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ABSTRACT 

In this present paper, we studied about constructing a compact operator from 

finite rank operators. The purpose of this paper is to first review some concepts 

from Functional Analysis and Operator Algebra, then to apply these concepts 

to an in-depth introduction to Compact Operators and the Spectra of Compact 

Operators, leading to The Fredholm Alternative. [1-2]. 
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I. INTRODUCTION 

 

A subset M of a topological space R is called compact, 

if every open covering of M contains a finite sub 

covering. A subset of a topological space R is called 

relatively compact if M is contained in a compact 

subset of R. A subset M of a topological vector space is 

called bounded if corresponding to every zero 

neighbourhood U there exists a 𝛼 > 0 such that 𝛼𝑈 ⊃ 

𝑀.[3-5].  

Theorem: In a Topological Vector space  

(a) Every subst of a bounded set is bounded.  

(b) The continuous image of abounded set is bounded.  

(c) The closed envelope of abounded set is bounded.  

(d) Every compact set M is bounded.  

(e) The union of finitely many and the intersection of 

arbitrary number of bounded sets is bounded.  

(f) If M, N are bounded sets then the sets M+N and 

λM λ∈∅ are also bounded.  

 

II. RESULTS AND DISCUSSION 

 

Definition  1.  Let X and Y be normed spaces.   A 

linear transformation T ∈ L (X, Y) is compact if, 

for any bounded sequence {xn} in X, the sequence 

Txn in Y contains a convergent subsequence. 

The set of compact transfor- mations in L(X, Y ) 

will be denoted by K(X, Y ). 

 

Theorem 2. Let X and Y be normed spaces an let 

T ∈ K(X, Y ). Then T is bounded. Thus K(X, Y ) 

⊂ B(X, Y ). 
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∈ 

Proof.  Suppose that T  is not bounded.  Then for 

each integer n ≥ 1 there exists a unit vector xn such  

that  ǁ Txn ǁ≥ n.  Since  the  sequence  {xn} is  

bounded, by the compactness of T there exists a 

subsequence {Txn(r)} which converges. This 

contradicts ǁ Txn(r) ǁ≥ n(r). (ie. convergence implies 

boundedness)[6]. 

Theorem 3. Let X, Y, Z be normed spaces 

1. If S, T ∈K(X, Y ) and α, β ∈ ℂ then αS + βT  

is compact.  Thus K(X,Y) is a linear subspace 

of B(X,Y). 

2. If S ∈ B(X, Y ), T ∈ B(Y, Z) and at least on of 

the operators S, T is compact, then TS ∈ B(X, 

Z) is compact. 

Proof.1.   Let {xn} be a bounded sequence in X.  

Since S is compact, there is a subsequence {xn(r)} 

such that {Sxn(r)} converges. Then, since {xn(r)} is 

bounded and T is compact, there is a 

subsequence {xn(r(s))} of the sequence {xn(r)} such 

that {Txn(r(s))} converges. Since the sum of con- 

vergent sequences converges, it follows that the 

sequence {αSxn(r(s))+βTxn(r(s))} converges. Thus αS 

+ βT is compact. 

2. Let {xn} be a bounded sequence in X. If S is 

compact then there is a subsequence {xn(r)} such 

that {Sxn(r)} converges. Since T is bounded (and 

so is continuous), the sequence {TSxn(r)} 

converges. Thus TS is compact. If S is bounded 

but not compact the the sequence {Sxn} is 

bounded. Then since T must be compact, there 

is a subsequence {Sxn(r)} such that {TSxn(r)} 

converges, and again TS is compact. 

For simplicity of notation we will make the 

following change (when it does not obscure the 

meaning of statements) {xn(r)}, {xn(r(s))} → {xn}. 

Theorem 4. Let X, Y be normed spaces and T ∈ 

B(X, Y ). 

1. If T has finite rank then T is compact. 

2. If either dim(X) or dim(Y) is finite then T is 

compact. 

Proof. 1. Since T has finite rank, the space Z = 

Im T is a finite-dimensionalnormed space. 

Furthermore, for any bounded sequence {xn} in 

X, the sequence {Txn} is bounded in Z, so by the 

Bolzano-Weierstrass theorem this sequence must 

contain a convergent subsequence. Hence T is 

compact.[7-9]. 

