

Optimizing The Performance of Photovoltaic Power Plants Through the Root Cause Analysis Method

Jon Marjuni Kadang*1, Heri Sutanto², Singgih Saptadi³

*1Master of Energy, Sekolah Pascasarjana, Universitas Diponegoro, Semarang, Indonesia ²Faculty of Science and Mathematics, Universitas Diponegoro, Semarang, Indonesia ³Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia

ABSTRACT

Article Info

Volume 9, Issue 3 Page Number : 585-610 **Publication Issue** May-June-2022 **Article History** Accepted : 03 June 2022 Published : 20 June 2022 Photovoltaic Power Plant (PV Power Plant) with various capacities, types, and locations have been built in Indonesia since 2011 until now, some of which have less than optimal performance and even do not last long. The limited management and problem-solving of PV Power Plant is the main obstacle. Several PV Power Plant performance analysis studies have been carried out but are still partial, not yet integrated from several aspects of the assessment. A thorough evaluation is needed by tracing the root causes of the problem in PV Power Plant, which is easy to understand and do in general on various types of PV Power Plant. In this study, an integrated PV Power Plant performance analysis was carried out through Root Cause Analysis and recommendations for follow-up solutions. The results of the research of PV Power Plant I (50 kWp, On-Grid), PV Power Plant II (100 kWp, Off-Grid), and PV Power Plant III (350 kWp, On-Grid), which are located on the islands of Sulawesi and Maluku show that the performance of PV Power Plant II and PV Power Plant III is not optimal (Performance Ratio < 60%) while PV Power Plant I is optimal. The results of the aggregation of the causes of the most significant losses come from Inverters, Batteries, and Solar Modules. The results of the Root Cause Analysis show that losses are caused by non-periodic maintenance factors, less reliable design and construction, low material quality, and inadequate PV Power Plant operator competence. Recommended priority for replacing damaged inverters and batteries includes optimizing design, material quality, construction, periodic maintenance, and regular training programs for operators. Based on the research results, the overall effort to optimize PV Power Plant performance through the Root Cause Analysis approach is easy to understand and easy to use in general for various types and capacities of PV Power Plant and different locations to optimize follow-up plans for improvements effectively for the sustainability of a PV Power Plant operation.

Keywords: PV Power Plant, Performance, Losses, Root Cause Analysis

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

I. INTRODUCTION

to Various things have been done to minimize the cost of electricity production, including supporting the Renewable Energy Program with a planned target of 23% in the Indonesian Energy Mix until 2024. Various Solar Power Plants (PV Power Plant) projects with various capacities and types have been built in Indonesia since 2011 until now. As of 2019, the PV Power Plant that has been operating has reached 70 MW consisting of 4 MW in Sumatra, 2 MW in Bali, 1 MW in Kalimantan, 31 MW in Sulawesi, 2 MW in Maluku, 28 MW in Nusa Tenggara and 2 MW in Papua [1]. In addition to great potential, PV Power Plant is an easy generator in the development process, but many PV Power Plant systems cannot last long due to component damage and low-performance Ratio (PR).

The location is spread out, and the capacity is relatively small, so PV Power Plant tends to be operated and managed by 1 Technician with limited expertise. This condition makes finding the cause of the problem in PV Power Plant more difficult. In addition, limited experience related to PV Power Plant technology, management methods, and problem-solving of PV Power Plant is also an obstacle. Therefore, the utilization of PV Power Plant is not optimal for the economic benefits, including investment costs.

Several PV Power Plant performance analysis studies have been carried out but are still partial, not yet integrated from several aspects of the assessment. A thorough evaluation is needed through tracing the root causes of the problem in PV Power Plant which is easy to understand and easy to do in general on various types of PV Power Plant. This research can complement previous studies, namely an integrated PV Power Plant performance analysis through Root Cause Analysis and recommendations for follow-up solutions.

The research was conducted by sampling 3 PV Power Plant Units in Indonesia consisting of different types and capacities and locations in the Archipelago area. The point is that the results of this research through an integrated root cause approach can be easily understood and carried out and can be used in general on various types and capacities of different PV Power Plant as an effort to optimize PV Power Plant performance effectively and support the sustainability of the PV Power Plant.

II. LITERATURE REVIEW

A. PV Power Plant Performance

Figure 1: Overview of PV Power Plant Performance Evaluation

Figure 1 shows an overview of the PV Power Plant performance evaluation. Performance Ratio (PR) is a PV Power Plant performance parameter as in Table 1. A low PR value indicates high overall losses. A commonly used reference value is PR: 75% - 80% for PV Power Plant On-Grid and 65% for PV Power Plant Off Grid). Equation 1 provides a fast and simple way of estimating the energy production (Energy Yield) of PV Power Plant over a certain period.

 $Y_{f} = PSH. W_{p PV}. PR \dots (1)$

TABLE 1 PARAMETERS OF PV POWER PLANT PERFORMANCE

Paran	neter	Symbol	Unit
a.	The final energy	Va	kWh/time
yield	of the PV Power	If	(kWh/year)

Plant over a while (e.g.								
over one year)								
b. Peak Sun Hours								
incident on the PV Power	DCU	(hours/year,						
Plant modules over the	РЭП	PSH/year)						
same period								
c. Peak nominal								
power of the PV Power	Wp	kWp						
Plant								
		%,						
d Dorformanco Patio		normally						
af the DV Derver Dient	PR	between						
of the r v rower Plant		0.65 and						
		0.85						

Source: PLN UPDL Makassar Learning Materials, 2014

In Equation 2, The Performance Ratio (PR) is calculated by comparing the actual energy produced during a certain period (Final Energy Yield, Yf) with the theoretically available energy calculated by the nominal output value of the PV Array (Reference Yield, Yr) and Peak Sun Hours available in that location.

 $PR = \frac{Yf}{Yr}....(2)$

In Equation 3, Yr is the theoretically available energy as it defines the solar radiation source for the PV system.

 $Yr = H. A. \eta_{module}.....(3)$

Where: H: Irradiation for a certain time per year (kWh/m^2) ; A: the active area of the module (m^2) ; module: PV Module Efficiency (%)

Alternatively, Yr can be calculated by Peak Sun Hours (PSH) and the power value of the PV Array as in Equation 4.

 $Yr = PSH. P_{peak}.....(4)$

B. Root Cause Analysis (RCA)

RCA is a structured approach to identifying factors that influence one or more events so that they can be used to improve performance [31,32,33]. Several root cause analysis tools have been widely applied to identify root causes, namely 5Why Analysis, Fish Bone Diagram, and Root Cause Tree [34].

5Why Analysis is a simple root cause analysis tool that can be used to analyze system failures and can work well in identifying the causes and effects of an event. In addition, the use of RCA in the analysis of performance improvements can facilitate the tracking of factors that affect performance [35].

III. METHODS AND MATERIALS

A. Types and Scope of Research

The research was carried out on a sampling of 3 (three) PV Power Plant units with different types, capacities, and locations in Indonesia in the period January to May 2022, namely:

- PV Power Plant I (S -05°22'32.60, E 119°49'46.30, Makassar, South Sulawesi, 50 kWp, On Grid Type),
- PV Power Plant II (S -04°70'60.3, E 131°73'78.0, Masohi-Tioor Island, Maluku, 100 kWp, Off Grid Type),
- PV Power Plant III (S 02°03'75.0, E 128°29'97.8, Wamama-Daruba Island, North Maluku, 350 kWp, On Grid Type).

This research is quantitative. The quantitative approach is used as follows:

- 1. Comparing the actual energy with the optimal output that should be from the PV Power Plant, where a Performance Ratio (PR) analysis is carried out which describes the PV Power Plant performance (optimal or not yet optimal).
- Search the form of root cause analysis (Root Cause Analysis) to find the main causes of problems that affect the performance of PV Power Plant.
- 3. Aggregating the causes of PV Power Plant energy losses.
- 4. Develop an Action Plan to address the problems that have been analyzed previously.

