Production and Characterization of Polyhydroxybutarate from Halophilic Bacteria

Authors

  • Vinod P. S  Department of Biotechnology, Gulbarga University, Kalaburagi, Karnataka, India
  • Deepali S. Kulkarni  Department of Biotechnology, Walchand College of arts and science, Solapur, Maharashtra, India
  • M. B. Sulochana  Department of Biotechnology, Gulbarga University, Kalaburagi, Karnataka, India

DOI:

https://doi.org//10.32628/IJSRST18401116

Keywords:

Halophiles, Polyhydroxybutyrate, Bioplastic, Nile blue, Biomedical.

Abstract

Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources. Hence, the biotechnological application of these microorganisms can cover many aspects one of these is bioplastic production. Biodegradable plastics are plastics that are decomposed by the action of living organisms using bacteria. Biodegradable plastic is a renewable biopolymers synthesized in bacteria having similar characteristics of plastics produced from petroleum character. In the following work preisolated halophilic strains were screened for PHB production. The positive strains were subjected to PHB production. Estimation of PHB was done by using UV spectrophotometer and FTIR. Highest PHB producing strain was further used for optimization of different parameters for PHB production.

References

  1. Alias Z, Tan LKP (2005) isolation of palm oil-utilizing, polyhydroxyalkanotes (PHA)- producing bacteria by an enrichment technique. BioresourTechnol 96:1229-1234. Doi:10.1016/j.biortech.2004.10.012.
  2. Anderson,A.J. and Dawses, E.A. (1990), Occerance, metabolism, metabolic role and industrial uses of bacteria polyhydroxyalkanoates. Microbial Rev.,54,450-
  3. Anton, J.; Rossello-Mora, R.; Rodriguez-Valera, F.; Amann, R. (2000). "Extremely halophilic bacteria in crystallizer ponds from solar salterns". Applied and Environmental Microbiology. 66: 3052-3057. doi:10.1128/aem.66.7.3052-3057.2000. PMC 92110?Freely accessible. PMID 10877805.
  4. Anton, J.; Llobet-Brossa, E.; Rodriguez-Valera, F.; Amann, R. (1999). "Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds". Environmental Microbiology. 1: 517-523. doi:10.1046/j.1462-2920.1999.00065.x.
  5. Byrom D.(1987). Polymer synthesis by microorganism: technology and economics.
  6. Casamayor, E.O.; Massana, R.; Benlloch, S.; Ovreas, L.; Diez, B.; Goddard, V.J.; Gasol, J.M.; Joint, I.; Rodriguez-Valera, F.; Pedros-Alio, C. (2002). "Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern". Environmental Microbiology. 4: 338-348. doi:10.1046/j.1462-2920.2002.00297.x.
  7. Cavicchioli, R. & Thomas, T. 2000. Extremophiles. In: J. Lederberg. (ed.) Encyclopedia of Microbiology, Second Edition, Vol. 2, pp. 317-337. Academic Press, San Diego.
  8. Chen G, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26:6565-6578. [PubMed]
  9. Choi, G.Q.;J.and Lee, S.Y.(1999), Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation ApplMicrobiol Biotechnology,51, 13-21.
  10. Dworkin, Martin; Falkow, Stanley (13 July 2006). The Prokaryotes: Vol. 1: Symbiotic Associations, Biotechnology, Applied Microbiology. Springer. p. 94. ISBN 978-0-387-25476-0.
  11. Erb, Tobias J.; Kiefer, Patrick; Hattendorf, Bodo; Günther, Detlef; Vorholt, Julia A. (8 July 2012). "GFAJ-1 Is an Arsenate-Resistant, Phosphate-Dependent Organism". Science. 337 (6093): 467-70. Bibcode:2012Sci...337..467E. doi:10.1126/science.1218455. PMID 22773139. Retrieved 10 July 2012.
  12. Fernandez D, Rodriguez E, Bassas M, Solanas AM, Lorens J, Marques AM, Manresa A(2005) Agro-industrial oily wastes as substrate for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: Effect of culture condition. BiochemEng j 26:159-167. Doi :10.1016/j.bej.2005.04.022.