2.  If dim X is finite then r(T )≤    dim X, so r(T ) 

is finite, while if dim Y  is finite then clearly the 

dimension of Im T Y must be finite. Thus, in 

either case the result follows from the previous 

part of this proof 

Theorem 5. If X is an infinite-dimensional 

normed space then the identity operator I on X 

is not compact. 

Proof. Since X is an infinite-dimensional normed 

space shows there exists a sequence of unit vectors 

{xn} in X which does not have any convergent 

subsequence. Hence the sequence {Ixn} = {xn} 

cannot have a convergent subsequence, and so 

the operator I is not compact. 

Corollary 6. If X is an infinite-dimensional 

normed space and T K(X) then T is not 

invertible. 

Proof. Suppose that T is invertible. Then, by 

Theorem 3, the identity oper- ator I = T−1T on X 

must be compact. Since X is infinite-dimensional 

this contradicts Theorem 5. 

Theorem 7. Let X, Y be normed spaces and let 

T ∈ L(X, Y ). 

1. T is compact if and only if, for every 

bounded subset A ⊂ X, the set  

 T (A) ⊂ Y is relatively compact. 

2. If is compact the 𝐼𝑚 (𝑇) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅and Im(T) are 

separable. 

Proof. 1. Suppose that T is compact. Let A  X 

be bounded and suppose that   yn   is an arbitrary 

sequence in𝑇 (𝐴)̅̅ ̅̅ ̅̅ ̅.  Then for each n∈ ℕ, there exists 
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{ } {
 } 

xn ∈ A such that ||yn − Txn||< n−1, and the 

sequence {xn} is bounded since A is bounded.  

Thus, by compactness of T , the sequence {Txn} 

contains a convergent subsequence, and hence {yn} 

contains a convergent subsequence with limit 

in  𝑇 (𝐴)̅̅ ̅̅ ̅̅ ̅ . Since {yn} is arbitrary, this shows that 

𝑇 (𝐴)̅̅ ̅̅ ̅̅ ̅  is compact. Now suppose that for every 

bounded subset A ⊂ X the set T (A) ⊂ Y is 

relatively compact. Then for any bounded 

sequence { xn } in X the sequence {Txn} lies in a 

compact set, and hence contains a convergent 

subsequence. Thus T is compact. 

2. For any r ∈ N, let Rr = T (Br(0)) ⊂ Y be the 

image of the ball Br(0) ⊂ X. Since T is compact, 

the set Rr is relatively compact and so is 

separable.Furthermore, since Im T equals the 

countable union ⋃ Rr
∞
r=1  it must also be 

separable. Finally, if a subset of Im T is dense in 

Im T then it is also dense in Im𝑇̅̅ ̅̅ ̅̅ (ie. by Definition 

S ⊂ Im T we have 𝑆̅ = ImT , and  ImT ⊂ Im𝑇̅̅ ̅̅ ̅̅  ), so 

Im𝑇̅̅ ̅̅ ̅̅  is separable.[10-12]. 

Theorem 8. If X is a normed space, Y is  a 

Banach space and {Tk } is a sequence in K(X,Y) 

which converges to an operator T∈B(X, Y),  then 

T is compact. Thus K(X,Y) is closed in B(X,Y). 

Proof. Let {xn} be a bounded sequence in X. By 

compactness, there exists a subsequent of {𝑥𝑛} , 

which we will label 𝑥𝑛(1,r) (where r = 1,2,…),  such 

that the sequence 𝑇1𝑥𝑛(2,𝑟)  converges. Similarly, 

there exists a subsequence𝑥𝑛(2,r) of 𝑥𝑛(1,r) such that 

𝑇2𝑥𝑛(2,𝑟) coverage’s.  Also, 𝑇1𝑥𝑛(2,𝑟) coverages since 

it is a subsequence of 𝑇1𝑥𝑛(2,𝑟) . Repeating this 

process inductively, we see that for each 𝑗 ∈ ℕ 

there is a subsequence 𝑥𝑛(j,r)  with the property: 

for any 𝑘 ≤ 𝑗 the sequence {𝑇𝑘𝑥𝑛(𝑗,𝑟)
} converges. 