 Determine the priority scale recommendations for a follow-up to the Action Plan using the Cost-Benefit & Risk Analysis method through impact, cost, and risk assessments.

Figure 2 shows a conceptual model of research related to the optimization of PV Power Plant performance in an integrated manner through the Root Cause Analysis approach. The Economic and environmental analysis was not carried out in this research. Figure 3 shows research stage.

B. Data Collection and Data Processing Techniques The data used in this study are as follows:

- Primary data collection was carried out by collecting data on specifications and energy production for PV Power Plant On Grid 50 kWp Gowa-South Sulawesi, PV Power Plant Off Grid 100 kWp Tioor Island-Maluku, and PV Power Plant On Grid 350 kWp Wamama Island-North Maluku.
- 2. Secondary data collection and processing are carried out through the study of various references or literature including online calculation simulations through the Global Solar Atlas website and the use of the System Advisory Model (SAM) application.

Figure 2. Conceptual Model of PV Power Plant Performance Optimization through Root Causes Analysis

Method

588

Figure 3 . Research Stages

IV. RESULTS AND DISCUSSION

A. Root Cause Analysis on The Performance of PV Power Plant I

Figure 4. Single Line Diagram of PV Power Plant I

PV Power Plant I operates on an On-Grid basis (Figure 4), consisting of 160 Solar Modules, each with a capacity of 315 Wp. Each Array consists of 32 Solar Modules which are divided into 2 Strings where there are 16 Modules per String. The inverter in PV Power Plant I consists of 5 Grid Tie Inverter units with a capacity of 10 kW in each Array as in Table 2.

Data D	escription	PV Power Plant I				
a.	Location	Gowa-Makassar, S -5°22'32.60, E 119°49'46.30				
b.	Installed Capacity, Type, and Mounting	50 kWp, On-Grid, Fixed				
с.	Solar Module:					
	Model, Technology, P0, Efficiency, Number of Units,	CS6X-315P, pc-Si, 315 Wp, 16,42 %, 160				
	Tilt Angle, Azimuth Angle	Units, 18 ⁰ , 5 ⁰				
d.	Inverter					
	Model, P _{rated} , Efficiency, Number of Units	STP10000TL, 10 kW, 98%, 5 Units				

TABLE 2 SPESIFICATION OF PV POWER PLANT I

The research was carried out through an analysis of the actual electrical energy production of PV Power Plant I on the potential production of electrical energy from PV Power Plant I. Furthermore, an online calculation simulation was carried out through the Global Solar Atlas website by entering PV Power Plant I specification data from Table 2. Based on the

online calculation simulation through the Global Solar Atlas website, the potential for electrical energy production from PV Power Plant I is 203 kWh/day or 74.170 kWh/year as in Figure 5. The largest PV Power Plant I electrical energy production is in July, August, September, and October 2021 and peaks in August 2021.

PV ELECTRICITY AND SOLAR RADIATION PV POWER OUTPUT DNI DATA		PV ELECTRICITY AND	D SOLAR RADIATION	Monthly averages			
PV system configuration PV system: Ground-mounted large scale Azimuth of PV panets: 9* Tit of PV panets: 19* Installed capacity: 50 kWp C Change PV system		PV system configuration Pv system: Ground-mounted large scale Admuth of PV panels: 18* Tit of PV panels: 18* Installed capacity: 30 kWp Change PV system		Total photovoltaic power output			
Annual averages Total photowitals power output and G 0.203 MWh per day v	lobal tilted irradiation 5.119 KWH/m ³ per day •	Annual averages Total photovoltale powe 74.1 MWh per y	er output and Global tilled irradiation 170 1868.4 year • KWih/m ² per year •	≧ 2.5 0 - Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec			

Figure 5. Potential Electricity Production Simulation of PV Power Plant I Source: https://globalsolaratlas.info/detail?c=-5.46727,123.240234,5&s=-5.22326,11949463&m=site&pv=ground,5,18,50 (access 3/8/2022)

According to Table 3, the Performance Ratio (PR) of PV Power Plant I in the 2017-2021 operating period is 3% - 89%. Where the lowest performance was in 2019 (PR: 3,72%) and the highest in 2021, namely PR at 89,92% with losses of 10,08%. Furthermore, the causes

of these losses are further analyzed on the PV Array, DC side distribution, Inverter, and AC side distribution to determine the dominant cause that causes losses.

De	scription	PV Power Plant I (On Grid , 50 kWp, Makassar)					
а	Electrical Energy Production (kWh)	2017	2018	2019	2020	2021	
	Final Energy Yield (Y _f)	33.870	9.148	2.762	20.553	66.691	
	(source: PV Power Plant I Actual Production)						

TABLE 3 PERFORMANCE DISCUSSION OF PV POWER PLANT I

	Reference Energy Yield (Yr)	74.170	74.170	74.170	74.170	74.170
	(source: PV Power Plant I Production Potential)					
b	Performance Ratio (PR)	45,67%	12,33%	3,72%	27,71%	89,92%
с	Losses	54,33%	87,67%	96,28%	72,29%	10,08%

Visually in Figure 6, the condition of the solar modules in PV Power Plant I is still good with routine maintenance carried out. Curve IV analysis cannot be done because of the availability of Special Tools IV Tester constraints. Based on the visual analysis of the module and IV curve, as well as the use of the System Advisory Model (SAM) application, the estimated losses in the PV Array are 8% (6.927 kWh) from the causes of shading (clouds, trees, buildings around), dust, and characteristics of the solar module.

Figure 6. Solar Module Condition of PV Power Plant I Source: PLN UPDL Makassar, 11/23/2021

Figure 7 is done by observing the cables and equipment on the DC side, which is generally in normal conditions related to the DC connections and cables used so that the DC loss estimation uses a practical reference for DC losses and the use of the SAM application are 1% (989 kWh).

Figure 7. DC Distribution Side Condition of PV Power Plant I Source: PLN UPDL Makassar, 11/23/2021

Visually in Figure 8, the condition of the inverter is normal so the efficiency of the inverter is the same as the nameplate specification, which is 98%. Inverter trips rarely occur so the operating envelope is safe (no problem). So that the estimation of losses on the Inverter uses a practical reference to losses on the Inverter and the use of the SAM application are 2% (2.542 kWh).

Figure 8. Inverter Condition of PV Power Plant I Source: PLN UPDL Makassar, 11/23/2021

This is done by observing the cables and equipment on the AC side as in Figure 9, which is generally in normal conditions related to connections and cables on the AC side that are used. Thus, the estimation of losses on the AC side through practical references and the application of the SAM are 1 % (802 kWh).

Figure 9. AC Distribution Side Condition of PV Power Plant I | *Source: PLN UPDL Makassar, 11/23/2021*

Merit Order Analysis is 100% of PV production is absorbed by the system so that the estimated losses are below 1%. The Root Cause Analysis diagram of the causes of problems in the production of electrical energy in PV Power Plant I can be seen in Table 4. Based on the analysis that has been done through the Root Cause Analysis method, the causes of losses in PV Power Plant I are aggregated as in Table 5.

