An Application of the Generalized Bernoulli Equation Method to the Fractional Nonlinear Kawahara Equation
Keywords:
generalized Bernoulli equation method, nonlinear differential equations, travelling wave solutions, Kawahara equationAbstract
An application of the generalized Bernoulli equation method to the fractional nonlinear fifth order Kawahara equation is presented in this paper. We applied this method to solve the fractional nonlinear Kawahara equation by using the generalized Bernoulli equation which has 13 different known solutions as the auxiliary equation. This method is a simple, reliable and powerful tool for solving the fifth order nonlinear Kawahara equation as it produces an interesting range of solutions.
References
- A. Hasegawa, Plasma Instabilities and Nonlinear Effect, Springer-Verlag, Berlin (1975).
- G. Whitham, Linear and Nonlinear Waves, Wiley, New York 1974.
- G. Eilenberger, Solitons, Springer-Verlag, Berlin (1983).
- P. Gray and S. Scott, Chemical Oscillations and Instabilities, Clarendon, Oxford (1990).
- R. Hirota, J. Math. Phys. 14 (1973) 805.
- M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, SIAM, Philadelphia (1981).
- M.R. Miura, Backlund Transformation, Springer-Verlag, Berlin (1978).
- C. Rogers, W.F. Shadwick, Backlund Transformations, Academic Press, New York (1982).
- V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Springer-Verlag, Berlin (1991).
- C.T. Yan, Phys. Lett. A 224 (1996) 77.
- E.G. Fan, Phys. Lett. A 277 (2000) 212.
- Malfliet, W., Math. Methods in the Appl. Sci. 28 (2005) 2031.
- J. H. He, X. H. Wu., Chaos, Solitons and Fractals l30 (2006) 700.
- E.G. Fan, Phys. Lett. A 265 (2000) 353.
- Wang, M.L., Li, X., Zhang, J., Phys. Lett. A 372 (2008) 417.
- [16] Li, Z. B., He, J. H., Math. and Comput. Appl. 15 (2010) 970.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.