Letting n(r) = n(r,r), for 𝑟 ∈ ℕ, we obtain a single 

sequence   {xn(r)} with the property that, for each 

fixed k ∈ ℕ , the sequence{ Tkxn(r)} converges as 

𝑟 → ∞.  This so-called “Cantor diagonalization” 

type argument is necessary to obtain a single 

sequence which works simultaneously for all the 

operators Tk, k ∈ ℕ. 

We will now show that the sequence {Txn(r)} 

converges. We do this by showing that  {Txn(r)} is a 

Cauchy sequence, and hence is convergent 

since Y is a Banach space. 

Let  ϵ > 0 be given. Since the subsequence {xn(r)} 

is bounded there exists M > 0 such that ǁ xn(r) ǁ≤ 

M , for all r ∈ ℕ. Also, since ǁ Tk − T   ǁ→ 0, as 

𝑘 → ∞, there exists an integer K ≥ 1 such that ǁTK 

− T ǁ< ∈

3M

.   Next, since {TKxn(r)} converges there 

exists an  integer  R ≥ 1  such  that  if   r, s ≥ R  

then ǁ TKxn(r) − TKxn(s) ǁ>
∈

3
  

Now we have, for 𝑟, 𝑠 ≥ 𝑅  

‖𝑇𝑥𝑛(𝑟)‖ 

< ‖𝑇𝑥𝑛(𝑟) − 𝑇𝐾𝑥𝑛(𝑟)‖ + ‖𝑇𝐾𝑥𝑛(𝑟) − 𝑇𝐾𝑥𝑛(𝑠)‖

+ ‖𝑇𝐾𝑥𝑛(𝑠) − 𝑇𝑥𝑛(𝑠)‖  

≤ ‖𝑇𝐾 − 𝑇‖‖𝑥𝑛(𝑠)‖

<  
∈

3𝑀
𝑀 +

∈

3
+

∈

3𝑀
𝑀 =∈ 

which proves that {Txn(r)} is a Cauchy sequence. 

Corollary 9. If X is a normed space, Y is a 

Banach space and Tk is a sequence of bounded, 

finite rank operators which converge to T∈B(X, Y ), 

then T is compact.  

Proof. Theorem 4.2 shows {Tk} are compact then 

we apply Theorem 8. 

Theorem 10. If X is a normed space, H is a 

Hilbert space and T ∈ K(X, H), then there is a 

sequence of finite rank operators {Tk} which 

converges to T in B(X,H). 

Proof. If T itself had finite rank the result would 

be trivial, so we consider the case that it does not. 

By Theorem 7 the set Im T is an infinite- 

dimensional, separable Hilbert space, so it has an 

orthonormal basis {en}.  For each integer k ≥ 1, let 

Pk be the orthogonal projection from 𝐼𝑚 𝑇̅̅ ̅̅ ̅̅ ̅  onto 

the linear subspace Mk = Sp{e1, . . . , ek}, and let 

Tk = PkT . Since Im Tk ⊂ Mk, the operator Tk has 
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2 

ǁ
 
ǁ 

finite rank. We will show that  ‖𝑇𝐾 − 𝑇‖ →

0 𝑎𝑠 𝑘 → ∞. 

Suppose that this is not true. Then, after taking a 

subsequence of the sequence {Tk} if necessary, 

there is an ϵ > 0 such that ǁ Tk − T  ǁ≥ ϵ for all k. 

Thus there exists a sequence of unit vectors xk ∈ X 

such that ǁ (Tk −T )xk ǁ≥ 
∈

2
 for all k. Since T is 

compact, we may suppose that Txk → y, for some y 

∈ H. (after again taking a subsequence, if 

necessary). Now, using the representation of Pm in 

Corollary 5.8, we have, 

(Tk − T )xk = (Pk − I)Txk 

= (Pk − I)y + (Pk − I)(Txk − y) 

= − ∑ (𝑦, 𝑒𝑛) + (𝑃𝑘 − 𝐼)‖𝑇𝑥𝐾 − 𝑦‖

∞

𝑛=𝑘+1

 

Hence, by taking the norms and using Pk = 1 

we deduce (using properties of norms) that 
∈

2
≤ ‖(𝑇𝐾 − 𝑇)𝑥𝑘‖

≤ ( ∑ (𝑦, 𝑒𝑛)2)
1

2 + 2‖𝑇𝑥𝐾 − 𝑦‖

∞

𝑛=𝑘+1

) 

The right-hand side of this inequality tends to 

zero as k which is a contradiction, and so proves 

the theorem. 