TABLE 4 DIAGRAM OF ROOT CAUSE ANALYSIS RELATED TO ELECTRICAL ENERGY PRODUCTIONLOSSES PV POWER PLANT I

Problem	Root Cause 1	Root Cause 2	Root Cause 3	Root Cause 4		
	Losses on PV Array	Shading of Trees	Non-routine maintenance	Monitoring and evaluation of maintenance have not been scheduled periodically.		
		Shading of Buildings	Construction	PV Array Location Design		
LOSSES OF		Dust	Non-routine	Monitoring and evaluation of		
ELECTRICITY			maintenance	maintenance have not been		
PRODUCTION				scheduled periodically.		
ON PV		Solar Module	Solar Module	Solar Module Design and		
POWER		Efficiency	Characteristics	Selection		
PLANT I:	Losses on	DC Cable	DC Cable	DC Cable Design and		
	The DC		Characteristics/Resistance	Selection		
HIGH (Losses:	Distribution	DC	DC Installation	DC Connection Check has not		
12%, 13.801	Side	Connection		been scheduled periodically		
kWh)	Losses on	Inverter	Inverter Characteristics	Inverter Design and Selection		
	the Inverter	Efficiency				
	Losses on	AC Cable	AC Cable	AC Cable Design and		
The A			Characteristics/Resistance	Selection		
	Distribution	AC	AC installation	AC Connection Check has not		
	Side	connection		been scheduled periodically		

TABLE 5 AGGREGATION ELECTRICAL ENERGY PRODUCTION LOSSES OF PV POWER PLANT I

No.	Losses G	roup		Losses	Reason	Root Cause
1.	Losses	on	PV	8%	Tree	Monitoring and evaluation of maintenance
	Array				Shading	have not been scheduled periodically.
					Building	PV Array Design
					Shading	
					Dust	Monitoring and evaluation of maintenance
						have not been scheduled periodically.

				Solar	Solar Module Design and Selection
				Module	
				Efficiency	
2.	Losses on The DC	1%		DC Cable	DC Cable Design and Selection
	Distribution Side			DC	DC Connection Check has not been
				Connection	scheduled periodically
3.	Losses on the	2%		Inverter	Inverter Design and Selection
	Inverter			Efficiency	
4.	Losses on The AC	1%		AC Cable	AC Cable Design and Selection
	Distribution Side			AC	AC Connection Check has not been
				connection	scheduled periodically
5.	Losses from Merit	0%		-	-
	Order				
TOT	AL LOSSES	12%	(13.801		
		kWh)			
PERFORMANCE		88%			
RAT	'IO(PR)				

Based on the aggregation of losses from Table 5, the losses in PV Power Plant I are mostly caused by the PV Array group in the form of shading, dust, and characteristics of the Solar Module. In Table 6, the results of the comparison of Performance Ratio (PR) between Actual and Calculation (Root Cause Analysis approach) are presented.

TABLE 6 COMPARISON OF ACTUAL PR AND PR RESULTS OF ROOT CAUSE ANALYSIS IN PV POWER PLANT I

Actual	Root Cause	Conclusion of the Root Cause Analysis Method
Data	Analysis	
PR:	PR: 88%	Comparison of PR Actual Data & PR Root Cause Analysis is relatively
89,92%	(losses: 12%)	appropriate, so that:
(losses:		a. The results of the Root Cause Analysis are close to the actual/reality in the
10,08%)		field (PV Power Plant I site).
		b. The main root of the problem so that the production of electrical energy is
		not optimal by the energy potential of PV POWER PLANT 1: has been
		identified (dominantly caused by the PV Array group, namely the
		maintenance factor of shading & dust as well as the characteristics of the
		equipment on the solar module).

Furthermore, Table 7 is a recommendation on the priority scale of Action Plans to overcome PV Power Plant I performance problems through Cost-Benefit &

Risk Analysis, namely analyzing the impact, costs, and risks of the Action Plan.

|--|

No	Losses Group	Losses	Reason	Action Plan	Impa	Cos	Ris	Priorit
•					ct	t	k	у
1.	Losses on PV	8%	Tree	Monthly periodic monitoring and	High	Lo	Lo	1
	Array		Shading	evaluation, especially tree pruning		w	w	
			Building	Redesign and relocation of 1 PV	High	Lo	Lo	1
			Shading	Array affected by building shading		w	w	
			Dust	Monthly periodic monitoring and	High	Lo	Lo	1
				evaluation, especially solar module		w	w	
				cleaning				
			Module	When replacing the module better	High	Hig	Lo	2
			Characteris	characteristics are selected		h	w	
			tics					
2.	Losses on	1%	Cable	When changing cables choose	Low	Lo	Lo	2
	The DC			better characteristics		w	w	
	Distribution		DC	Quarterly DC Connection Check	High	Lo	Hig	1
	Side		Connectio			w	h	
			n					
3.	Losses on	2%	Inverter	When replacing the Inverter better	High	Hig	Lo	2
	The Inverter		Characteris	characteristics are selected		h	w	
			tics					
4.	Losses on	1%	Cable	When changing cables choose	Low	Lo	Lo	2
	The AC			better characteristics		w	w	
	Distribution		AC	Quarterly AC Connection Check	High	Lo	Lo	1
	Side		connection			w	w	

B. Root Cause Analysis on The Performance of PV Power Plant II

Figure 10. Single Line Diagram of PV Power Plant II

PV Power Plant II operates Off Grid as show in Figure 10, which consists of 560 Solar Modules with a capacity of 180 Wp each with a configuration consisting of 9 Arrays which are divided into 112 Strings, and each String is composed of 5 Solar Modules. The inverter in PV Power Plant II consists of 2 (two) Bi-Directional Inverter Units with a capacity of 60 kW per unit so that the total inverter capacity is 120 kW as in Table 8.

Da	ta Description	PV Power Plant II		
a.	Location	Tioor Island, Maluku, S -04°70'60.3, E		
		131°73'78.0.		
b.	Installed Capacity, Type, and Mounting	100 kWp, Off Grid, Fixed		
c.	Solar Module:			
	Model, Technology, Po, Efficiency, Number of Units, Tilt	LEN 180 – 24M, mc-Si, 180 Wp, 14.50 %,		
	Angle, Azimuth Angle	160 Units, 15°, 0°		
d.	Inverter			
	Model, P _{rated} , Efficiency	MTP616F, 60 kW x 2 Units, 94%		
e.	Battery			
	Model, Capacity, Nominal Voltage/cell, Number of	OpzS GFX - 2000, 2000 Ah, 2 V/ cell , 120		
	Batteries	Pcs		

TABLE 8 SPECIFICATIONS OF PV POWER PLANT II

The research was carried out through an analysis of the actual electrical energy production of PV Power Plant II on the potential production of electrical energy from PV Power Plant II. Furthermore, an online calculation simulation was carried out using the Global Solar Atlas website by entering PV Power Plant II specification data from Table 8. Based on an online calculation simulation through the Global Solar Atlas website as shown in Figure 11, the potential for electricity production from PV Power Plant II is 407 kWh/day or 148.728 kWh/year. The largest production of PV Power Plant II electrical energy is in August, September, October, and November 2021, and the peak is in August 2021.

PV system configuration		PV system configuration		Monthly averages			
Pv system: Ground-mounted large scale Azimuth of PV panets: Default (0*) Tit of PV panets: Default (6*) Installed capacity: 100 KWp Change PV system		Pr system: Ground-mounted large scale Airmuth of PV panels: Default (0°) Titl of PV panels: Default (0°) Installed capacity: 100 kWp Change PV system		Total photovoltaic power output 20 15			
Annual averages Total photovoltaic power 0.40	urput and Global tilted irradiation 5.054	Annual averages Total photovoltaic power output and 148.728	Global litted irradiation 1844.6				
MWh per day	▼ kWh/m² per day ▼	MWh per year 👻	kWh/m² per year 👻	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec			

Figure 11. Potential Electricity Production Simulation of PV Power Plant II Source: https://globalsolaratlas.info/detail?c=-4.705775,131.738434,11&s=-4.70603,131.7378&m=site&pv=ground,0,6,100 (access 3/15/2022)

According to Table 9, the Performance Ratio (PR) in PV Power Plant II for the operating period 2018-2021 is around 9% - 16%. Where the highest PV Power Plant II performance in 2018 is PR at 16,30% and the lowest in 2021 (PR: 9,07%) with losses of 90,93%. Furthermore, further analysis of these losses is carried out on the PV Array, DC side distribution, battery, inverter, AC side distribution, and PV Power Plant II Merit Order to find out the dominant cause that causes losses.

