Robotic Hands a Base for Prosthetics - A Review
DOI:
https://doi.org/10.32628/IJSRST2183137Keywords:
Dexterity, elastic, finger joints, prosthetic, rigid robotic hands, Soft robotic hand, tendonsAbstract
This review paper reports the findings of previously designed robotic hand and summarizes the advantages and limitations for modeling a robotic hand and proposes methods to overcome the limitations of the previously designed hand models. A robotic hand forms its base by mimicking the structure and motions of a Human hand and all studies are focused on improving the current models to have similar dexterity as of the human hand. Many Robotic hands have been created to mimic the human hand functions and gestures but they still lack the dexterity, compactness or affordability for prosthetic use. In this paper we have reviewed recently designed rigid robotic hands having rotating finger joints and soft robotic tendon actuated hands that use a single elastic block to create the whole finger so to reduce the rotating finger joints after reviewing the designs we have compiled a set of points that can be used as the framework for a design that can overcome the limitations of the previous designs.
References
- Mutlu, R., Alici, G., in het Panhuis, M., & Spinks, G. M. (2016). 3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers. Soft Robotics, 3(3), 120–133. doi:10.1089/soro.2016.0026
- Yateen P. Shembade. Design and Simulation of a Mechanical Hand. In: Department of Mechanical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, August 16, 2012
- Srđan Savić, Mirko Raković, Marko Penčić, Milutin Nikolić, Slobodan Dudić, Branislav Borovac, (2016). Design of an Underactuated Adaptive Robotic Hand with Force Sensing. 3rd International Conference on Electrical, Electronic and Computing Engineering – IcETRAN 2016, Zlatibor, Serbia, 13-16 June 2016, pp. ROI1.4-1–ROI1.4-5
- Carbone, G., Gerding, E. C., Corves, B., Cafolla, D., Russo, M., & Ceccarelli, M. (2020). Design of a Two-DOFs Driving Mechanism for a Motion-Assisted Finger Exoskeleton. Applied Sciences, 10(7), 2619. doi:10.3390/app10072619
- C. L. Taylor, and R. J. Schwarz, The anatomy and mechanics of the human hand, Artificial Limbs, Vol. 2, Num. 2, pp. 22-35, 1955
- Puig, J. E. P., Rodriguez, N. E. N., & Ceccarelli, M. (2008). A Methodology for the Design of Robotic Hands with Multiple Fingers. International Journal of Advanced Robotic Systems, 5(2), 22. doi:10.5772/5600
- Li, Y., Wei, Y., Yang, Y., & Chen, Y. (2019). A novel versatile robotic palm inspired by human hand. Engineering Research Express, 1(1), 015008. doi:10.1088/2631-8695/ab2f69
- Mohammadi, A., Lavranos, J., Zhou, H., Mutlu, R., Alici, G., Tan, Y., … Oetomo, D. (2020). A practical 3D-printed soft robotic prosthetic hand with multi-articulating capabilities. PLOS ONE, 15(5), e0232766. doi:10.1371/journal.pone.0232766
- Kontoudis, G. P., Liarokapis, M., Vamvoudakis, K. G., & Furukawa, T. (2019). An Adaptive Actuation Mechanism for Anthropomorphic Robot Hands. Frontiers in Robotics and AI, 6. doi:10.3389/frobt.2019.00047
- Palli, G., Melchiorri, C., Vassura, G., Scarcia, U., Moriello, L., Berselli, G., … Siciliano, B. (2014). The DEXMART hand: Mechatronic design and experimental evaluation of synergy-based control for human-like grasping. The International Journal of Robotics Research, 33(5), 799–824. doi:10.1177/0278364913519897
- Hong Liu, Meusel, P., Hirzinger, G., Minghe Jin, Yiwei Liu, & Zongwu Xie. (2008). The Modular Multisensory DLR-HIT-Hand: Hardware and Software Architecture. IEEE/ASME Transactions on Mechatronics, 13(4), 461–469. doi:10.1109/tmech.2008.2000826
- Liu, H., Wu, K., Meusel, P., Seitz, N., Hirzinger, G., Jin, M. H., … Chen, Z. P. (2008). Multisensory five-finger dexterous hand: The DLR/HIT Hand II. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2008.4650624
- M. Z. Hussain1 and Dr. M. Suhaib2. Kinematic Modeling of a Multi-Fingered Robotic Hand - a Review. AKGEC INTERNATIONAL JOURNAL OF TECHNOLOGY, Vol. 7, No. 1
- Cobos, S., Ferre, M., & Aracil, R. (2010). Simplified human hand models based on grasping analysis. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2010.5651479
- Belter, J. T., Segil, J. L., Dollar, A. M., & Weir, R. F. (2013). Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review. The Journal of Rehabilitation Research and Development, 50(5), 599. doi:10.1682/jrrd.2011.10.0188
- [Touch EMAS Ltd, Edinburgh, UK [Online] Available: http://wwwtouchbionicscom]
- Kim, B.-H. (2015). Effective Length Design of Humanoid Robot Fingers Using Biomimetic Optimization. International Journal of Advanced Robotic Systems, 12(10), 150. doi:10.5772/61566
- George P. Kontoudis, Minas Liarokapis, and Kyriakos G. Vamvoudakis(2019). An Adaptive, Humanlike Robot Hand with Selective Interdigitation: Towards Robust Grasping and Dexterous, In-Hand Manipulation. 19th International Conference on Humanoid Robots (Humanoids) Toronto, Canada. October 15-17, 2019
- Folgheraiter, Michele, and Giuseppina Gini. “Blackfingers: an Artificial Hand that copiess HumanHand in Stucture, size, and Functions.” home.dei.polimi.it. N.p., 2000. Web. 18 Nov. 2009.
- J. Denavit and R.S. Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,” Journal of Applied Mechanics, pp. 215—221, June 1955.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.