Lemma 11 If ℋ  is a Hilbert space and  𝑇 ∈ 𝐵(ℋ), 

then r(T) = r(T*) (either as finite numbers or as ∞). In 

particular, T has finite rank if and only if T* has finite 

rank. 

Proof. Suppose first that r(T) < ∞. For any𝑥 ∈ ℋ, we 

write that the orthogonal decomposition of x with 

respect to Ker T* as 𝑥 =  𝑢 + 𝑣 , with 𝑢 ∈ 𝐾𝑒𝑟 𝑇∗  

and 𝑣 ∈ (𝐾𝑒𝑟𝑇∗)⊥ = 𝐼𝑚𝑇̅̅ ̅̅ ̅̅ = 𝐼𝑚𝑇  (since r(T) < ∞  

Thus  𝑇∗𝑥 = 𝑇∗(𝑢 + 𝑣) = 𝑇∗𝑣 , and hence 

IM 𝑇∗ = 𝑇∗(𝐼𝑚𝑇),  which implies that r( 𝑇∗) ≤

𝑟(𝑇). Thus, r(𝑇∗) ≤ 𝑟(𝑇) < ∞. 

Applying this result to 𝑇∗, and using (𝑇∗)*=T, we 

also see that r(T) ≤ r(𝑇∗) when r(𝑇∗) < ∞. This 

proves the lemma when both the ranks are finite, 

and also shows that it is impossible for one rank 

to be finite and the other infinite, and so also 

proves the infinite rank case.[13]. 

Theorem 12. If ℋ is a Hilbert space and 𝑇 ∈ 𝐵( ℋ), 

then T is compact if and only if 𝑇∗ is compact. 

Proof : Suppose that T is compact. Then by 

Theorem 6.10 there is a sequence of finite rank 

operation { 𝑇𝑛 }, such that ‖𝑇𝑛 − 𝑇‖ → 0.  By 

Lemma 6.11, each operator  𝑇𝑛
∗  has finite rank 

and, by Theorem 5.4 ‖𝑇𝑛
∗ − 𝑇∗‖ = ‖𝑇𝑛 − 𝑇‖ → 0. 

Hence it follows from Corollary 9 that T* is 

compact. Thus, if T is compact then T* is 

compact. It now follows from this result and (T*)* 

= T that if T* is compact the T is compact, which 

completes the proof. 

 

III. CONCLUSION 

 

Constructing a Compact Operator from 

Finite Rank Operators. 

One can build the Compact Operator 𝑇 ∈

𝐵 (ℓ2)  defined by 𝑇{𝑎𝑛}{𝑛−1𝑎𝑛}  from the 

finite rank operators 𝑇𝑘 ∈ 𝐵(ℓ2)  defined by 

𝑇{𝑎𝑛}{𝑛−1𝑎𝑛}  from the finite rank operators  

𝑇𝑘 ∈ 𝐵(ℓ2)  where 𝑇{𝑎𝑛} = {𝑏𝑛
𝑘}  and  𝑏𝑛

𝑘 =

𝑛−1𝑎𝑛  when 𝑛 ≤ 𝑘  and 𝑏𝑛
𝑘 = 0  when 𝑛 > 𝑘 . 

Thus for any 𝑎 ∈ ℓ2 

‖(𝑇𝑘  − 𝑇 )𝑎‖2

=  ∑
|𝑎𝑛|2

𝑛2

∞

𝑛=𝑘+1

≤ (𝑘

+ 1)−2 ∑ |𝑎𝑛|2 ≤
‖𝑎‖2

(𝑘 + 1)−2

∞

𝑛=𝑘+1

 

and therefore 

‖𝑇𝑘  − 𝑇‖ ≤ (𝑘 + 1)−1 → 0 

The result follows from Corollary 9 
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