Per	Performance Discussion PV Power Plant II (Off Grid , 100			100 kWp,	
Tioor Island-Maluku)					
a.	Electrical Energy Production (kWh)	2018	2019	2020	2021
	Final Energy Yield (Y f)	12.350	24.430	20.890	16.710
	(source: PV Power Plant II Actual Production)				
	Reference Energy Yield (Yr)	148.728	148.728	148.728	148.728
	(source: PV Power Plant II Production Potential)				
b.	Performance Ratio (PR)	16,30%	13,25%	11,33%	9,07%
с.	Losses	83,70%	86,75%	88,67%	90,93%

TABLE 9 DISCUSSION ON THE PERFORMANCE OF PV POWER PLANT II

Visually in Figure 12, the condition of the Solar Modules in PV Power Plant II has degraded due to dust crust on the edges of the solar module. In addition, shading constraints also cause disturbances in the production of PV Power Plant II electrical energy. Curve IV analysis cannot be carried out due to constraints on the availability of Special Tools IV Testers. Based on the visual analysis of the module and the use of the System Advisory Model (SAM) application, the estimated losses in the PV Array PV Power Plant II are 12% (17.847 kWh).

Figure 12. Solar Module Condition of PV Power Plant II Source: PLN UIW Maluku, 3/2/2022

Figure 13 show tracing cables and equipment on the DC side, where there are problems with some loose connection points, so the DC losses estimation uses a practical reference for DC losses and the use of the System Advisory Model (SAM) application are 2% (2.977 kWh).

Figure 13. DC Distribution Side Condition of PV Power Plant II Source: PLN UIW Maluku, 3/2/2022

Inverter efficiency is the same as the nameplate specification which is 94% (6% loss). Based on the search as in Figure 14, only 1 Unit Bi-directional Inverter can operate out of a total of 2 Units, whereas 1 Unit Bi-directional Inverter has been in an off condition due to damage until now. Inverter trips often occur so that there is a problem with the operating envelope and it takes time for further inspection.

Figure 14. Inverter Condition of PV Power Plant II Source: PLN UIW Maluku, 3/2/2022

The problems with the PV Power Plant II inverter caused the PV Power Plant II electricity production to be significantly low. With the condition that 1 unit is damaged and the inverter efficiency is 94% and with the use of the System Advisory Model (SAM) application, the estimated losses on the PV Power Plant II inverter is 56% (83.287 kWh). From an interview with the PV Power Plant Manager, information was obtained regarding the main challenge, namely the operator who has limited competence in the form of knowledge and skills in operating and maintaining inverters.

Physical analysis in Figure 15, which is to analyze the condition of the battery physically. Based on the investigation, most of the batteries have been sulfated (sulfate buildup) and are damaged. Based on these conditions and the use of the System Advisory Model (SAM) application, the estimated losses in the PV Power Plant II battery are 20% (29.745 kWh).

Figure 15. Battery Condition of PV Power Plant II Source: PLN UIW Maluku, 3/2/2022

Based on an interview with the PV Power Plant Manager, information was obtained regarding the main obstacle, namely the operator who has limited competence in the form of knowledge and skills in operating and maintaining batteries.

Figure 16 is done by tracing the cables and equipment on the AC side, which is generally in normal conditions regarding the connections and cables on the AC side that are used. Estimated losses on the AC side through practical references and the application of the System Advisory Model (SAM) is 2 % (2.974 kWh). Merit Order Analysis is 100% of PV production is absorbed by the system so that the estimated losses are below 1%.

Figure 16. AC Distribution Side Condition of PV Power Plant II Source: PLN UIW Maluku, 3/2/2022

Thus, a comprehensive Root Cause Analysis of the causes of problems in the production of electrical energy in PV Power Plant II can be presented in Table 10.

TABLE 10 DIAGRAM OF ROOT CAUSE ANALYSIS RELATED TO ELECTRICAL ENERGY PRODUCTION LOSSES PV POWER PLANT II

Problem	Root Cause 1	Root Cause 2	Root Cause 3	Root Cause 4	
LOSSES OF	Losses on PV	Module	Non-routine	Monitoring and Evaluation of	
ELECTRICI	Array	Degradation from	maintenance Module Maintenance has no		
TY		Dust Crust		scheduled periodically	
PRODUCTI		Shading of Trees	Non-routine	Monitoring and Evaluation of	
ON ON PV			maintenance	Module Maintenance has not been	
POWER				scheduled periodically	
PLANT II:		Solar Module	Solar Module	Solar Module Design and Selection	
		Efficiency	Characteristics		
VERY	Losses on	DC Cable	DC Cable	DC Cable Design and Selection	

нісн	The	DC		Characteristics	
///			200		
(Losses:	ses: Distribution DC Connection		DC Installation	DC Connection Check has not been	
92%,	Side				scheduled periodically
132.018	Losses	on	Inverter trips	Inverter	Operator competency related to
kWh)	The Inve	rter	frequently &	Maintenance	inverter operation and maintenance
			1 Unit is broken		is lacking
			Inverter Efficiency	Inverter	Inverter Design and Selection
			Characteristics		
	Losses on Sulfation in		Battery Check	Monitoring and Evaluation of	
	Battery		Batteries		Battery Maintenance has not been
					scheduled periodically
			Broken battery	Battery Operation	Operator competency related to
				and Maintenance	battery operation and maintenance
					is lacking
			Battery Efficiency	Battery	Battery Design and Selection
			Characteristics		
	Losses	on	AC Cable	AC Cable	AC Cable Design and Selection
	The	AC		Characteristics	
	Distribut	ion	AC connection	AC installation	AC Connection Check has not been
	Side				scheduled periodically

Based on the analysis that has been done through the Root Cause Analysis method, the causes of losses in PV Power Plant II are grouped (aggregated) as in Table 11. Based on Table 11, the dominant cause of losses in PV Power Plant II is caused by the inverter group in the form of inverter damage and inverter characteristics. Furthermore, the results of the comparison of Performance Ratio (PR) between Actual Data and Calculations (Root Cause Analysis approach) are relatively appropriate as in Table 12.

596

TABLE 11 AGGREGATION ELECTRICAL ENERGY PRODUCTION LOSSES OF PV POWER PLANT II

No.	Losses Group	Losses	Reason	Root Cause		
1.	Losses on PV	12%	Dust Crust	Monitoring and Evaluation of Module		
	Array			Maintenance has not been scheduled periodically		
			Tree Shading	Monitoring and Evaluation Periodic maintenance		
				of unscheduled trees		
			Solar Module	Solar Module Design and Selection		
			Efficiency			
2.	Losses on The DC	2%	DC Cable	DC Cable Design and Selection		
	Distribution Side		DC Connection	Periodic unscheduled DC Connection Check		
3.	Losses on The	56%	Inverter trips	Operator competency related to inverter operation		
	Inverter		frequently &	and maintenance is lacking		
			1 Unit is broken			

			Inverter Efficiency	Inverter Design and Selection			
4.	Losses on Battery	20%	Sulfation in	Monitoring and Evaluation of Battery			
			Batteries	Maintenance has not been scheduled periodically			
			Broken battery	Operator competency related to battery operation			
				and maintenance is lacking			
			Battery Efficiency	Battery Design and Selection			
5.	Losses on The AC	2%	AC Cable	AC Cable Design and Selection			
	Distribution Side		AC connection	Periodic unscheduled AC connection checks			
6.	Losses from Merit	0%	-	-			
	Order						
TOTAL LOSSES		92% (132.018 kWh)					
PERFORMANCE		8%					
RATIO (PR)							

TABLE 12 COMPARISON OF ACTUAL PR AND PR RESULTS OF ROOT CAUSE ANALYSIS IN PV POWER PLANT II

Actual	Root Cause	Conclusion of the Post Cause Analysis Mathed				
Data Analysis		Conclusion of the Root Cause Analysis Method				
PR: 9,07%	PR: 8%	Comparison of PR Actual Data & PR Root Cause Analysis is relative				
(losses:	(loss : 92%)	appropriate, so that:				
90,93%)		a. The results of the Root Cause Analysis are close to the actual/reality in the				
		field (PV Power Plant II site).				
		b. The main root cause of the very low production of electrical energy in PV				
		Power Plant II has been identified (a significant cause for the Inverter &				
		Battery group).				

