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ABSTRACT 

We offer a new method for multiplying two unsigned binary values using a 

Segmentation-based Approximate Multiplier in this paper. The primary 

problem for approximate multiplier systems is to decrease the area and latency 

while avoiding substantial errors. Almost every approximation multiplier on 

the market divides the input operands in order to take advantage of flow 

parallelism. The suggested design shrinks a Partial Products Matrix  of the 

order of nx(2n-1) to a Reduced Partial Product Matrixof the order of 4x2n. It 

also removes the need for additional hardware for partial product compression 

and rearrangement. Along with this effort, we also present -SAM, an optimized 

version of our fundamental concept. SAM reduces the basic design's on-chip 

space and power use even more. Xilinx Vivado is used to simulate and 

synthesize the efficiency of the suggested technique. 

Keywords: - Approximate multiplier, Partial product matrix, Reduced partial 

product matrix, SAM, Xilinx Vivado. 

 

I. INTRODUCTION 

 

Partially generated products, partially reduced 

products, and propagation of carry are the basic 

process involved in multiplier. Hence, approximations 

can be used in any one of these blocks. In the design 

of computing systems, energy efficiency has become a 

top priority. The major goal of this presentation is to 

evaluate recent advances in approximation computing 

(AC). Fortunately, most of these programs include an 

inherent error-resilience feature. Furthermore, most 

of these applications do not necessitate the 

computation of a single or golden numerical value. 

Approximate computing purposely incorporates 

acceptable faults in the process and are energy-

efficient. The Dennard's scaling yields declining 

returns as technology advances, taking use of the new 

source of energy-efficiency afforded by 

approximation computing is becoming increasingly 

vital. 

Because of the huge volumes of data and intricate 

computations necessary in these applications, a new 

issue has emerged as big data processing and artificial 

intelligence become more important. To accelerate 

the development of these new technologies, energy-

efficient and high-performance general-purpose 
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compute engines, as well as application-specific 

integrated circuits, are in great demand. It is not 

necessary to always have exact output sometimes less 

exact output can compensate for each other or have 

no substantial impact on the computed results. As a 

result, approximation computing (AC) has evolved as 

a novel method to energy-efficient design as well as 

boosting the performance of a computing system with 

little accuracy loss. 

Approximate computing is a new trend in digital 

design that foregoes the need for accurate calculation 

in favor of increased speed and power. To test the 

performance of the suggested compressors, this study 

provides new approximate compressors with 8 bit and 

16 bit multiplier designs. The suggested circuits give 

greater power or speed for a target precision when 

compared to previously describe approximated 

multipliers. 

Approximate computing has developed as a new 

paradigm for circuit and system design that is both 

high-performance and energy-efficient. With so 

many approximate arithmetic circuits being presented, 

it's become vital to comprehend a design or 

approximation approach for a given application in 

order to maximize performance and energy economy 

while minimizing accuracy loss. This paper attempts 

to offer a detailed overview and comparison of newly 

developed approximation arithmetic circuits under 

various design restrictions. Approximate adders, 

multipliers, and dividers are synthesized and 

described under performance and area optimizations. 

After that, the error and circuit characteristics are 

generalized for various design classes. The circuits 

with lower error rates or error biases perform better 

in simple computations, such as the sum of products, 

whereas more complex accumulative computations 

that involve multiple matrix multiplications and 

convolutions are vulnerable to single-sided errors that 

result in a large error bias in the computed result. 

Because addition mistakes are more sensitive than 

multiplication errors in such complicated calculations, 

multipliers may tolerate a larger approximation than 

adders. Approximation is used to reduce the overhead 

on calculation units of a processor, resulting in 

improved performance and efficiency. The speed of 

operation, which is inversely related to the system 

delay, necessitates massive parallel processes, which 

consume a lot of hardware and energy. By lowering 

the accuracy and dependability of the system, energy 

and space efficient solutions may be realized. 

Approximate computing has emerged as a potential 

approach for maintaining the right mix of latency, 

area, and power.  

Faster systems with reduced design complexity and 

power consumption emerge from arithmetic processes 

that are approximated. The trade-off would be a loss 

of accuracy, which would not necessarily impede 

machine learning and multimedia applications in 

their usual operation. These kind of applications make 

good use of the technology. To improve the efficiency 

of approximation arithmetic units, much research has 

been carried out. Partial product summation has 

unquestionably been the most significant source of 

power consumption and system delay in 

multiplication operations. Compressors have been 

shown to minimize the time required for partial 

product summing, according to research. Half adders 

and/or complete adders are used by compressors to 

estimate the number of logic 1 in the input. Also it is 

available with a significant rise in power consumption, 

lowering device lifetime and reliability 

Due to restricted human perception there's a chance 

that full precision computation blocks will be 

replaced with approximation ones. 

