A Review on Mn3O4 and Its Composite Nano materials of Different Morphologies as an Electrode Material in Super capacitors

Authors

  • Tanaji S. Patil  Bhogawati Mahavidyalaya, Kurukali, Tal – Karveer, Dist. – Kolhapur, Maharashtra, India
  • Satish A. Gangawane  Dhoodhsakhar Mahavidyalaya, Bidri, Tal – Kagal, Dist. – Kolhapur, Maharashtra, India
  • Mansing Takale  Department of Physics, Shivaji University, Kolhapur, Maharashtra, India

Keywords:

Abstract

Mn3O4 and its composite nanomaterials have become promising candidate as an electrode for supercapacitor devices, because of its low cost, non-toxicity, large abundance, high porosity and high capacitance values in aqueous electrolyte. Here, we systematically summarized the impact of different morphologies of Mn3O4 and its composite nanomaterials on supercapacitive performance. Different researchers synthesized various Mn3O4 and its composite nanomaterials of exceptional properties and different morphologies for energy storage. This article reviews recent efforts and developments in synthesis methods Mn3O4 and its composite nanomaterials as an electrode material in supercapacitors.

References

  1. X. Liu et al, Journal of Nanomaterials, Volume 2013, Article ID 736375.
  2. K. Zhang et al, Chemical Society Reviews, CS-REV-06-2014-000218.R1.
  3. W.Wei et al, Chem. Soc. Rev., 2011, 40, 1697–1721.
  4. Z. sun et al, Sci China Mater 2017, 60(1): 1–24.
  5. A. Sukhdev et al, Heliyon 6 (2020) e03245.
  6. Y. Kong et al, Nanomaterials 2020, 10, 367.
  7. X. Zhang et al, CrystEngComm, 2012, 14, 1485.
  8. H. U. Shah et al, Int. J. Electrochem. Sci., 11 (2016) 8155 – 8162.
  9. T. Ahmad et al, J. Mater. Chem.,2004, 14 3406 -3410.
  10. A. Ullah et al, Journal of Saudi Chemical Society (2017).
  11. H. Dhaouadi et al, ISRN Spectroscopy, Volume 2012, Article ID 706398.
  12. Y. Tan et al, Chem. Commun., 2011, 47, 1172–1174.
  13. W. Wang et al, Crystal Growth & Design, 2008 Vol. 8, No. 1, 358–362.
  14. B. Jhansi Rani et al, Surfaces and Interfaces, 2018.
  15. A. Ubale et al, Materials Chemistry and Physics 136 (2012) 1067 – 1072.
  16. A. M. Toufiq et al, Mater. Express, 2014, Vol. 4, No. 3.
  17. H.K. Yang et al,, Nanomaterials 2016, 6, 203.
  18. H. L. Fei et al, JMSRR, 1(1): 1-10, 2018; Article no. JMSRR.43347.
  19. H. Y. Xu et al, Applied Surface Science 252, (2006) 4091–4096.
  20. J. K. Sharma et al, Journal of Colloid and Interface Science (2016).
  21. D. P. Dubal et al, Journal of Alloys and Compounds 484 (2009) 218–221.
  22. J. Du et al, Nanotechnology, 17 (2006) 4923–4928.
  23. Z. Yu et al, Energy Environ. Sci., 2015, 8, 702.
  24. Y. Luo et al, Materials Letters, 178(2016), 171–174.
  25. K. V. sankar et al, J Appl. Electrochem (2012) 42:463–470.
  26. J. W. Lee et al, Chem. Mater. 2012, 24, 1158−1164.
  27. D. Lee et al, Nanoscale Research Letters 2013, 8:535.
  28. R. Aswathy et al, Journal of Alloys and Compounds, 2018.
  29. B. Wang et al, Electrochimica Acta 55 (2010) 6812–6817.
  30. H. U. Shah et al, J. Nanosci. Nanotechnol., 2018, Vol. 18, No. 1.
  31. H. Jiang et al, Nanoscale, 2010, 2, 2195–2198.
  32. R. Dong et al, ACS Appl. Mater. Interfaces 2013, 5, 9508−9516.
  33. D.P. Shaik et.al, Materials Today: Proceedings 3, 2016, 64 – 73.
  34. Qu Jiangying et al, Nanoscale, RSC publishing, 2013.
  35. B.G.S. Raj et al, Journal of Alloys and Compounds, 2015.
  36. D.P. Dubal et al, Journal of Alloys and Compounds 497 (2010) 166–170.
  37. Y. Xing et al, Mater Sci: Mater Electron, 2017.
  38. G-r. Xu et al, Journal of Alloys and Compounds 2015.
  39. K. Jang et al, Bull. Korean Chem. Soc. 2014, Vol. 35, No. 10.
  40. M. Zhu et al, Advanced Composites Letters, 2017, Vol. 26, Iss.1.
  41. Li Li et al, Electrochimica Acta, 2013, 87801-808.
  42. M. Aghazadeh et al, Anal. Bioanal. Electrochem., Vol. 10, No. 8, 2018, 961-973.
  43. Zhenjun Qi et al, Nano-Micro Lett., 2015.
  44. Chaofeng Liu et al, Nano Research 2015, 8(10): 3372–3383.
  45. D.P. Dubal et al, Journal of Electroanalytical Chemistry 647 (2010) 60–65.
  46. P. A. Shinde et al, International Journal of Engineering Research and Technology, 2017, ISSN 0974-3154 Volume 10, Number 1.
  47. Y. Zhou et al, Materials 2018, 11, 881.
  48. A.G. Naiknaware, Journal of Alloys and Compounds, 2018.
  49. Tian et al. Nanoscale Research Letters, 2017 12:214.
  50. S. Kulkarni et al, Electrochimica Acta 231, 2017, 460–467.
  51. Doo-Young Youn et al, Journal of The Electrochemical Society, 158 (8) A970-A975, 2011.
  52. Abhijit A.Yadav et al, Electrochimica Acta, 2016.
  53. R. Tholkappiyan et al, Journal of Taibah University for Science, 2018.
  54. Dadamiah PMD Shaik et al, Ceramics International, 2018.
  55. M. S. Yadav et al, Journal of Energy Storage, 2020.
  56. R. Ranjithkumar et al, Superlattices and Microstructures, 2020.
  57. Nan Zhao et al, Nano Energy, 2020.
  58. Y. Zhu et al, Energy Fuels, 2020.

Downloads

Published

2021-04-15

Issue

Section

Research Articles

How to Cite

[1]
Tanaji S. Patil, Satish A. Gangawane, Mansing Takale "A Review on Mn3O4 and Its Composite Nano materials of Different Morphologies as an Electrode Material in Super capacitors" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 9, Issue 4, pp.49-55, March-April-2021.