In Table 13, recommendations for the priority scale of Cost-Benefit & Risk Analysis, namely analyzing the the Action Plan are presented to overcome PV Power Plant II performance problems determined through

No	Losses	Losse	Reason	Action Plan	Impac	Cost	Risk	Priorit
•	Group	s			t			у
1.	Losses on	12%	Dust Crust	Monthly periodic monitoring	High	Low	Low	1
	PV Array			and evaluation, especially solar				
				module cleaning				
			Tree	Monitoring and Evaluation	High	Low	Low	1
			Shading	Monthly periodic maintenance,				
				especially tree pruning				
			Solar	When replacing the module	High	High	Low	2

TABLE 13 ACTION PLAN PRIORITY SCALE RECOMMENDATIONS FOR PV POWER PLANT II

			Module Efficiency	better characteristics are selected				
2.	Losses on The DC	2%	DC Cable	When changing cables choose better characteristics	Low	High	Low	2
	Distributio n Side		DC Connectio n	Quarterly DC Connection Check	High	Low	High	1
3.	Losses on the	56%	Inverter trips	Replace the broken inverter and check the inverter regularly	High	High	High	1
	Inverter		frequently & 1 Unit is broken	Periodic training for Operators regarding Inverter Operation and Maintenance	High	Low	Low	1
			Inverter Efficiency	When replacing the entire inverter, better characteristics are selected	High	High	Low	2
4.	Losses on	20%	Sulfation	Battery Replacement	High	High	High	1
	Battery		in Batteries	Regular cleaning and battery checks per month	High	Low	Low	1
			Broken	Battery Replacement	High	High	High	1
			battery	Periodic training for Operators regarding Battery Operation and Maintenance	High	Low	Low	1
			Battery Efficiency	When replacing the entire battery, better characteristics are selected	High	High	Low	2
5.	Losses on The AC Distributio	2%	AC Cable	When replacing the entire AC cord, better characteristics are selected	Low	High	Low	2
	n Side		AC connection	Quarterly AC Connection Check	High	Low	Low	1

C. Root Cause Analysis on The Performance of PV Power Plant III

PV Power Plant III operates On-Grid as in Figure 17, consisting of 1.348 Solar Modules with a capacity of 260 Wp each with a configuration consisting of 56 Arrays which are divided into 164 Strings and each String contains 8 Solar Modules and 4 Strings consisting of 9 Modules per String. The inverter in PV

598

Data	Description	PV Power Plant III					
a.	Location	Wamama-Daruba, North Maluku , S 02°03'75.0, E					
		128°29'97.8					
b.	Installed Capacity, Type, and Mounting	350 kWp, On-Grid, Fixed					
c.	Solar Module:						
	Model, Technology, Po, Efficiency, Number of	LEN 260 Wp , mc-Si, 260 Wp , 16%, 1,348 Units					
	Units						
	Tilt Angle, Azimuth Angle	3°, 180°					
d.	Inverter						
	Model, Prated, Efficiency, Number of Units	STP25000TL-30, 25 kW, 98%, 14					

TABLE 14 SPECIFICATIONS OF PV POWER PLANT III

The research was carried out through an analysis of the actual electrical energy production of PV Power Plant III on the potential for production of electrical energy from PV Power Plant III. Furthermore, an online calculation simulation was carried out using the Global Solar Atlas by entering PV Power Plant III specification data from Table 14.

Figure 18. Potential Electricity Production Simulation Of PV Power Plant III

Source:

https://globalsolaratlas.info/detail?c=2.087627,128.301086,11&s=2.0375,128.29978&m=site&pv=ground,3,180,350 (access 3/8/2022)

Based on the online calculation simulation through the Global Solar Atlas website as presented in Figure 18, information on the potential for electrical energy production from PV Power Plant III is 1.516 kWh/day or 553.247 kWh/year. Based on Figure 18, the largest electrical energy production is in March, April, May, August, September, and October 2021 and peaks in October 2021. From the actual electrical energy production data and online calculation simulations related to the electrical energy potential of PV Power Plant III (according to Figure 18), Table 15 is the result of the analysis of PV Power Plant III performance.

TABLE 15 DISCUSSION ON THE PERFORMANCE OF PV POWER PLANT III

Research Description		PV Power Plant III (On Grid , 350 kWp, Wamama Island- North Maluku)				
a.	Electrical Energy Production (kWh)	2018	2019	2020	2021	

Jon Marjuni Kadang et al Int J Sci Res Sci & Technol. May-June-2022, 9 (3) : 585-610

	Final Energy Yield (Y _f)	258.729	234.151	186.447	29.228
	(source: PV Power Plant III Actual				
	Production)				
	Reference Energy Yield (Y _{r)}	553.247	553.247	553.247	553.247
	(source: PV Power Plant III Production				
	Potential)				
b.	Performance Ratio (PR)	37,57%	34,01%	27,08%	14,86%
с.	Losses	62,43%	65,99%	72,92%	85,14%

Based on Table 15, the evaluation of the PV Power Plant III Performance Ratio (PR) in the 2018-2021 operating period is around 14% - 37%. Where the highest PV performance in 2018 is PR at 37,57% and will decrease until 2021 (PR: 14,86%) with losses increasing to 85,14% in 2021. Furthermore, these losses are analyzed further on PV Array, DC side distribution, Inverter, AC side distribution, and Merit Order PV Power Plant III to find out the dominant cause that causes losses.

Visually in Figure 19, the condition of the PV Power Plant III solar module is that most of the problems are caused by unreliable construction, unequal module types, rust on the edges of the module, a lot of dust on the module, and the impact of shading from the surrounding environment (grass) height, trees, buildings, between modules which causes large losses in the PV Array. Curve IV analysis cannot be done because of the availability of Special Tools IV Tester constraints. Based on the visual analysis of the module and the use of the System Advisory Model (SAM) application, the estimated losses in the PV Array PV Power Plant III are 45 % (248.961 kWh).

Figure 19. Solar Module Condition of PV Power Plant III

Source: PLN UIW Maluku, 3/4/2022

Figure 20 is done by tracing the cables and equipment on the DC side, where there are problems with some loose connection points so that the DC losses estimation uses a practical reference for DC losses and the use of the System Advisory Model (SAM) application of 10% (55.325 kWh).

Figure 20. DC Distribution Side Condition of PV Power Plant III Source: PLN UIW Maluku, 3/4/2022

Physically the condition of some inverters is not normal, causing quite high losses on the inverters as ini Figure 21. Inverter trips often occur so that there is a problem with the operating envelope and it takes time for further inspection. The problems in the PV Power Plant III inverter caused the PV Power Plant III electricity production to be significantly low. With these conditions and through the use of the System Advisory Model (SAM) application, the estimated losses in the PV Power Plant III Inverter are 30% (165.974 kWh).

Figure 21. PV Power Plant III Inverter Condition *Source: PLN UIW Maluku, 3/4/2022*

Based on an interview with the PV Power Plant Manager, information was obtained regarding the main obstacle, namely the operator who has limited competence in the form of knowledge and skills in operating and maintaining inverters.

Figure 22 is done by tracing the cables and equipment on the AC side, which is generally in normal conditions related to connections and cables on the AC side that are used. Thus, the estimation of losses on the AC side through practical references and the application of the System Advisory Model (SAM) is 2 % (11.065 kWh).

Figure 22. AC Distribution Side Condition of PV Power Plant 3

Source: PLN UIW Maluku, 3/4/2022

Merit Order Analysi is 100% of PV production is absorbed by the system so that the estimated losses are below 1%. Thus, the overall Root Cause Analysis of the causes of problems in the production of electrical energy in PV Power Plant III can be shown in Table 16.

Based on the analysis that has been done through the Root Cause Analysis method, the causes of losses in PV Power Plant III can be aggregated according to Table 17.