 

II. EARLIER WORK 

 

They created an array multiplier with accurate adders 

in the previous technique. There are three inputs and 

two outputs in these precise adders. Due to the 

demand for faster computer arithmetic essential for 

the rapidly expanding processor architectures, 

research on the design of high-speed arithmetic 

circuits exploded in the middle of the 1960s. 
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International research concentrated in particular on 

the creation of parallel digital multiplier circuits, 

which were significantly less optimised than adder 

circuits. Luigi Dadda's 1965 paper, along with C. S. 

Wallace's, is one of the two most important 

contributions to the construction of optimal parallel 

digital multipliers for fixed-point binary values. 

Fixed-point multiplication is the most fundamental 

and common type of multiplication, and it's used 

everywhere, either directly or as part of floating-point 

multiplication. 

The essential scientific notion behind L. Dadda's work 

is that the summation of the carry bits in the partial 

product matrix of the multiplication may be 

effectively deferred and distributed in order to 

decrease the number of additions and the propagation 

delay. In comparison to prior methods, such as the 

Wallace one, which comes just after it, this parallel 

multiplier approach dramatically reduces the number 

of logic gates utilised by the circuit (1964). 

Not only that, but the theory behind the Dadda 

multiplier technique, namely postponing and 

dispersing carry propagation, is relatively novel in 

comparison to the methods in use at the time, and it 

has been heavily used in future computer arithmetic 

advancements. Along with the Wallace scheme, the 

Dadda scheme for parallel multipliers has become one 

of the two well recognised topologies for such a 

fundamental arithmetic circuit type.  

Since then, the so-called Dadda trees, together with 

the Wallace trees, have been one of the two basic 

parallel multiplier systems depicted in every 

computer arithmetic textbook and taught in 

university computer arithmetic courses. 

 
Fig 1: Exact compressor 

From the Figure 1, A1, A2, A3, A4, and CIN are its 

inputs. The letters COUT, CARRY, and SUM are all 

capitalized. 

 
Figure 2 shows a compressor chain. The input carry 

from the previous 4: 2 compressor, which handled the 

lower significant bits, is represented by CIN. CARRY 

and COUT are order '1' outputs with more 

importance than the input CIN. 

 
Fig 2: Compressor chain 

Table 1: Truth table of Exact Compressor 
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Fig 3 : Partial product matrix of a 8 × 8 bit Multiplier. 

 
In both Digital Signal Processors and Microprocessors, 

the multiplier is critical for executing arithmetic 

operations. The efficient and effective Multiplication 

Algorithm must be used to improve the performance 

characteristics of either DSPs or Microprocessors. The 

multiplier is one of the most fundamental components 

of digital systems. 

Multipliers also have a role in the digital system's 

computation speed and power consumption. As a 

result, for a digital system, it is critical to build a high-

speed multiplier with low power dissipation. As a 

result, it can improve the digital systems' efficiency. 

Compressing the columns Because of their high 

processing speed, multipliers have gained favor. The 

well-known Column Compression Multipliers are 

Wallace and Dadda. In 1964, Chris Wallace, a 

computer scientist from Australia, proposed the 

Wallace Multiplier. 

Luigi Dadda, an Italian computer engineer, proposed 

modifying the Wallace Multiplier to create the Dadda 

Multiplier. Wallace and Dadda Multipliers are both 

based on reduction. A [3,2] counter (Full adder) and a 

[2,2] counter are used to compress the columns, 

resulting in a decrease (Half adder). Wallace and 

Dadda Multipliers have three steps in common. 

 
Fig 4: Wallace and Dadda Multipliers have three steps 

Dadda devised a reduction approach that produces 

reduced two-row Partial products with the fewest 

possible reduction phases. Dadda was able to do this 

by strategically positioning the [3,2] and [2,2] 

counters in the maximum Critical route. 

A N by N partial product is produced by an N-bit 

multiplier and multiplicand. A Matrix is made up of 

these incomplete products. Through a series of 

reduction processes, Dadda decreased the height of 

these Matrix to a two-row matrix. 

 

Algorithm: 

1. Assume that the last two-row matrix height is 

d1 = 2, and that the subsequent matrix heights 

are calculated using dj+1 = 1.5 * dj, where j = 

1,2,3,4,............ In this matrix height, rounding 

down to the smallest fraction should be done. 

13.5 = 13 is one example of this (rounded). The 

heights of the matrices will be as follows: 2, 3, 

4, 6, 9, 13, 19, 28,............ Finally, the greatest dj 

should be acquired so that the height of the 

resulting matrix does not exceed the total 

height of the matrix. 