  13. Gutierrez, M.C.; Kamekura, M.; Holmes, M.L.; Dyall-Smith, M.L.; Ventosa, A. (December 2002). "Taxonomic characterisation of Haloferax sp. ("H. alicantei") strain Aa 2.2: description of Haloferaxlucentensis sp. nov". Extremophiles. 6 (6): 479-83. doi:10.1007/s00792-002-0282-7.
  14. Kastritis, P.L.; Papandreou, N.C.; Hamodrakas, S.J. (2007). "Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs". Int J Biol Mac. 41 (4): 447-453. doi:10.1016/j.ijbiomac.2007.06.005.
  15. Khanafari, A., Khavarinejad, D., Mashinchian, A. Solar salt lake as natural environmental source for extraction halophilic pigments. Iranian J. Microbiol., 2010; 2(2): 103-109.
  16. "Mars Exploration Rover Launches - Press kit" (PDF). NASA. June 2003. Retrieved 14 July 2009.
  17. Ollivier, B.; Caumette, P.; Garcia, J-L.; Mah, R. (1994). "Anaerobic bacteria from hypersaline environments". Microbiological Reviews. 58 (1): 27-38. PMC 372951?Freely accessible. PMID 8177169.
  18. Oren, A (2002). "Diversity of halophilic microorganisms: Environments, phylogeny, physiology and applications". Journal of Industrial Microbiology & Biotechnology. 28: 56-63. doi:10.1038/sj/jim/7000176.
  19. Oren, A. (2002) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiology Ecology: 1-7.
  20. Paul, S.; Bag, S.K.; Das, S.; Harvill, E.T.; Dutta, C. (2008). "Molecular Signature of Hypersaline Adaptation: Insights from Genome and Proteome Composition of Halophilic Prokaryotes". Genome Biology. 9: R70. doi:10.1186/gb-2008-9-4-r70.
  21. Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007;82:233-247
  22. Reaves, Marshall Louis; Sinha, Sunita; Rabinowitz, Joshua D.; Kruglyak, Leonid; Redfield, Rosemary J. (8 July 2012). "Absence of Detectable Arsenate in DNA from Arsenate-Grown GFAJ-1 Cells". Science. 337 (6093): 470-3. arXiv:1201.6643?Freely accessible. Bibcode:2012Sci...337..470R. doi:10.1126/science.1219861. PMC 3845625?Freely accessible. PMID 22773140. Retrieved 10 July 2012.
  23. Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn (2013). "Protein Adaptations in Archaeal Extremophiles". Archaea. pp. 1-14. doi:10.1155/2013/373275.
  24. Rehm BHA. Polyester synthases: natural catalysts for plastics. Biochem. J. 2003;376:15-33. [PMC free article] [PubMed]
  25. Rodríguez?Contreras A, Koller M, Miranda?de Sousa Dias M, Calafell?Monfort M, Braunegg G, Marqués?Calvo MS. High production of poly 3?hydroxybutyrate from a wild Bacillus megaterium Bolivian strain. J ApplMicrobiol 2013 May 1;114(5):1378-87.
  26. Saidu M Bashir1, Madhuri Girdhar1, Hasibur Rehman2 and Anand Mohan1: Polyhydroxybutyrate (PHB) Production and Mutagenesis of Halophile isolates from the East African Rift Salt Lake 1Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India. 2Department of Biology Faculty of Sciences University of Tabuk,Tabuk Kingdom of Saudi Arabia (KSA).
  27. Santos, H.; da Costa, M.S. (2002). "Compatible solutes of organisms that live in hot saline environments". Environmental Microbiology. 4: 501-509. doi:10.1046/j.1462-2920.2002.00335.x.
  28. Steinbüchel A, Füchtenbush B. Bacterial and other biological systems for polyester production. Trends. Biotechnol. 1998;16:419-427. [PubMed]

Downloads

Published

2018-11-30

Issue

Section

Research Articles

How to Cite

[1]
Vinod P. S, Deepali S. Kulkarni, M. B. Sulochana, " Production and Characterization of Polyhydroxybutarate from Halophilic Bacteria, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4, Issue 11, pp.44-52, November-December-2018. Available at doi : https://doi.org/10.32628/IJSRST18401116