TABLE 16 DIAGRAM OF ROOT CAUSE ANALYSIS RELATED TO ELECTRICAL ENERGY PRODUCTION

 LOSSES PV POWER PLANT III

Problem	Root Cause 1	Root Cause 2	Root Cause 3	Root Cause 4
	Losses on PV	Less reliable	PV Array design and	Less Module Installation
	Array	construction	installation are not	Check and Evaluation
PV POWER			suitable	
PLANT 3		Module type is not	Module procurement	Less Module Installation
ELECTRICIT		the same	is not according to the	Check and Evaluation
Y			design	
PRODUCTIO		Module	Irregular maintenance	Monitoring and
N LOSSES:		Degradation from	and low material	Evaluation of Module
VERY HIGH		Rusty Crust	quality	Maintenance has not been
(Losses: 87%,				scheduled periodically
524.019 kWh)		Dust	Non-routine	Monitoring and
			maintenance	Evaluation of Module
				Maintenance has not been

			scheduled periodically
S	Shading of tall grass	Non-routine	Monitoring and
		maintenance	Evaluation The
			maintenance of the
			surrounding environment
			has not been scheduled
			periodically
S	Shading of Trees	Non-routine	Monitoring and
		maintenance	Evaluation Periodic
			maintenance of
			unscheduled trees
S	Shading of the	Construction	PV Array location design
S	urrounding		
b	ouildings		
S	Shading between	PV Array installation	Insufficient installation
n	nodules	is not according to the	check and evaluation
		design	
S	Solar Module	Solar Module	Solar Module Design and
E	Efficiency	Characteristics	Selection
on The L	DC Cable	DC Cable	DC Cable Design and
		Characteristics/Resista	Selection
ution		nce	
Γ	DC Connection	DC Installation	DC Connection Check has
			not been scheduled
			periodically
on the I	nverter trips	Inverter operation	Operator competency
r fi	requently	interruption,	related to inverter
		Inverter Maintenance	operation and
			maintenance is lacking
I	nverter Efficiency	Inverter	Inverter Design and
		Characteristics	Selection
on The A	AC Cable	AC Cable	AC Cable Design and
		Characteristics/Resista	Selection
ıtion		nce	
A	AC connection	AC installation	AC Connection Check has
			not been scheduled
			periodically
		Shading of tall grass Shading of tall grass Shading of the surrounding buildings Shading of the surrounding buildings Shading between modules Shading between modules Solar Module Efficiency DC Connection DC Connection on the Inverter trips frequently on The AC Cable ition AC Cable	Image: second

TABLE 17 AGGREGATION LOSSES OF ELECTRICAL ENERGY PRODUCTION ON PV POWER PLANT 3

No.	Losses Group	Losses	Reason	Root Cause	
			Less reliable construction	Less Module Installation Check and Evaluation	
			Module type is not the	Less Module Installation Check and	
			same	Evaluation	
			Module Degradation from	Monitoring and Evaluation	
			Rusty Crust	Maintenance of periodic unscheduled	
				modules	
				Monitoring and Evaluation of Module	
			Dust	Maintenance has not been scheduled	
1	Lesses on DV Arrow	450/		Monitoring and Evolution The	
1.	Losses on P v Anay	43%0		monitoring and Evaluation The	
			Tall grass shading	environment has not been scheduled	
				periodically	
			1 1.	Monitoring and Evaluation Periodic	
			tree shading	maintenance of unscheduled trees	
			Shading of surrounding buildings	PV Array location design	
			Shading between modules	Insufficient installation check and evaluation	
			Solar Module Efficiency	Solar Module Design and Selection	
	Losses on The DC		DC Cable	DC Cable Design and Selection	
2.	Distribution Side	10%	DC Connection	DC Connection Check has not been	
	2 100110 401011 0140			scheduled periodically	
				Inverter Operation Interruption	
3.	Losses on the Inverter	30%	Inverter trips frequently	Operator competency related to inverter	
			Invertor Efficiency	operation and maintenance is lacking	
				AC Cable Design and Selection	
4	Losses on The AC	2%		AC Connection Check has not been	
	Distribution Side	270	AC connection	scheduled periodically	
_	Losses from Merit	osses from Merit		1 7	
5. Order		0%	-	-	
TOT	AL LOSSES	87% (5	24.019 kWh)	·	
PERFORMANCE RATIO (PR)		13%			

According to Table 17, the dominant cause of losses in PV Power Plant III is from the PV Array group and the Inverter group. Furthermore, the results of the comparison of Performance Ratio (PR) between Actual Data and Calculation (Root Cause Analysis approach) in PV Power Plant 3 are relatively appropriate as in Table 18.

TABLE 18 COMPARISON OF ACTUAL PR AND PR RESULTS OF ROOT CAUSE ANALYSIS IN PV POWERPLANT III

Actual Data	Root Cause Analysis	Conclusion Root Cause Analysis Method
PR: 14,86 % (losses: 85,14%)	PR: 13% (losses: 87%)	 Comparison of PR Actual Data & PR Root Cause Analysis is relatively appropriate, so that: a. The results of the Root Cause Analysis are close to the actual/reality in the field (PV Power Plant III site). b. The main root cause of very low electrical energy production in PV Power Plant III successfully identified (a significant cause of the PV Array group)

Recommendations for the priority scale of the Action Benefit & Risk Analy Plan are presented to overcome PV Power Plant III costs, and risks of the performance problems determined through Cost-

Benefit & Risk Analysis, namely analyzing the impact, costs, and risks of the Action Plan as in Table 19.

TABLE 19 ACTION PLAN PRIORITY SCALE RECOMMENDATIONS FOR PV POWER PLANT III

No	Losses	Longo	Passan	Action Plan		Cost	Diale	Priorit
•	Group	LOSSES	Reason		t	COSL	INISK.	у
			Less reliable construction	Reinforcement of PV Array Construction by Design	Low	Low	High	2
			Module type	Module Installation according to				
			is not the	the same Design and	High	Low	Low	1
			same	Specification				
	Losses on 45% PV Array	on 45%		Replacement of rusty crust	High	Low	Low	1
			Module	module		LOW	LOW	1
1			Degradation	Monitoring and Evaluation				
1.			from Rusty	Periodic maintenance per	High	Low	Low	1
			Crust	month, especially the risk of	Ingii	LOW	LOW	1
				scale rust				
				Monthly periodic monitoring				
			Dust	and evaluation, especially solar	High	Low	Low	1
				module cleaning				
			Tall grass	Monthly periodic monitoring	High	Low	Low	1
			shading	and evaluation, especially	1 IIgII	LOW	LOW	1

				cleaning of Plants around the PV				
			tree shading	Monitoring and Evaluation Monthly periodic maintenance, especially tree pruning	High	Low	Low	1
			Shading of surrounding buildings	Redesign and relocation of PV Arrays affected by building shading	High	Low	Low	1
			Shading between modules	Reinforcement of PV Array Construction by Design	High	Low	Low	1
			Solar Module Efficiency	When replacing the entire module, better characteristics are selected	High	High	Low	2
ſ	Losses on The DC	100/	DC Cable	When changing cables choose better characteristics	Low	High	Low	2
۷.	Distributi on Side		DC Connection	Periodic unscheduled DC Connection Check	High	Low	Low	1
				Replace the broken inverter and check the inverter regularly	High	Low	High	1
3.	Losses on the Inverter	30%	inverter trip	Periodic training for Operators regarding Inverter Operation and Maintenance	High	Low	Low	1
			Inverter Efficiency	Inverter Design and Selection	High	High	Low	1
1	Losses on The AC	70%	AC Cable	When changing cables choose better characteristics	Low	Low	Low	2
4.	Distributi on Side	270	AC connection	Quarterly AC Connection Check	Low	Low	Low	2

D. Executive Summary of Research

Based on the discussion of Root Cause Analysis in PV Power Plant I, PV Power Plant II, and PV Power Plant III, the following presents a summary of the research that has been carried out as in Table 20.

