surface area was 

ranges from 272.14 to 429.60 km 2, for the same 

month turbidity ranges from 2.31 to 30.56 NTU. In 

April, the reservoir surface area was ranges from 

225.91 to 397.96 km 2, for the same month turbidity 

ranges are from 3.55 to 31.65 NTU. In the month of 

May, reservoir surface area varied from 192.47 to 

310.46 km 2, for the same month turbidity ranges 

from 2.97 to 32.63 NTU.  More details about the 

surface area and turbidity variation are provided in 

the Table 3. 

 

Table 3. Derived turbidity and Surface area of ukai 

reservoir during 2012-2018 pre monsoon season 

 

Date Surface 

area 

(km2) 

Turbidity (NTU) 

Minimum Maximum Mean S.D 

2012-

03-02 

392.68 2.97 25.73 5.01 4.93 

2012-

03-26 

362.99 3.11 24.73 4.85 4.57 

2013-

03-21 

371.40 3.37 29.50 6.94 7.27 

2013-

04-14 

339.60 5.13 30.43 9.88 7.13 

2013-

05-08 

305.08 6.85 31.25 8.03 4.65 

2014-

03-16 

429.60 3.00 19.83 4.37 3.17 

2014-

04-09 

397.96 3.55 31.65 7.81 7.44 

2015-

03-11 

343.51 2.97 30.56 8.15 7.47 

2015-

04-28 

263.32 5.36 30.56 8.03 7.12 

2015-

05-22 

232.44 6.96 31.56 8.66 7.96 

2016-

03-05 

315.54 2.86 29.80 6.58 6.92 

2016-

04-22 

225.91 5.69 31.62 8.26 7.03 

2016-

05-16 

192.47 5.02 32.63 7.14 5.69 

2017-

03-12 

416.09 3.41 25.80 5.22 4.32 

2017-

04-05 

382.01 4.45 26.31 7.89 6.06 

2017-

05-11 

310.46 7.06 30.09 8.29 6.89 

2018-

03-

31* 

272.14 2.31 22.95 5.57 5.66 

2018-

04-24 

227.62 5.79 23.77 8.65 5.57 

2018-

05-06 

208.02 2.97 31.26 7.96 5.69 

 

The lowest turbidity value (2.31 NTU) was 

observed on 31st March 2018 while the highest 

value (32.63 NTU) was observed  on 16th May 

2016. The highest value was more than fourteen 

times greater than the lowest value, which 

represents high turbidity variation in Ukai reservoir. 
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The lowest surface area (192.47 km2) of reservoir was 

also observed on the same day of highest turbdity, it 

indicates that the turbidity is inversely realated to the 

surface area of water body in our analysis, but we 

can’t make a conclustion each and every time the 

relation will work, number of factors will infulence 

water turbidity. The in situ measured turbidity over 

the reservoir was ranges between 1.47 - 20 NTU, with 

mean value 6.14 NTU and Standard deviation (S.D.) 

4.75 NTU. 

 

 
Figure 4. Derived turbidity (NTU) distribution maps in the Ukai 

Reservoir from 2012 to 2018 pre monsoon season 

 

For further understanding the turbidity spatial 

variations within the reservoir, we have divided the 

reservoir area into 3 parts, i.e. Down (A), Middle (B) 

and Up streams (C) (as marked in Figure 1). The mean 

turbidity in down stream was always lower than the 

middle and up streams during 2012-2018. Down 

stream lowest and highest mean turbidity was 2.31 

NTU on 31st March 2018 and 8.02 NTU on 06th May 

2018 respectively with S.D. of 1.78 NTU. Up stream 

consistantely shows highest urbidity values than the 

other portion of reservoir, with a minimum mean 

turbidity 6.81 NTU on 16th March 2014 and maximum 

mean turbidity 22.80 NTU on 14th April 2013 with S.D. 

4.47 NTU. 

 

 
Figure 5. Derived mean Turbidity for whole Ukai reservoir 

and three sub regions Down (A), Middle (B) and Up Streams 

(C) 

 

Seven years turbidity patterns in pre monsoon season 

were quantified with satellite data sets of RS2 and 

R2A LISS-III, however uncertainities in 

quantification of turbidity was still not known. 

Ideally, Ukai reservoir may be evaluated based on 

more number of  samples and low temporal resolution 

data than RS2 and R2A LISS-III, for better 

understanding of seasonal and interannual turbidity 

patterns. Although there are other satellite data sets 

are availible  like MODIS insturments etc, with the 

low temporal resolution, but they have a 

comparitively poor spatial resolution for such studies. 

Both RS2 and R2A LISS-III sensors are having similar 

spatial and spectral resolutions, so it provides a good 

opportunity to observe long-term variations with 

nearly same consistency.  
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V. CONCLUSIONS 

 

Sensor specific, Green and Red band based algorithm 

was developed for assessment of turbidity in NTU 

units for Ukai reservoir. The developed algorithm was 

used to derive 2012-2018 pre monsoon turbidity maps, 

in situ measured turbidity rages are 1.47 to 20 NTU, 

with a mean of 6.14 and standard deviation of 4.75 

NTU. As per our knowledge, we attempt to develop 

algorithm for turbidity over Ukai reservoir using RS2 

and R2A LISS-III data. Derived algorithm shows a 

strong coefficient of determination (R2 = 0.97) with 

the in situ turbidity measurements, derived turbidity 

ranges are the lowest turbidity value was 2.31 NTU on 

31st March 2018 and the highest was 32.63 NTU on 

16th May 2016. Maximum turbidity was fourteen 

times greater than the lowest value, which shows that 

high variation in turbidity in the Ukai reservoir. Both 

down and middle stream mean turbidity ranges are 

below the 20 NTU which was measured in field 

observations, out of 19 images except seven images in 

the up stream mean turbidity was more than the 20 

NTU. 

 

In brief, this study provides (1) a new algorithm for 

assessment of turbidity over Ukai reservoir during 

2012-2018 (7 years) pre monsoon season and (2) An 

empirical method that applied a thorough analysis to 

derive turbidity variation between RS2 and R2A LISS-

III sensors. Neverthless, some uncertainties will 

always remain with the empirical algorithms; in the 

future study should be conducted to incorporate 

factors such as particle size, shape, colour and mineral 

type as well as organic substance and chlorophyll that 

may affect the optical properties of turbid waters. 

Results obtained through this study could serve as a 

basic foundation for the assessment of turbidity and 

remaining water quality parameters in Ukai reservoir, 

and it also be used in various numerical modles to 

help characterize the trophic state of an inland 

aquatic ecosystem. 
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