2. During the first reduction step, use the [3, 2] 

and [2, 2] counters to compress the columns so 

that the resulting reduced matrix height does 

not exceed dj. 

3. The total should be transferred to the same 

column in the next reduction step, and the 
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carry should be given to the next column, 

during compression. 

4. Repeat steps 2–4 until you have a two-row 

reduced matrix.  

 

After applying approximation to the traditional PPM, 

a Reduced Partial Products Matrix (R-PPM) is created. 

The 4 2n R-PPM is then split into two parts. The n 

most significant bits are on the left half, while the n 

least significant bits are on the right. Parallel 

compression is applied to these two parts. The design 

of a traditional n-bit multiplier consists of three steps: 

 

(i) Generation of partial products through AND 

gates and formulation of PPM of dimension n × 

(2n − 1),  

(ii) Compression, and rearrangement of PPM and,  

(iii) Generation of the final result via accumulation.  

 

The divide-and-conquer approach is used to create 

the proposed unsigned approximation multiplier SAM. 

Approximation is used in this design from the very 

beginning. The R-PPM of dimension 4 2n is created 

after the first stage has been finished, unlike the nx 

(2n -1) PPM. 

General array multipliers were used to construct the 

multiplication of segmented bits, and full adders and 

half adders were used to reduce the partial products of 

the array multiplier. 

 

Full adder: 

Only two integers are added with the half adder. The 

complete adder was created in order to solve this issue. 

Three 1-bit binary values A, B, and carry C are added 

using the complete adder. For different sizes of array 

multipliers, the hardware requirements in terms of 

full adder (FA) and length of final adder (FAL) are 

calculated as shown below. 

 
Fig 5: Full adder 

 

The adder with three inputs and two outputs is 

known as a full adder. A and B are the initial two 

inputs, whereas C is the third. CARRY denotes the 

carry output, while SUM denotes the typical output. 

 

Table 2 : Full adder 

 
 

Array multiplier using FA and HA: 

 

 
Fig 6: existing 4 bit array multiplier 

 

III. PROPOSED METHOD 

 

An approach for approximate multiplication of two 

unsigned binary values is provided in this project: 
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Segmentation based Approximate Multiplier (SAM). 

The suggested architecture takes use of parallelism in 

the compression step by segmenting partial products. 

After applying approximation to the traditional PPM, 

we produce a Reduced Partial Products Matrix (R-

PPM) in our suggested work. To make the design 

more power efficient, full adders that reduce PPM are 

replaced with modified full adders. 

The divide-and-conquer approach is used to create 

the proposed unsigned approximation multiplier SAM. 

Approximation is used in this design from the very 

beginning. The R-PPM of dimension 4 2n is created 

after the first stage has been finished, unlike the n (2n 

1) PPM. 

The two n-bit input operands A and B are used in our 

n-bit approximation multiplier. These input operands 

are separated into two halves, AH, BH (most 

significant bits) and AL, BL (least significant bits), so 

that A and B may be expressed as a linear 

combination of AH, AL and BH, BL, as shown in the 

equation. 

 
From Equation 1, it is clear that AH, AL, BH and BL 

are n/2 bit binary numbers. Now A × B can be written 

as, 

 
In Equation 2, since the term AL×BL contributes 

significantly less to the final result, it is approximated 

as AL|BL. So, Equation 2 can be modified as, 

 
The four rows of the R-PPM generated using 

Equation 3 are shown in Figure 7.  

 
Fig 7: Compression of R-PPM 

2n bits of AHxBH 2n make up the first row of R-PPM. 

This may be translated as n-most significant bits 

received from AHxBH, followed by n-zeros on the 

least significant side owing to n-bit shifting. R-second 

PPM's and third rows each have 3n/2 bits of AHxBL 

2n/2 and ALxBH 2n/2. This may be decoded as an n-

bit product of AHxBL and Ax BH, shifted by n/2 bits, 

and then examined. The n-bit logical OR of AL and 

BL is found in R-fourth PPM's and final row. Unlike 

standard PPMs of order nx(2n-1), our suggested 

approach compresses to a 4x2n matrix for every bit 

configuration. 

Compression and Accumulation: Divide and Conquer 

Approach  

The detailed compression mechanisms are discussed 

below:  

1) Compression in right half: While the right half of 

the first row of the R-PPM comprises zero entries, the 

second and third rows of the right half have n/2 

product entries followed by n/2 zero entries, as seen 

in Figure 1. Similarly, the fourth row has just n/2 

items on the least significant side, as seen in Figure 1. 