Case Study		PV Power Plant I	PV Power Plant II	PV Power Plant III	
А.	Research Data				
		Gowa-Makassar,	Tioor Island, Maluku	Wamama	Island,
a.	Location	South Sulawesi		Daruba	Island,
				North Maluk	cu

TABLE 20. EXECUTIVE SUMMARY OF RESEARCH

1		50 kWp (PLN		350 kWp	
b.	Installed capacity	asset)	100 kWp (PLN asset)	(Government asset)	
c.	Type, Mounting	On-Grid, Fixed	Off Grid, Fixed	On-Grid, Fixed	
d.	Solar Module:				
	Models, Technology	CS6X-315P, pc-Si	LEN 180 – 24M, mc-Si	LEN 260 Wp, mc-Si	
-	Po, Efficiency	315 Wp, 16.42%	180 Wp, 14.50%	260 Wp, 16.00 %	
-	Number of Units, Tilt Angle,	160 Units, 18 °, 5	560 Unite 15.0 0.0	1348 Units, 3 ^o , 180	
	Azimuth Angle	0	500 Units, 15°, 0°	0	
e.	Inverter				
	Model	STP10000TL	MTP616F	STP25000TL-30	
	P _{rated} , Efficiency, Number of	10 1/37 080% 5	60 kW 0406 2	25 kW 0806 14	
	Units	10 K W, 9070, J	00 K W , 9470, 2	23 K W, 9070, 14	
f.	Operation Time	2017 to now	2018 to now	2018 to now	
g.	Monitoring Period	5 years	4 years	4 years	
Cas	e Study	PV Power Plant I	PV Power Plant II	PV Power Plant III	
h.	Energy Yield (kWh) Actual	2021	2021	2021	
	Final Energy Yield (Yf)	66.691	16.710	29.228	
В.	Research Result			-	
	Reference Energy Yield (Yr)	74 170			
	(PV Power Plant Electrical	kWh/Year	148.728 kWh/Year	553.247 kWh/Year	
	Energy Potential)	K VV II/ I CUI			
i.	Performance Ratio (PR)	88%	8%	13%	
	Losses Aggregation				
	Losses on PV Array	12% (7.479 kWh)	92% (132.018 kWh)	87% (524.019 kWh)	
	Losses on The DC Distribution	8% (6.927 kWh)	12% (17.847 kWh)	45% (248.961 kWh)	
i.	Side	1% (989 kWh)	2% (2.977 kWh)	10% (55.325 kWh)	
	Losses on the Inverter	2% (2.542 kWh)	56% (83.287 kWh)	30% (165.974 kWh)	
	Losses on The AC Distribution	1% (802 kWh)	2% (2.974 kWh)	2% (11.065 kWh)	
	Side		20% (29.745 kWh)		
	Losses on Battery				
		a. Shading	a. Degradation	a. Module	
		(trees, buildings)	from Dust Scale	Degradation from	
		b. Module	b. Shading (tree)	Rusty Crust	
		Degradation	c. Sulfation in	b. Shading	
k.	Causes of Losses	from Dust Scale	Batteries	(grass, trees)	
			d. Battery and	c. Inverter is	
			Inverter damaged	broken	
				d. Frequent	
				inverter trip	
].	Root Cause Analysis Causes of	a. Improper	a. Monitoring and	a. Maintenanc	
*	Losses	design and	Evaluation of Module	e is not routine and	

			construction	Maintenance have not	the quality of the
			b. Monitori	been scheduled	material is low.
			ng and	periodically.	b. Monitoring
			Evaluation	b. Monitoring and	and Evaluation The
			Maintenance of	Evaluation of tree	maintenance of the
			periodic	maintenance have not	surrounding
			unscheduled	been scheduled	environment has
			modules	periodically	not been scheduled
				c. Monitoring and	periodically.
				Evaluation of Battery	c. Inverter
				Maintenance have not	operation
				been scheduled	interruption.
				periodically.	d. Operator
				d. Operator	competency related
				competence regarding	to inverter
				the operation and	operation and
				maintenance of Batteries	maintenance is
				and Inverters are	inadequate.
				inadequate	
			a. Relocatio	a. Monthly	a. Replacemen
			n of PV Array	monitoring and	t of damaged solar
			affected by	evaluation, especially the	modules of the same
			building shading	cleaning of the Solar	type
			b. Regular	Module.	b. Monthly
			maintenance of	b. Monitoring and	periodic monitoring
			dust and trees	Evaluation Monthly	and evaluation,
	Action Plan Priority	Scale		periodic maintenance,	especially cleaning
m	Recommendations	for		especially tree pruning	of Plants around the
•	Optimizing PV Power	Plant		c. Damaged	PV Array
	Performance			Inverter and Battery	c. Broken
				Replacement.	Inverter
				d. Periodic training	Replacement
				for Operators regarding	d. Periodic
				Operation and	training for
				Maintenance of Inverters	Operators regarding
				and Batteries.	Inverter Operation
					and Maintenance

V. CONCLUSION

- 1. Design, material quality, construction, and periodic maintenance greatly determine the performance of PV Power Plant.
- Information System Technology in PV Power Plant is very important and needed for the effectiveness of monitoring and evaluating PV Power Plant performance in real-time.

- 3. Efforts to optimize PV Power Plant performance as a whole through a root cause analysis approach are easy to understand and easy to use in general for various types and capacities of PV Power Plant as well as different locations.
- Root Cause Analysis method can effective and efficient to optimize follow-up plans to improve PV Power Plant performance and supports the sustainability of the operation of a PV Power Plant.

VI. REFERENCES

- [1]. Electricity Supply Business Plan (RUPTL) PT PLN (Persero) 2021-2030, PT PLN (Persero), Jakarta, 2021.
- [2]. Neha Bansal, Shiva Pujan Jaiswal, Gajendra Singh, "Comparative Investigation of Performance Evaluation, Degradation Causes, Impact and Corrective Measures for Ground Mount and Rooftop Solar PV Power Plants - A Review" Sustainable Energy Technologies and Assessments 47, 101526, www.elsevier.com /locate/seta, 2021.
- [3]. Z. Zulkifli, W. Wilopo, and MK Ridwan, "An Analysis of Energy Production of Rooftop on Grid Solar Power Plant on A Government Building (A Case Study of Secretariat General of MEMR Building Jakarta)," JPSE (Journal Phys. Sci. Eng.), vol. 4, No. 2, pp. 55-66, 2020.
- [4]. F. Fauzi Wibowo, M. Rokhmat, and Aripriantoni, "Effect of Placement of Solar Modules on Energy Production of the Cirata 1 Mw Solar Power Plant Effect," Proceeding of Engineering, vol. 6, No. 2, pp. 5026-5033, 2019.
- [5]. RIN Surya Gunawan, IN Satya Kumara, "The Performance of a 26.4 kWp Solar Power Plant (PV Power Plant) in the UNUD Smart Microgrid System," J. SPEKTRUM, vol. 6, September, 2019.
- [6]. G. Knežević, D. Topić, M. nidarec, B. tumberger, M. Hadžiselimović, and S. Seme, "Comparison of the Shading Influence on PV Modules of Different Technologies," June, pp. 203-214, 2017.