The n/2 least significant bits of the final result are 

aggregated from these n/2 bits (in Figure 1, last row) 

on the rightmost side. The logical OR operation is 

applied to the n/2 significant entries of row 2 and row 

3 to acquire the other most significant n/2 bits of the 

right half, and these n/2 bits are aggregated as the 

[n:n/2] bits of the final response. 

2) Compression in Left Half: The R-most PPM's 

significant entries are seen in the left side of Figure 1. 

This half's compression strategy is precise, and it's 

implemented using an exact adder. Row 2 and 3's two 

most significant bits are utilised to approximate 

forecast the adder's carry input bit. The logic of carry 

prediction is presented in the next paragraphs. 

Carry Prediction Logic: Because the carry input for 

the left half is independent of the preceding carry-ins, 

if the most significant bits of row 2 and row 3 are in 

the combination of (0, 0) or (1, 1), the carry input for 

the left half is always 0 or 1. However, because of the 

reliance on prior carry-ins, the carry input cannot be 
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reliably calculated if the most important bits are in 

the combination of (1, 0) or (0, 1). In these 

circumstances, the next most important bits are taken 

into account, and the same analysis is performed. 

Carry prediction logic may be expressed as follows 

using Boolean simplification:  

Cprdt = A[n − 1] · B[n − 1]+ A[n − 2] · B[n − 2](A[n − 1] 

+ B[n − 1]) (4)  

In Equation 4, A[n − 1] and B[n − 1] are the most 

significant entries of the right half of row 2 and row 3 

of Figure 3.1. 

Similarly, A[n−2] and B[n−2] are the second-most 

significant entries of the right half of row 2 and row 3. 

The obtained n-bits are accumulated as [2n:n] bits of 

the final result. 

SAM enhancements -SAM is a program that allows 

you to communicate with other people. The two 

halves of the input operands AH, AL, BH, and BL are 

further separated in our improved version of our 

fundamental design SAM. AHL and AHH are two 

subgroups of AH. The most major component of AH 

is denoted by AHH, whereas the least significant part 

is denoted by AHL. BHH and BHL are the two 

subcategories of BH. The abbreviations BHH and BHL 

have the same meaning. 

This is done to replace the second term AH ×BL ×2 n/2 

and third term AL ×BH ×2 n/2 of Equation 2 through 

new subparts. The AH × BL product of the second 

term can be re-written as 

 
A similar expression can be written for the third term 

of Equation 2. In Equation 5, the terms other than the 

first term do not contribute significantly to the 

product. Therefore, these can be approximated and 

Equation 5 reduces to 

 
By incorporating approximation in the second and 

third terms of Equation 2, the optimized design -SAM 

focuses on decreasing the on-chip space and power. 

This version's R-PPM differs somewhat from that of 

the original SAM design. Instead of n significant bits, 

Row 2 and Row 3 of R-PPM will now contain just 

3n/4 significant bits followed by zeroes (due to 

shifting), as in the SAM architecture. This version 

follows the same compression strategy as the SAM 

design. 

 

Modified full adder: 

The modified full adder is having two 4:1 multiplexer 

as shown in below figure 8. Using this the modified 

full adder decreases with low power consumption. 

 
Fig 8: Proposed full adder multiplexers 

A multiplexer is a circuit with 2n data inputs, 'n' 

selection lines, and a single output line. Using the 

values of the selection lines, one of these data inputs 

will be linked to the output. There will be 2n 

different combinations of zeros and ones because 

there are 'n' selection lines. As a result, just one data 

input will be chosen for each combination. Mux 

stands for multiplexer. Four data inputs (I3, I2, I1, 

and I0), two selection lines (s1 and s0), and one 

output (Y) make up the 4x1 Multiplexer.  

 

Fig 9: 4:1 multiplexer 
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IV. SIMULATED OUTPUTS: 

 

Fig 10: Simulation Result 

Table 3 : Evaluation table: 

 Area 

(LUT’s) 

Delay 

(ns) 

Power 

(W) 

RPPM 84 10.014 10.708 

uSAM 53 10.029 9.181 

Extension 

RPPM 

64 10.368 10.559 

Extension 

uSAM 

52 9.935 9.114 

 

V. CONCLUSION 

 

In this paper, a modified full adder is provided as 

extension which enhances the parameters for the 

proposed implementation of various designs. Here we 

have proposed a novel method to multiply two 

unsigned binary numbers through SAM and µ-SAM. 

In this work, for n-bit multiplication, a reduced 

partial products matrix of dimension 4 × 2n is 

formulated rather than the conventional partial 

products matrix of dimension n×(2n−1). The R-PPM 

is equally divided into two segments and these 

segments are compressed in a non-blocking parallel 

manner, ensuring faster accumulation of result. 
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