- [7]. K. Vidyanandan, "An Overview of Factors Affecting the Performance of Solar PV Systems," Energy Scan, No. February, pp. 2-8, 2017.
- [8]. MM Fouad, LA Shihata, and ESI Morgan, "An Integrated Review of Factors Influencing The Performance of Photovoltaic Panels," Renew. sustain. Energy Rev., vol. 80, December, pp. 1499-1511, 2017.
- [9]. S. Ekici, "Investigating The Effect of Dust and Dirt on PV Output Energy," 2017.
- [10].AANBB Nathawibawa, INS Kumara, and WG Ariastina, "Analysis of Energy Production from Inverters in 1 MWp Grid-connected PV Power Plant in Kayubihi Village, Bangli Regency," Maj. science. Tekno. Electro, vol. 16, No. 1, p. 131, 2016.
- [11].AR Amelia, YM Irwan, WZ Leow, M. Irwanto, I. Safwati, and M. Zhafarina, "Investigation of The Effect Temperature on Photovoltaic (PV) Panel Output Performance," Int. J. Adv. science. eng. inf. Tech., vol. 6, No. 5, pp. 682-688, 2016.
- [12].Ajith Gopi, K. Sudhakar, WK Ngui, IM Kirpichnikova, Erdem cuce, "Energy Analysis of Utility-Scale PV Power Plants in The Rain-Dominated Tropical Monsoon Climates" Case Studies in Thermal Engineering 26, 101123, www.elsevier.com/locate /csite, 2021.
- [13].AJ Veldhuis, AHME Reinders, "Reviewing The Potential and Cost-Effectiveness of Off-Grid PV Systems in Indonesia on a Provincial Level" Renewable and Sustainable Energy Reviews 52, 757–769, www.elsevier.com/locate/rser, 2015.
- [14].Ammar Necaibia, Ahmed Bouraiou, Abderrezzaq Ziane. Nordine Sahouane, Samir Hassani. Mohammed Mostefaoui, Rachid Dabou, Samir Mouhadjer, "Analytical Assessment of The Outdoor Performance and Efficiency of Grid-Tied Photovoltaic System Under Hot Dry Climate in The South of Algeria" Energy Conversion and Management 171, 778-786, www.elsevier.com/locate/enconman, 2021.

- [15].IKA Setiawan, INS Kumara, and IW Sukerayasa, "Analysis of the Performance of a Network-Interconnected One MW Photovoltaic Power Plant (PV Power Plant) in Kayubihi, Bangli," Maj. science. Tech. Electro, vol. 13, No. 1, 2014.
- [16].I. Giriantari, "The Effect of Solar Module Cleanliness on PV Power Plant PA Performance," E-Journal SPEKTRUM Vol. 2, vols. 2, 2015.
- [17].Jacqueline Corcoran & Ann Nichols-Casebolt, "Risk and Resilience Ecological Framework for Assessment", 2004.
- [18].Matthew A. Barsalou, "Root Cause Analysis, A Step-By-Step Guide to Using the Right Tool at The Right Time" Book, CRC Press is an imprint of Taylor & Francis Group, an Informa Business, © 2015.
- [19].M. Malvoni, A. Leggieri, G. Maggiotto, PM Congedo, MG De Giorgi, "Long Term Performance, Losses And Efficiency Analysis of a kWp Photovoltaic System 960 in The Mediterranean Climate" Energy Conversion and Management, Energy Conversion and Management 145. 169-181. www.elsevier.com/locate/enconman, 2017.
- [20].Mouhcen El-Hadi Dahmoun, Bennaissa Bekkouche, K. Sudhakar, Mohammed Guezgouz, Abdessalam Chenafi, Abdellah Chaouch, "Performance Evaluation and Analysis of Grid-Tied Large Scale PV Power Plant in Algeria" Energy for Sustainable Development 61.181-195, https:// doi.org/10.1016/j.esd., 2021.
- [21].Peter Tozzi Jr., Jin Ho Jo, "A Comparative Analysis of Renewable Energy Simulation Tools: Performance Simulation Model vs. System Optimization" Renewable and Sustainable Energy Reviews 80, 390–398, www.elsevier.com/locate/rser, 2017.
- [22].SA Sulaiman, AK Singh, MMM Mokhtar, and MA Bou-Rabee, "Influence of dirt accumulation on the performance of PV panels," Energy Procedia, vol. 50, pp. 50-56, 2014.

- [23].Shafiqur Rehmana, MA Ahmed, Mohand H. Mohamed, Fahad A. Al-Sulaiman, "Feasibility Study of The Grid Connected 10 MW Installed Capacity PV Power Plants in Saudi Arabia" Renewable and Sustainable Energy Reviews 80, 319-329, www.elsevier.com/locate/rser, 2017.
- [24].S.Martín-Martínez, M.Cañas-Carretón,
 A.Honrubia-Escribano, E.Gómez-Lázaro,
 "Performance Evaluation of Large Solar
 Photovoltaic Power Plants in Spain" Energy
 Conversion and Management 183, 515-528,
 www.elsevier. com/locate/enconman, 2019.
- [25].SMA Solar and T. Ag, "Performance ratio-Quality factor for the PV Power Plant," SMA, pp. 1-9, 2016.
- [26].S. Sreenath, K. Sudhakar, Yusop AF, E. Solomin, IM Kirpichnikov, "Solar PV energy system in Malaysian airport: Glare analysis, the general design and performance assessment" Energy Reports 6, 698-712, www.elsevier.com/ locate/egyr, 2020.
- [27].Vikrant Sharma, SS Chandel, "Performance Analysis of a 190 kWp Grid Interactive Solar Photovoltaic Power Plant in India" Energy Conversion and Management, Energy 55 (2013) 476-485, www.elsevier.com/locate/energy, 2013.
- [28].Volker Quaschning, "Understanding Renewable Energy Systems" Book, First published by Earthscan in the UK and USA in 2005, Copyright © Carl Hanser Verlag GmbH & Co KG, 2005.
- [29].Carlos D. Rodríguez-Gallegos, Oktoviano Gandhi, Monika Bieri, Thomas Reindl, SK Panda, "A Diesel Replacement Strategy for Off-Grid Systems Based on Progressive Introduction of PV and Batteries: An Indonesian Case Study" Applied Energy 229, 1218-1232, www.elsevier.com/locate/apenergy, 2018.
- [30].Divine Atsu, Istvan Seres, Mohammadreza Aghaei, Istvan Farkas, "Analysis of Long-Term Performance and Reliability of PV Modules Under Tropical Climatic Conditions in Sub-

Saharan" Renewable Energy 162, 285-295, www.elsevier.com/locate/renene, 2020.

- [31].Bjorn Andersen, Tom Natland Fageghaug, "The ASQ Pocket Guide to Root Cause Analysis" Book, ASQ Quality Press Milwaukee, Wisconsin,© 2014.
- [32].David Hartshorne, "The New Science of Fixing Things, Powerful Insight About Root Cause Analysis Thar Will Transform Product and Process Performance" Book, The New Science of Fixing Thins Ltd., United Kingdom, © 2020.
- [33].Duke Okes, "Root Cause Analysis, The Core of Problem Solving and Corrective Action (Second Edition)" Book, ASQ Quality Press Milwaukee, Wisconsin,© 2019.
- [34].Doggett, AM, "Root Cause Analysis: A Framework for Tool Selection", The Quality Management Journal, 34, 2005.
- [35].Mark A. Latino; Robert J. Latino; Kenneth C. Latino, "Root Cause Analysis: Improving Performance for Bottom-Line Results, Fifth Edition" Book, CRC Press is an imprint of Taylor & Francis Group, an Informa Business, © 2020.
- [36].https://globalsolaratlas.info/detail?c=-5.46727,123.240234,5&s=-5.22326,11949463&m=site&pv=ground,5,18,50 (access 3/8/2022).
- [37].https://globalsolaratlas.info/detail?c=-.705775,131.738434,11&s=-4.70603,131.7378&m=site&pv=ground,0,6,100 (access 3/15/2022).
- [38].https://globalsolaratlas.info/detail?c=2.087627,128. 301086,11&s=2.0375,128.29978&m=site&pv=grou nd,3,180,350 (access 3/8/2022).

Cite this Article

Jon Marjuni Kadang, Heri Sutanto, Singgih Saptadi, "Optimizing The Performance of Photovoltaic Power Plants Through the Root Cause Analysis Method", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 9 Issue 3, pp. 585-610, May-June 2022. Available at doi : https://doi.org/10.32628/IJSRST2293118 Journal URL : https://ijsrst.com/IJSRST2293118